JPH05251737A - Light emitting device - Google Patents

Light emitting device

Info

Publication number
JPH05251737A
JPH05251737A JP8485392A JP8485392A JPH05251737A JP H05251737 A JPH05251737 A JP H05251737A JP 8485392 A JP8485392 A JP 8485392A JP 8485392 A JP8485392 A JP 8485392A JP H05251737 A JPH05251737 A JP H05251737A
Authority
JP
Japan
Prior art keywords
passage region
current
layer
current passage
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8485392A
Other languages
Japanese (ja)
Inventor
Hideaki Watanabe
秀明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP8485392A priority Critical patent/JPH05251737A/en
Publication of JPH05251737A publication Critical patent/JPH05251737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the device resistance of a surface light emission type diode having a current constricting structure by impurity diffusion without reducing the light emission output. CONSTITUTION:Grown above a substrate 1 are a p-type active layer 3, a p-type upper clad layer 4, an n-type current blocking layer 5 and a p-type cap layer 6. Zn is diffused from the cap layer 6 to the upper clad layer 4 to form a p-type current passage region 9. On the upper surface of the current passage region 9, the edge line is formed irregularly, the inner peripheral edge of a light output window 12 of a p-side electrode 11 formed on the cap layer 6 is inscribed in the irregular edge line, and the outer peripheral portion of the current passage region is partially covered with the p-side electrode 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光素子に関する。具体
的にいうと、本発明は、発光ダイオード(LED)や半
導体レーザ素子等の面発光型発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device. Specifically, the present invention relates to surface-emitting light emitting devices such as light emitting diodes (LEDs) and semiconductor laser devices.

【0002】[0002]

【従来の技術とその問題点】図7は従来の発光ダイオー
ド31を示す断面図である。これは、n型GaAs基板
32の上にn型下クラッド層33、p型活性層34、p
型上クラッド層35、n型電流ブロック層36、p型又
はn型キャップ層37を順次成長させ、キャップ層37
から上クラッド層35にかけて中央部にZnを拡散させ
てp型の電流通路領域38を形成し、キャップ層37の
上面に設けたp側電極39の中央部に電流通路領域38
の上面よりも大きな光取り出し窓40を開口し、基板3
2の下面全体にn側電極41を設けたものである。
2. Description of the Related Art FIG. 7 is a sectional view showing a conventional light emitting diode 31. This is an n-type lower clad layer 33, a p-type active layer 34, a p-type
The on-mold cladding layer 35, the n-type current blocking layer 36, and the p-type or n-type cap layer 37 are sequentially grown to form the cap layer 37.
To the upper clad layer 35, Zn is diffused in the central portion to form a p-type current passage region 38, and the current passage region 38 is formed in the central portion of the p-side electrode 39 provided on the upper surface of the cap layer 37.
Opening a light extraction window 40 larger than the upper surface of the substrate 3
The n-side electrode 41 is provided on the entire lower surface of No. 2.

【0003】しかして、この電流狭窄構造を有する発光
ダイオードにおいては、p側電極39とn側電極41間
に駆動電圧を印加すると、p側電極39の内周縁からキ
ャップ層37内に流れた電流はキャップ層37を通って
電流通路領域38に入り、活性層34に電流が注入され
ると活性層34で発光し、活性層34から放射された光
はp側電極39の光取り出し窓40から外部へ出射され
る。
However, in the light emitting diode having the current constriction structure, when a driving voltage is applied between the p-side electrode 39 and the n-side electrode 41, the current flowing from the inner peripheral edge of the p-side electrode 39 into the cap layer 37. Enters the current passage region 38 through the cap layer 37, and when current is injected into the active layer 34, the active layer 34 emits light, and the light emitted from the active layer 34 is emitted from the light extraction window 40 of the p-side electrode 39. It is emitted to the outside.

【0004】しかしながら、このような発光ダイオード
31にあっては、キャップ層を通ってp側電極39から
電流通路領域38へ電流が流れるため、キャップ層37
におけるシート抵抗が無視できず、素子抵抗が増大する
という問題があった。このシート抵抗を下げるためには
キャップ層37の厚みを厚くすればよいが、キャップ層
37の厚みを厚くすると、キャップ層37の結晶成長時
間及び電流通路領域38を形成するためのZn拡散時間
が長くなり、発光ダイオード31の製造効率が低下する
という問題があった。
However, in such a light emitting diode 31, since a current flows from the p-side electrode 39 to the current passage region 38 through the cap layer, the cap layer 37 is formed.
There is a problem in that the sheet resistance in (1) cannot be ignored and the element resistance increases. The thickness of the cap layer 37 may be increased to reduce the sheet resistance. However, if the thickness of the cap layer 37 is increased, the crystal growth time of the cap layer 37 and the Zn diffusion time for forming the current passage region 38 are increased. However, there is a problem that the manufacturing efficiency of the light emitting diode 31 is reduced due to the increase in length.

【0005】また、図8に示すものは、従来の別な発光
ダイオード51を示す断面図である。この発光ダイオー
ド51においては、p側電極39に設けた光取り出し窓
40を電流通路領域38の上面よりも小さくし、p側電
極39の内周部を電流通路領域38の外周部と重複させ
るようにしている。このような構造の発光ダイオード5
1においては、キャップ層37を通ることなく、p側電
極39の内周縁から電流通路領域38内に直接に電流が
流入するため、素子抵抗が小さくなる。
FIG. 8 is a sectional view showing another conventional light emitting diode 51. In this light emitting diode 51, the light extraction window 40 provided in the p-side electrode 39 is made smaller than the upper surface of the current passage region 38 so that the inner peripheral portion of the p-side electrode 39 overlaps the outer peripheral portion of the current passage region 38. I have to. Light emitting diode 5 having such a structure
In No. 1, since the current flows directly from the inner peripheral edge of the p-side electrode 39 into the current passage region 38 without passing through the cap layer 37, the element resistance becomes small.

【0006】しかしながら、この発光ダイオードにあっ
ては、光の出射通路でもある電流通路領域38の外周部
分がp側電極39によって覆われているため、電流通路
領域38を通って出射される光がp側電極39の内周部
によって遮蔽され、発光ダイオードの発光出力が低下す
るという問題があった。
However, in this light emitting diode, since the outer peripheral portion of the current passage region 38, which is also the light emission passage, is covered by the p-side electrode 39, the light emitted through the current passage region 38 is not emitted. There is a problem that the light output of the light emitting diode is reduced because the light is shielded by the inner peripheral portion of the p-side electrode 39.

【0007】本発明は叙上の従来の欠点に鑑みてなされ
たものあり、その目的とするところは、発光出力を低下
させることなく素子抵抗を低減させることができる面発
光型の発光素子を提供することにある。
The present invention has been made in view of the above-mentioned conventional drawbacks, and an object thereof is to provide a surface-emitting type light emitting device capable of reducing device resistance without lowering light emission output. To do.

【0008】[0008]

【課題を解決するための手段】本発明の発光素子は、活
性層より上方に少なくとも1つの逆方向pn接合による
電流ブロック層が形成され、電流ブロック層の一部を貫
通させて不純物を拡散させることにより電流通路領域が
設けられ、電流ブロック層の上方に設けられた電極が電
流通路領域の上面と対向する光取り出し窓を有する発光
素子において、前記電流通路領域の上面の縁線が凹凸状
に形成され、電流ブロック層の上方に設けられた電極が
上記凹凸状の縁線の全体もしくは一部を超えて電流通路
領域の上面と接触していることを特徴としている。
In the light emitting device of the present invention, a current blocking layer having at least one reverse pn junction is formed above the active layer, and impurities are diffused by penetrating a part of the current blocking layer. Thus, in the light emitting element in which the current passage region is provided and the electrode provided above the current blocking layer has the light extraction window facing the upper surface of the current passage region, the edge line of the upper surface of the current passage region is uneven. It is characterized in that the electrode formed and provided above the current blocking layer is in contact with the upper surface of the current passage region over all or part of the uneven edge line.

【0009】[0009]

【作用】本発明の発光素子にあっては、電流通路領域の
上面の縁線を凹凸状に形成し、キャップ層の上方に形成
された電極を当該凹凸状の縁線を超えて電流通路領域の
上面と接触させている。すなわち、電流通路領域の上面
の外周部分が電極によって部分的に覆われているだけで
あるので、電流通路領域の上面の外周と電極の内周とが
同心状に形成されていて電流通路領域の外周部分が全周
にわたって覆われた従来の発光素子と比較して、電極に
よる影が小さくなり、発光出力の低下を小さくすること
ができる。
In the light emitting device of the present invention, the edge line on the upper surface of the current passage region is formed in a concavo-convex shape, and the electrode formed above the cap layer is crossed over the concavo-convex edge line to form the current passage region. Is in contact with the upper surface of. That is, since the outer peripheral portion of the upper surface of the current passage region is only partially covered by the electrode, the outer periphery of the upper surface of the current passage region and the inner periphery of the electrode are concentrically formed, and As compared with the conventional light emitting element in which the outer peripheral portion is entirely covered, the shadow due to the electrode becomes smaller, and the reduction in light emission output can be reduced.

【0010】また、電流通路領域の上面の外周部が部分
的に電極と接触しているので、一部の電流は電極から電
流通路領域へ流れ、一部の電流は電極から最上層(例え
ば、キャップ層)を通って電流通路領域の外周面に流入
する。しかも、電流通路領域の縁線が凹凸状をしている
ので、電流注入領域長が長くなり、電流通路領域の外周
面からの電流注入量が増大し、素子抵抗が低減される。
Further, since the outer peripheral portion of the upper surface of the current passage region is partially in contact with the electrode, some current flows from the electrode to the current passage region, and some current flows from the electrode to the uppermost layer (for example, Flow through the cap layer) to the outer peripheral surface of the current passage region. In addition, since the edge line of the current passage region is uneven, the length of the current injection region is increased, the amount of current injected from the outer peripheral surface of the current passage region is increased, and the element resistance is reduced.

【0011】したがって、本発明によれば、電極の影に
なる部分の電流通路領域をなるだけ増加させることな
く、電流注入領域長を長くでき、できるだけ発光出力を
低減させることなく素子抵抗を小さくすることができ
る。
Therefore, according to the present invention, the length of the current injection region can be increased without increasing the current passage region in the shadow of the electrode as much as possible, and the device resistance can be reduced without reducing the light emission output as much as possible. be able to.

【0012】[0012]

【実施例】図1は本発明の一実施例による発光ダイオー
ドAを示す断面図である。図2(a)〜(e)はこの発
光ダイオードAの製造方法を示す断面図である。以下、
この発光ダイオードAの構造を製造順序に従って説明す
る。まず、n−GaAs基板1の上に、例えばMBE
(分子線エピタキシー)成長法により、n−Al0.3
0.7As下クラッド層2、p−Al0.03Ga0.97As
活性層3、p−Al0.3Ga0.7As上クラッド層4、n
−Al0.3Ga0.7As電流ブロック層5、p−Al0.1
Ga0.9Asキャップ層6を順次成長させる〔図2
(a)〕。これによってpnpn構造が形成される。
1 is a sectional view showing a light emitting diode A according to an embodiment of the present invention. 2A to 2E are cross-sectional views showing a method for manufacturing the light emitting diode A. Less than,
The structure of the light emitting diode A will be described according to the manufacturing order. First, for example, MBE is formed on the n-GaAs substrate 1.
By (molecular beam epitaxy) growth method, n-Al 0.3 G
a 0.7 As lower clad layer 2, p-Al 0.03 Ga 0.97 As
Active layer 3, p-Al 0.3 Ga 0.7 As upper cladding layer 4, n
-Al 0.3 Ga 0.7 As current blocking layer 5, p-Al 0.1
The Ga 0.9 As cap layer 6 is sequentially grown [FIG.
(A)]. As a result, a pnpn structure is formed.

【0013】この後、活性層3から出射される発光波長
に対して無反射(AR)条件を満たす膜厚となるよう、
キャップ層6の全面に塗布性の拡散剤(OCD)をスピ
ンコートする〔図2(b)〕。無反射条件は、発光波長
をλ、拡散剤(拡散源)の屈折率をnとすれば、拡散剤
層7の膜厚をλ/4nとすることである。この実施例で
は、800℃でランプアニールを行なってZnを拡散さ
せるので、この拡散剤層7の屈折率は1.44となり、
発光波長は830nmであるので、この拡散剤層7の膜
厚は1440Åとなる。図6はスピンナーの回転数とこ
の拡散剤をスピンナーで塗布したときの塗布膜厚との関
係を示しており、この図によれば1440Åの膜厚を得
るためには、スピンナーの回転数を1800rpmとす
ればよい。
Thereafter, the film thickness is set so as to satisfy the antireflection (AR) condition with respect to the emission wavelength emitted from the active layer 3.
A diffusing agent (OCD) having a coating property is spin-coated on the entire surface of the cap layer 6 (FIG. 2B). The non-reflection condition is that the thickness of the diffusing agent layer 7 is λ / 4n, where λ is the emission wavelength and n is the refractive index of the diffusing agent (diffusion source). In this example, since lamp annealing is performed at 800 ° C. to diffuse Zn, the refractive index of the diffusing agent layer 7 is 1.44,
Since the emission wavelength is 830 nm, the film thickness of the diffusing agent layer 7 is 1440Å. FIG. 6 shows the relationship between the rotation speed of the spinner and the coating film thickness when this diffusing agent is applied by the spinner. According to this figure, in order to obtain a film thickness of 1440Å, the rotation speed of the spinner is 1800 rpm. And it is sufficient.

【0014】ついで、キャップ層6の上に塗布された拡
散剤層7を300℃で60分間ベークした後、拡散剤層
7の上にAZレジストを塗布し、フォトリソグラフィ工
程によりAZレジスト膜8を外周の縁線が凹凸状をした
パターン(例えば、歯車状)に形成し、このAZレジス
ト膜8をマスクとしてAZレジスト膜8外の拡散剤層7
をエッチングにより除去し、拡散剤層7の縁線を目的と
する凹凸パターンに形成する〔図2(c)〕。この後、
AZレジスト膜8を剥離させる。
Then, the diffusing agent layer 7 applied on the cap layer 6 is baked at 300 ° C. for 60 minutes, then an AZ resist is applied on the diffusing agent layer 7, and an AZ resist film 8 is formed by a photolithography process. The peripheral edge line is formed in a pattern having an uneven shape (for example, a gear shape), and using the AZ resist film 8 as a mask, the diffusing agent layer 7 outside the AZ resist film 8 is formed.
Are removed by etching, and the edge line of the diffusing agent layer 7 is formed into a desired uneven pattern [FIG. 2 (c)]. After this,
The AZ resist film 8 is peeled off.

【0015】こうして、キャップ層6の上面に外周の縁
線が凹凸状をした拡散剤層7のパターンを形成した後、
この拡散剤層7を例えばランプアニールにより800℃
で10分間加熱し、Znを少なくとも電流ブロック層5
を貫通する深さまで拡散させる〔図2(d)〕。これに
より、電流ブロック層5の一部は高濃度のp型反転領域
となり、p+−AlGaAs高濃度半導体領域による電
流通路領域9が形成される。この電流通路領域9の上面
は、図3に示すように、キャップ層6の表面で外周の縁
線が例えば歯車のような形の凹凸状縁線13となってい
る。
In this way, after the pattern of the diffusing agent layer 7 in which the peripheral edge line is uneven is formed on the upper surface of the cap layer 6,
This diffusing agent layer 7 is subjected to, for example, lamp annealing at 800 ° C.
By heating for 10 minutes, Zn is contained in at least the current blocking layer 5
Is diffused to a depth penetrating through [Fig. 2 (d)]. As a result, a part of the current blocking layer 5 becomes a high-concentration p-type inversion region, and the current passage region 9 is formed by the p + -AlGaAs high-concentration semiconductor region. As shown in FIG. 3, the upper surface of the current passage region 9 has an outer peripheral edge line on the surface of the cap layer 6 which is an uneven edge line 13 having a shape like a gear.

【0016】この後、拡散剤層7の上に再びAZレジス
ト10を塗布し、通常のフォトリソグラフィ工程によ
り、拡散剤層7の凹凸状縁線に内接する形状(例えば、
内接円)となるようにAZレジスト10をパターニング
する。このAZレジスト10をマスクとしてキャップ層
6の上面にp側電極11を形成し〔図2(e)〕、リフ
トオフ法によってp側電極11に光取り出し窓12を形
成すると、光取り出し窓12の内周縁が電流通路領域9
の上面の凹凸状縁線13に内接する。最後に、基板1の
下面全体にAuGeNiによるn側電極14を形成する
〔図1〕。
After that, the AZ resist 10 is applied again on the diffusing agent layer 7 and a shape (for example, inscribed in the uneven edge line of the diffusing agent layer 7 is inscribed by a normal photolithography process).
The AZ resist 10 is patterned so as to form an inscribed circle). When the p-side electrode 11 is formed on the upper surface of the cap layer 6 by using the AZ resist 10 as a mask [FIG. 2 (e)] and the light extraction window 12 is formed in the p-side electrode 11 by the lift-off method, the light extraction window 12 is The periphery is the current passage area 9
It is inscribed in the uneven edge line 13 on the upper surface of. Finally, the n-side electrode 14 made of AuGeNi is formed on the entire lower surface of the substrate 1 [FIG. 1].

【0017】しかして、この発光ダイオードAにあって
は、p側電極11とn側電極14間に駆動電圧を印加す
ると、p側電極11から電流通路領域9に電流が流入
し、電流通路領域9の底面から活性層3へ電流が注入さ
れ、活性層3で発光する。活性層3で発光した光は電流
通路領域9を通ってp側電極11の光取り出し窓12か
ら出射される。
In this light emitting diode A, however, when a driving voltage is applied between the p-side electrode 11 and the n-side electrode 14, a current flows from the p-side electrode 11 into the current passage region 9 and the current passage region is formed. Current is injected from the bottom surface of the active layer 9 into the active layer 3 to emit light in the active layer 3. The light emitted from the active layer 3 passes through the current passage region 9 and is emitted from the light extraction window 12 of the p-side electrode 11.

【0018】図4は図1のX部を拡大して示す平面図、
図5(a)(b)は図4のY−Y線断面図及びZ−Z線
断面図である。このようにして製作された発光ダイオー
ドAにあっては、図4に示すように、電流通路領域9の
外周部が全周にわたってp側電極11と重なっておら
ず、オーバラップ長sが等しい場合、電流通路領域9の
外周部が全周にわたってp側電極11により覆われてい
る従来の発光ダイオードと比較して電流通路領域9の外
周部がp側電極11の影になる割合が半減している。し
たがって、電流通路領域9の外周部をp側電極11と重
複させるようにしたにも拘らず、できるだけ発光効率の
低減を防止することができる。
FIG. 4 is an enlarged plan view showing an X portion of FIG.
5A and 5B are a sectional view taken along the line YY and a sectional view taken along the line ZZ of FIG. In the light emitting diode A manufactured in this way, as shown in FIG. 4, when the outer peripheral portion of the current passage region 9 does not overlap the p-side electrode 11 over the entire circumference and the overlap length s is equal. As compared with the conventional light emitting diode in which the outer peripheral portion of the current passage region 9 is entirely covered by the p-side electrode 11, the ratio of the outer peripheral portion of the current passage region 9 being shaded by the p-side electrode 11 is reduced by half. There is. Therefore, although the outer peripheral portion of the current passage region 9 overlaps the p-side electrode 11, it is possible to prevent the luminous efficiency from decreasing as much as possible.

【0019】また、電流通路領域9へ注入される電流j
1は、図4及び図5(a)(b)に示すようにp側電極
11から直接電流通路領域9の外周部上面へ注入され
る。同時に、電流通路領域9の近傍でp側電極11から
キャップ層6へ流入した電流j2は、キャップ層6の外
周面(凹凸状縁線13に沿った面)から電流通路領域9
へ注入される。ところが、この発光ダイオードAでは、
電流通路領域9の外周が凹凸状縁線13となっているの
で、キャップ層6から電流通路領域9へ電流j2を注入
される電流注入領域長(凹凸状縁線13に沿った距離)
が非常に長くなっており、キャップ層6から電流通路領
域9へ注入される電流j1+j2が増大しており、p側電
極11と電流通路領域9間の抵抗が小さくなっている。
したがって、発光ダイオードAの素子抵抗が小さくなっ
ている。この結果、本発明の発光ダイオードAでは、発
光効率の低減を少なくしながら素子抵抗を小さくするこ
とができる。
The current j injected into the current passage region 9
1 is directly injected from the p-side electrode 11 into the upper surface of the outer peripheral portion of the current passage region 9 as shown in FIGS. 4 and 5A and 5B. At the same time, the current j 2 flowing into the cap layer 6 from the p-side electrode 11 in the vicinity of the current passage region 9 is generated from the outer peripheral surface of the cap layer 6 (the surface along the irregular edge line 13).
Is injected into. However, in this light emitting diode A,
Since the outer periphery of the current passage region 9 is the uneven edge line 13, the length of the current injection region where the current j 2 is injected from the cap layer 6 to the current passage region 9 (distance along the uneven edge line 13).
Is very long, the current j 1 + j 2 injected from the cap layer 6 to the current passage region 9 is increasing, and the resistance between the p-side electrode 11 and the current passage region 9 is small.
Therefore, the element resistance of the light emitting diode A is small. As a result, in the light emitting diode A of the present invention, it is possible to reduce the element resistance while reducing the reduction in light emission efficiency.

【0020】上記実施例においては、電流通路領域9の
上面の凹凸状縁線13の形状は角波状としているが、三
角波状あるいは正弦波状としてもよく、また図2のよう
に周期的な凹凸である必要はなく、非周期的な凹凸状縁
線13やランダムな凹凸状縁線13となっていてもよ
い。また、p側電極11の光取り出し窓12の内周縁
は、実施例では凹凸状縁線13に内接しているが、凹凸
状縁線13に内接する位置と外接する位置との中間にあ
ってもよい(つまり、p側電極11が凹凸状縁線13の
領域と部分的に重なっていてもよい)。
In the above embodiment, the shape of the uneven edge line 13 on the upper surface of the current passage region 9 is a square wave shape, but it may be a triangular wave shape or a sine wave shape, and as shown in FIG. It does not have to be present, and may be a non-periodic uneven edge line 13 or a random uneven edge line 13. Further, the inner peripheral edge of the light extraction window 12 of the p-side electrode 11 is inscribed in the uneven edge line 13 in the embodiment, but may be in the middle between the position inscribed in the uneven edge line 13 and the position inscribed in the outer edge. Good (that is, the p-side electrode 11 may partially overlap the region of the uneven edge line 13).

【0021】なお、上記実施例においては発光ダイオー
ドの場合について説明したが、本発明は半導体レーザ素
子においても同様に実施することができるものである。
また、導電型も上記実施例のものに限らず、各層の導電
型は上記実施例と反対でもよい。その場合には電流通路
領域もn型とする必要がある。また、AlGaAs系の
発光素子に限らないこともいうまでもない。さらには、
活性層の上のpn接合は上記実施例では、1箇所である
が、2箇所以上としてもよい。
Although the case of the light emitting diode has been described in the above embodiment, the present invention can be similarly applied to the semiconductor laser device.
Also, the conductivity type is not limited to that of the above embodiment, and the conductivity type of each layer may be opposite to that of the above embodiment. In that case, the current passage region also needs to be n-type. It goes without saying that the light emitting element is not limited to the AlGaAs light emitting element. Moreover,
Although there is one pn junction on the active layer in the above embodiment, it may be two or more.

【0022】[0022]

【発明の効果】本発明によれば、電極による影を小さく
して発光出力の低下を小さくすることができる。しか
も、電流通路領域と電極の接触をとることができると共
に電流注入領域長を長くでき、素子抵抗を低減させて素
子の信頼性を向上させることができる。
According to the present invention, it is possible to reduce the shadow of the electrode and reduce the reduction of the light emission output. Moreover, the current passage region and the electrode can be brought into contact with each other, the length of the current injection region can be increased, and the element resistance can be reduced to improve the reliability of the element.

【0023】したがって、本発明によれば、電極の影に
なる部分の電流通路領域をなるだけ小さくし、発光出力
を低減させることなく素子抵抗を小さくすることができ
る。
Therefore, according to the present invention, the current passage region in the shadow of the electrode can be made as small as possible, and the element resistance can be made small without reducing the light emission output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による発光ダイオードを示す
断面図である。
FIG. 1 is a sectional view showing a light emitting diode according to an embodiment of the present invention.

【図2】(a)(b)(c)(d)(e)は同上の発光
ダイオードの製造方法を示す断面図である。
2 (a), (b), (c), (d), and (e) are cross-sectional views showing a method for manufacturing the above light emitting diode.

【図3】同上の製造工程において、電流通路領域を形成
された直後の発光ダイオードを示す平面図である。
FIG. 3 is a plan view showing a light emitting diode immediately after a current passage region is formed in the above manufacturing process.

【図4】図1のX部拡大平面図である。FIG. 4 is an enlarged plan view of an X portion of FIG.

【図5】(a)(b)は図4のY−Y線断面図及びZ−
Z線断面図である。
5A and 5B are cross-sectional views taken along the line YY of FIG. 4 and Z-.
It is a Z line sectional view.

【図6】スピンナーの回転数とスピンナーによる拡散剤
の塗布膜厚との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the rotation speed of the spinner and the film thickness of the diffusing agent applied by the spinner.

【図7】従来の発光ダイオードを示す断面図である。FIG. 7 is a cross-sectional view showing a conventional light emitting diode.

【図8】従来の別な発光ダイオードを示す断面図であ
る。
FIG. 8 is a sectional view showing another conventional light emitting diode.

【符号の説明】[Explanation of symbols]

3 活性層 5 電流ブロック層 9 電流通路領域 11 p側電極 12 光取り出し窓 13 凹凸状縁線 3 Active Layer 5 Current Blocking Layer 9 Current Passage Region 11 P-side Electrode 12 Light Extraction Window 13 Uneven Edge Line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性層より上方に少なくとも1つの逆方
向pn接合による電流ブロック層が形成され、電流ブロ
ック層の一部を貫通させて不純物を拡散させることによ
り電流通路領域が設けられ、電流ブロック層の上方に設
けられた電極が電流通路領域の上面と対向する光取り出
し窓を有する発光素子において、 前記電流通路領域の上面の縁線が凹凸状に形成され、電
流ブロック層の上方に設けられた電極が上記凹凸状の縁
線の全体もしくは一部を超えて電流通路領域の上面と接
触していることを特徴とする発光素子。
1. A current block layer having at least one reverse pn junction is formed above the active layer, and a current passage region is provided by diffusing impurities by penetrating a part of the current block layer to form a current block region. In a light-emitting element in which an electrode provided above the layer has a light extraction window facing the upper surface of the current passage region, an edge line on the upper surface of the current passage region is formed in an uneven shape and provided above the current block layer. The light-emitting element is characterized in that the electrode is in contact with the upper surface of the current passage region over all or part of the uneven edge line.
JP8485392A 1992-03-06 1992-03-06 Light emitting device Pending JPH05251737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8485392A JPH05251737A (en) 1992-03-06 1992-03-06 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8485392A JPH05251737A (en) 1992-03-06 1992-03-06 Light emitting device

Publications (1)

Publication Number Publication Date
JPH05251737A true JPH05251737A (en) 1993-09-28

Family

ID=13842363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8485392A Pending JPH05251737A (en) 1992-03-06 1992-03-06 Light emitting device

Country Status (1)

Country Link
JP (1) JPH05251737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838810B4 (en) * 1998-08-26 2006-02-09 Osram Opto Semiconductors Gmbh Method for producing a plurality of Ga (In, Al) N light-emitting diode chips

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838810B4 (en) * 1998-08-26 2006-02-09 Osram Opto Semiconductors Gmbh Method for producing a plurality of Ga (In, Al) N light-emitting diode chips

Similar Documents

Publication Publication Date Title
KR100208108B1 (en) Semiconductor light-emitting device and method for producing the same
JP3084364B2 (en) Light emitting diode
US5719892A (en) Hybrid mirror structure for a visible emitting VCSEL
JPH0974219A (en) Surface light-emission type diode and its manufacture
US6246078B1 (en) Semiconductor light emitting element
JPH07221409A (en) Semiconductor device having incorporated p-type and n-type impurity inductive layer non-ordered material
JP3027095B2 (en) Semiconductor light emitting device
TW202117863A (en) Vcsel with multiple current confinement layers
JP2834922B2 (en) Light emitting diode
KR930700988A (en) Surface-emitting semiconductor laser and manufacturing method thereof
JP2002064221A (en) Light-emitting diode
JPH07176788A (en) Light emitting diode
US6278139B1 (en) Semiconductor light-emitting diode
JPH04225577A (en) Light emitting diode
JPH05251737A (en) Light emitting device
JP2946852B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0715035A (en) Semiconductor light emitting device
JPH05218498A (en) Light emitting diode provided with transverse junction
JP2697904B2 (en) Method for manufacturing photoelectric device
JPH07153993A (en) Light-emitting diode
JPH0738147A (en) Semiconductor light emitting device
JPH0590634A (en) Light emitting diode
JP3236463B2 (en) Light emitting diode and method of manufacturing the same
JPH01137679A (en) Semiconductor light emitting element
JPH05102605A (en) Face emitting semiconductor light emitting element and its manufacturing method