JPH0524963B2 - - Google Patents

Info

Publication number
JPH0524963B2
JPH0524963B2 JP60113835A JP11383585A JPH0524963B2 JP H0524963 B2 JPH0524963 B2 JP H0524963B2 JP 60113835 A JP60113835 A JP 60113835A JP 11383585 A JP11383585 A JP 11383585A JP H0524963 B2 JPH0524963 B2 JP H0524963B2
Authority
JP
Japan
Prior art keywords
tuyere
lance
jet
oxygen
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60113835A
Other languages
Japanese (ja)
Other versions
JPS61272308A (en
Inventor
Ryoji Tsujino
Masazumi Hirai
Tatsuo Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11383585A priority Critical patent/JPS61272308A/en
Publication of JPS61272308A publication Critical patent/JPS61272308A/en
Publication of JPH0524963B2 publication Critical patent/JPH0524963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は例えば上底吹転炉吹錬において、転炉
内二次燃焼率を大きくし、転炉内鋼浴に熱を付加
する上吹ランスに関するものである。 (従来の技術) 近年、溶銑予備処理技術の進歩により、製鋼工
程は、脱Si、脱P、脱S、脱Cに機能分割され、
糖錬用副材料の低減、歩留向上等の多大な利益を
享受しているが、一方、溶銑予備処理と転炉の工
程分割に伴ない熱損失も大きく、転炉精錬前の溶
銑温度が低くなりさらに又溶銑中〔C〕と共に重
要な発熱源である溶銑中〔Si〕が、溶銑脱Si、脱
Pの予備処理によりほぼトレースに近く低濃度と
なるため、転炉吹錬時の熱源が不足し、高溶銑比
操業を余儀なくされていた。又近年スクラツプ発
生量は増加の一途にあり、将来スクラツプが重要
な鉄源となり得るところから、転炉内での熱源付
加技術を早急に確立する必要にせまられている。 これらに対するものとして、1つには安価な発
熱源であるコークス又は石炭等を転炉内溶湯に添
加する方法が用いられているが、コークス中又は
石炭中のS、Nが溶湯中に捕捉され、高純度鋼の
製造時障害となる。又1つには、転炉内で脱炭時
発生する一酸化炭素をさらに二酸化炭素に酸化す
る際に発生する二次燃焼熱を熱源として利用する
方法があるが、これまで二次燃焼率(=
CO2/CO2+COで定義)高々7〜10%と低く、熱源と しては十分でなかつた。 (発明が解決しようとする問題点) 本発明は上記の如き欠点を克服しクリーンな熱
源である二次燃焼熱を十分獲得すべく転炉内の二
次燃焼率が大きくなる上吹吹錬用ランスを提供す
るものである。 なおここでランスの要部は第1図に示す如くラ
ンス1におけるラバールノズルの羽口2、或はス
トレートノズルの羽口2′とそれぞれの羽口スロ
ート部3,3′からなる。 (問題点を解決するための手段) 本発明者らは転炉内の二次燃焼機構の研究を行
ない、二次燃焼率が酸素噴流との反応によつて支
配されていることを見出した。すなわち二次燃焼
を機構をさらに詳しく説明すると、転炉内で脱炭
反応によつて生成した一酸化炭素が、上吹ランス
羽口から噴出した酸素噴流の自由噴流域に巻込ま
れ、反応し、二酸化炭素を生成する。さらに生成
した二酸化炭素のうち一部は噴流中から逸散し、
残りの二酸化炭素および未反応の酸素は鋼浴に衝
突し鋼浴中の炭素と反応して一酸化炭素を生成す
る。以上の如く噴流中から逸散した二酸化炭素と
脱炭反応によつて生成した一酸化炭素の比によつ
て二次燃焼率が決まると考えられ、ジエツトから
逸散する二酸化炭素はジエツトに大量に巻込まれ
る一酸化炭素と熱交換し、一酸化炭素の鋼浴への
衝突伝熱によつて、二次燃焼熱が鋼浴に着熱され
ると考えられる。さらに自由噴流は(1)式で示され
る速度分布をもつており、二酸化炭素が自由噴流
中から逸散する場合、ある限界速度以下の噴流域
から逸散すると考えられる。 U/Up=exp〔−87(r/x)2〕/(0.16x/di −1.5) ……(1) ここで、r:自由噴流半径方向距離、x:自由
噴流口からの距離、di:各羽口スロート部の直
径、U:自由噴流中(x、r)での速度、Up
自由噴流入口での速度である。 したがつて逸散する二酸化炭素の量が(自由噴
流中に限界速度以下の体積/自由噴流全体積)に
比例すとすると各羽口1本当りの二次燃焼率
(αi)は(2)式で与えらえる。 αi=(CO2/CO+CO2i=2{a(Vk/Vti+b}×F
O2i/2〔1−{a(Vk/Vti+b}×FO2i+2{a(
Vk/Vti+b}×FO2i =a(Vk/Vti+b ……(2) ここでa、b:定数、i:各羽口の酸素噴流番
号、Vk:自由噴流中の限界速度以下の体積、
Vt:自由噴流全体積、FO2:送酸速度。 転炉全体の二次燃焼率(α)は、各羽口の噴流
の二次燃焼率(αi)を各羽口の送酸速度で加重平
均することによつて求められ、(3)式で表わされ
る。 α= 〓i αi×FO2i/ 〓i FO2i=aK+b(k= 〓i (Vk/Vti×FO2i/ 〓i FO2i) ……(3) 本発明者からの実験データから二酸化炭素が逸
散する噴流の限界領域の速度は5m/sec、aは
0.537、bは0.056と求められた。 さらに自由噴流域全体の体積(Vt)は(4)式の
ように求められた。 Vt=0.0475(x/di)3+0.785(x/di) ……(4) また自由噴流入口の速度をマツハ1=330m/
secとして5m/secの限界速度領域は(5)式のよう
に求められる。 Vk=0.0475(x/di3−0.0138(x/di+14.78)3
211.3 ……(5) なお自由噴流域長さxは吹錬時の湯面からのラ
ンス高さから(6)式で計算できる噴流の超音速コア
ー域の長さ(Hc)を差し引いて求められる。 Hc=(4.12P−1.86)×di ……(6) ここでHc:超音速コアー長さ、P:羽口前酸素
圧力、di:各羽口スロート部の直径である。 なお(5)式は自由噴流入口の流速をマツハ1とし
ているが羽口先端部が先細りしている収束ノズル
またはストレートノズルの場合酸素吐出速度とし
て、音速以下にすると周辺の他羽口からの酸素噴
流に同伴され、二次燃焼率が低下するか、他羽口
の酸素噴流に同伴されないような条件では溶鋼へ
の接触が減少し着熱効率が著しく低下することが
わかつた。 又k>0.65の場合、転炉吹錬として極端なソフ
トブローとなり、Feの酸化によるスラグフオー
ミングが激しくなり、フオーミングスラグが酸素
噴流を遮蔽することにより一酸化炭素の酸素噴流
への巻込が減少し、さらに生成した二酸化炭素の
噴流外への逸散も減少するため二次燃焼率は低下
することがわかつた。又、k>0.65の場合、実操
業において転炉耐火物の溶損が激しく、この意味
からもk≦0.65を確保する必要があることがわか
つた。 ランス羽口の設計に際し、まず一般に転炉吹錬
においては各転炉炉容に応じて脱炭速度及びP、
S等の各不純物の精練条件等から必然的にある範
囲の送酸速度及びランスギヤツプ(吹錬時の湯面
からのランス高さ)が決められるが、その定めら
れた送酸速度及びランスギヤツプのもとにランス
羽口の径は上記kの考え方に基づいて決められ、
一方羽口の個数は総送酸速度と圧力の関係から求
められる。すなわち(7)式に基づいて羽口前酸素圧
力(P)はランス配管許容耐力から決まる所定の圧力
を超えない範囲で総断面積を確保する必要があ
る。 P=1.72×10-2×FO2i/A−1.033 ……(7) ここでP:羽口前酸素圧力、FO2i:各羽口の送
酸速度、A:羽口断面積である。 次に本発明を実施例に基づき説明する。 (実施例) 第1表に示すようなA〜Eの水準のランス羽口
を設計し、吹錬を行なつた結果B〜Dについて
は、ほぼ予想通り高い二次燃焼率が得られた。な
おB〜Dについては底吹の撹拌力を確保しフオー
ミングの防止を同時に行なつた。Eについては(2)
(3)(4)(5)式からは高い二次燃焼率が予想されるが、
フオーミングを防止できず実績の二次燃焼率は低
い。
(Industrial Application Field) The present invention relates to a top-blowing lance that increases the secondary combustion rate in the converter and adds heat to the steel bath in the converter, for example, in top-bottom blowing converter blowing. (Conventional technology) In recent years, with advances in hot metal pretreatment technology, the steelmaking process has been functionally divided into removal of Si, removal of P, removal of S, and removal of carbon.
Although the company enjoys great benefits such as reducing the amount of auxiliary materials for sugar refining and improving yield, on the other hand, there is also a large heat loss due to the process separation of hot metal pretreatment and converter, and the temperature of hot metal before converter refining increases. In addition, the hot metal [Si], which is an important heat source along with the hot metal [C], becomes a low concentration almost traceable due to the preliminary treatment of hot metal removal of Si and P, so it becomes a heat source during converter blowing. The company was forced to operate at a high hot metal ratio. In addition, the amount of scrap generated has been increasing in recent years, and since scrap may become an important source of iron in the future, there is an urgent need to establish a technology for adding a heat source within the converter. One way to deal with these problems is to add coke or coal, which is an inexpensive heat source, to the molten metal in the converter. , which becomes an obstacle during the production of high-purity steel. Another method is to use the secondary combustion heat generated when carbon monoxide generated during decarburization in the converter is further oxidized to carbon dioxide as a heat source, but until now the secondary combustion rate ( =
(Defined as CO 2 /CO 2 + CO) was low, at most 7-10%, and was not sufficient as a heat source. (Problems to be Solved by the Invention) The present invention overcomes the above-mentioned drawbacks and is intended for use in top blowing furnaces where the secondary combustion rate in the converter increases in order to obtain sufficient secondary combustion heat, which is a clean heat source. It provides a lance. As shown in FIG. 1, the main parts of the lance here include a tuyere 2 of a Laval nozzle or a tuyere 2' of a straight nozzle in a lance 1, and respective tuyere throat parts 3, 3'. (Means for Solving the Problems) The present inventors conducted research on the secondary combustion mechanism in the converter and found that the secondary combustion rate was controlled by the reaction with the oxygen jet. In other words, to explain the mechanism of secondary combustion in more detail, carbon monoxide generated by the decarburization reaction in the converter is drawn into the free jet area of the oxygen jet ejected from the top blowing lance tuyere and reacts. Produces carbon dioxide. Furthermore, some of the generated carbon dioxide escapes from the jet stream,
The remaining carbon dioxide and unreacted oxygen impinge on the steel bath and react with carbon in the steel bath to produce carbon monoxide. As described above, it is thought that the secondary combustion rate is determined by the ratio of carbon dioxide escaping from the jet to carbon monoxide generated by the decarburization reaction, and a large amount of carbon dioxide escaping from the jet is It is thought that secondary combustion heat is transferred to the steel bath through heat exchange with the entrained carbon monoxide and heat transfer from collision of the carbon monoxide to the steel bath. Furthermore, the free jet has a velocity distribution expressed by equation (1), and when carbon dioxide escapes from the free jet, it is thought to escape from the jet region below a certain critical velocity. U/U p = exp [-87 (r/x) 2 ]/(0.16x/d i -1.5) ...(1) where, r: free jet radial distance, x: distance from free jet opening , d i : diameter of each tuyere throat, U : velocity in free jet (x, r), U p :
This is the velocity at the free jet inlet. Therefore, if the amount of carbon dioxide dissipated is proportional to (volume below the critical velocity in the free jet/total volume of the free jet), the secondary combustion rate (α i ) for each tuyere is (2 ) is given by the formula. α i = (CO 2 /CO + CO 2 ) i = 2 {a (V k /V t ) i + b}×F
O 2i /2 [1-{a(V k /V t ) i +b}×FO 2i +2{a(
V k /V t ) i + b} x FO 2i = a (V k /V t ) i + b ... (2) where a, b: constant, i: oxygen jet number of each tuyere, V k : free volume below the critical velocity in the jet,
Vt : total free jet volume, FO2 : oxygen delivery rate. The secondary combustion rate (α) of the entire converter is determined by weighted average of the secondary combustion rate (α i ) of the jet of each tuyere by the oxygen feeding rate of each tuyere, and is calculated using equation (3). It is expressed as α= 〓 i α i ×FO 2i / 〓 i FO 2i = aK + b (k = 〓 i (V k /V t ) i × FO 2i / 〓 i FO 2i ) ...(3) Experimental data from the inventor The speed of the critical region of the jet where carbon dioxide escapes from is 5 m/sec, and a is
0.537, b was determined to be 0.056. Furthermore, the volume of the entire free spout area (V t ) was determined using equation (4). V t = 0.0475 (x/di) 3 + 0.785 (x/di) ...(4) Also, the speed of the free jet inlet is Matsuha 1 = 330 m/
The critical speed region of 5 m/sec is obtained as shown in equation (5). V k =0.0475(x/d i ) 3 −0.0138(x/d i +14.78) 3 +
211.3 ...(5) The length of the free jet region x is determined by subtracting the length of the supersonic core region of the jet (H c ), which can be calculated using equation (6), from the lance height from the melt surface during blowing. It will be done. H c = (4.12P - 1.86) x d i ... (6) where H c is the length of the supersonic core, P is the oxygen pressure in front of the tuyere, and d i is the diameter of each tuyere throat. Note that equation (5) assumes that the flow velocity at the free jet inlet is Matsuha 1, but in the case of a convergent nozzle with a tapered tuyere tip or a straight nozzle, if the oxygen discharge velocity is below the sonic speed, oxygen from other surrounding tuyere It was found that under conditions where oxygen is entrained in the jet and the secondary combustion rate decreases, or where it is not entrained in the oxygen jets from other tuyeres, the contact with the molten steel is reduced and the heat transfer efficiency is significantly reduced. If k>0.65, converter blowing will result in extremely soft blowing, and slag forming due to oxidation of Fe will become intense, and the forming slag will block the oxygen jet, causing carbon monoxide to be entrained in the oxygen jet. It was found that the secondary combustion rate decreased because the amount of carbon dioxide generated decreased and the escape of generated carbon dioxide to the outside of the jet also decreased. Furthermore, in the case of k>0.65, the converter refractories were severely eroded during actual operation, and from this point of view, it was found that it was necessary to ensure k≦0.65. When designing a lance tuyere, first, in converter blowing, the decarburization rate and P,
A certain range of oxygen delivery rate and lance gap (lance height from the hot metal surface during blowing) are inevitably determined from the scouring conditions for each impurity such as S, but the range of the determined oxygen delivery rate and lance gap is The diameter of the lance tuyere is determined based on the concept of k above,
On the other hand, the number of tuyeres is determined from the relationship between the total oxygen delivery rate and pressure. That is, based on equation (7), it is necessary to ensure that the total cross-sectional area of the oxygen pressure (P) before the tuyere does not exceed a predetermined pressure determined from the allowable strength of the lance piping. P=1.72×10 −2 ×FO 2i /A−1.033 (7) where P: oxygen pressure before the tuyere, FO 2i : oxygen supply rate of each tuyere, and A: tuyere cross-sectional area. Next, the present invention will be explained based on examples. (Example) As a result of designing lance tuyeres of levels A to E as shown in Table 1 and performing blowing, high secondary combustion rates were obtained for B to D, almost as expected. For B to D, bottom blowing stirring power was ensured and forming was prevented at the same time. Regarding E (2)
Although a high secondary combustion rate is expected from equations (3), (4), and (5),
Forming cannot be prevented and the actual secondary combustion rate is low.

【表】 (発明の効果) 本発明により、転炉耐火物を損傷することなく
転炉内で高い二次燃焼率が得られ、転炉吹錬での
熱源を十分獲得できた結果、高溶鉄比操業は必須
でなくなり、又将来重要な鉄源である安価なスク
ラツプの多量消費に対処可能となつた。 なお上記説明では、上底吹転炉を例にとつた
が、本発明は転炉、取鍋等容器形状にかかわらず
有効であり、又脱炭を主とした精練の場合のみな
らず、Cを熱源とした鉄鉱石の溶融還元等にも同
様の効果を持つことが明らかとなつた。
[Table] (Effects of the invention) According to the present invention, a high secondary combustion rate can be obtained in the converter without damaging the converter refractories, and as a result of obtaining a sufficient heat source for converter blowing, high molten iron Special operations are no longer essential, and it has become possible to cope with the large consumption of cheap scrap, which will be an important source of iron in the future. In the above explanation, a top-bottom blowing converter was used as an example, but the present invention is effective regardless of the shape of the container such as a converter or a ladle. It has become clear that the same effect can be found in the melting and reduction of iron ore using a heat source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはランス羽口部の縦断面図、第1図b
は第1図aの下面図である。 1:ランス、2:ラバールノズルの羽口、
2′:ストレートノズルの羽口、3:羽内スロー
ト部、3′:羽口スロート部。
Figure 1a is a longitudinal cross-sectional view of the lance tuyere, Figure 1b
is a bottom view of FIG. 1a; 1: Lance, 2: Laval nozzle tuyere,
2': Straight nozzle tuyere, 3: Inner throat section, 3': Tuyere throat section.

Claims (1)

【特許請求の範囲】 1 ランスの羽口スロート部の直径(di)および
羽口数(n)を、下記式のk値が0.15〜0.65となるよ
うに穿設したことを特徴とする上吹吹錬用ラン
ス。 k=oi=1 {(Vk/Vti×FO2i}/oi=1 FO2i ……(式) 但し i:ランスの各羽口からの酸素噴流番号 Vk:0.0475(x/di3−0.0138(x/di+14.78)3
211.3 Vt:0.0475(x/di3−0.785(x/di) x:自由噴流無さ(=L−Hc)(cm) L:吹錬時の湯面からのランス高さ(cm) Hc:超音速コアー長さ(cm)=(4.12P−1.86)×di di:各羽口スロート部の直径(cm) n:羽口数(個) P:羽口前酸素圧力(Kg/cm2)=1.72×10-2×
FO2i/A−1.033 FO2i:各羽口ごとの送酸量(Nm3/h) A:各羽口の断面積(cm2
[Claims] 1. A top blower characterized in that the diameter (d i ) of the tuyere throat portion of the lance and the number of tuyere (n) are set such that the k value of the following formula is 0.15 to 0.65. Lance for blowing. k= oi=1 {(V k /V t ) i × FO 2i } / oi=1 FO 2i ... (Formula) where i: Oxygen jet number from each tuyere of the lance V k : 0.0475 (x/d i ) 3 −0.0138(x/d i +14.78) 3 +
211.3 V t : 0.0475 (x/d i ) 3 −0.785 (x/d i ) x: No free jet (=L-H c ) (cm) L: Height of lance from the melt surface during blowing ( cm) H c : Supersonic core length (cm) = (4.12P-1.86) x d i d i : Diameter of each tuyere throat (cm) n: Number of tuyeres (pieces) P: Oxygen pressure before the tuyere (Kg/ cm2 )=1.72× 10-2 ×
FO 2i /A-1.033 FO 2i : Oxygen delivery amount for each tuyere (Nm 3 /h) A: Cross-sectional area of each tuyere (cm 2 )
JP11383585A 1985-05-27 1985-05-27 Lance for top-blown refining Granted JPS61272308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11383585A JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11383585A JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Publications (2)

Publication Number Publication Date
JPS61272308A JPS61272308A (en) 1986-12-02
JPH0524963B2 true JPH0524963B2 (en) 1993-04-09

Family

ID=14622236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11383585A Granted JPS61272308A (en) 1985-05-27 1985-05-27 Lance for top-blown refining

Country Status (1)

Country Link
JP (1) JPS61272308A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512271Y2 (en) * 1988-03-25 1993-03-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792123A (en) * 1980-10-13 1982-06-08 Arbed Oxygen blowing nozzle
JPS58151412A (en) * 1982-03-03 1983-09-08 Sumitomo Metal Ind Ltd Method for operating converter
JPS58199810A (en) * 1982-05-18 1983-11-21 Sumitomo Metal Ind Ltd Operating method of converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792123A (en) * 1980-10-13 1982-06-08 Arbed Oxygen blowing nozzle
JPS58151412A (en) * 1982-03-03 1983-09-08 Sumitomo Metal Ind Ltd Method for operating converter
JPS58199810A (en) * 1982-05-18 1983-11-21 Sumitomo Metal Ind Ltd Operating method of converter

Also Published As

Publication number Publication date
JPS61272308A (en) 1986-12-02

Similar Documents

Publication Publication Date Title
KR100242565B1 (en) Process for production of iron
KR101018535B1 (en) Refining ferroalloys
WO2002040721A1 (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
JPH0524963B2 (en)
CA2200961C (en) Process and apparatus for the manufacture of steel from iron carbide
JPH0723494B2 (en) Method and apparatus for refining molten metal
JP2011084789A (en) Converter blowing method
JP4980175B2 (en) Lance for molten iron refining and molten iron refining method
US5733358A (en) Process and apparatus for the manufacture of steel from iron carbide
JP2002069525A (en) Top-blown lance for dephosphorizing molten iron and method for dephosphorizing molten iron
JPH0931513A (en) Steelmaking method in combination blown converter having long service life of refractory
AU4802399A (en) Simplified ladle refining process
AU656228B2 (en) Process for production of iron
JP3619331B2 (en) Stainless steel vacuum decarburization method
JPS61284512A (en) Production of high-chromium steel using chromium ore
JPH11293314A (en) Smelting reduction of iron raw material and smelting reduction furnace
JPH06102808B2 (en) Melt reduction method
JPS62116712A (en) Melting and smelting vessel having splash lance
JPH04246114A (en) Method for tapping iron and slag in smelting reduction furnace
JPH01294818A (en) Method for vacuum-treating stainless steel
JPS6342687B2 (en)
WO1997023656A1 (en) Continuous smelting and refining of iron
JPH08253805A (en) Method for refining stainless steel using decarburizing slag having high productivity
JPH0995721A (en) Method for charging chromium ore powder in smelting reduction furnace
JPH06172839A (en) Operation of converter type smelting reduction furnace