JPH08253805A - Method for refining stainless steel using decarburizing slag having high productivity - Google Patents

Method for refining stainless steel using decarburizing slag having high productivity

Info

Publication number
JPH08253805A
JPH08253805A JP7392395A JP7392395A JPH08253805A JP H08253805 A JPH08253805 A JP H08253805A JP 7392395 A JP7392395 A JP 7392395A JP 7392395 A JP7392395 A JP 7392395A JP H08253805 A JPH08253805 A JP H08253805A
Authority
JP
Japan
Prior art keywords
lance
slag
refining
chromium
decarburizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7392395A
Other languages
Japanese (ja)
Inventor
Shinya Kitamura
信也 北村
Kenichiro Naito
憲一郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7392395A priority Critical patent/JPH08253805A/en
Publication of JPH08253805A publication Critical patent/JPH08253805A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide an efficiently refining method of a stainless steel, by which chromium refining rate is large without increasing the erosion of a refractory under condition of high productivity and expensive reducing agent is not used at all. CONSTITUTION: A top blowing lance, in which a slitting type oxygen supplying tube 7 having concentrically 3-16 angular polygonal or concentrically circular cross section is arranged and 2-10 shield plates 8 are arranged at a part of the tip opening surface of the tube 7 and the ratio B/h of the long side length B (mm) and the short side length (h) (mm) on the individual tip opening surface separated with the plates 8 is 10-225 and in the case of using R (mm) for lance diameter, B×h/R ratio is 0.4-4, is used. Oxygen supplying rate is made to be 125-250Nm<3> /Hr.ton without shifting the tip part of the lance including the lance center point (a) in the vertical direction to the lance body 6. Under condition of remaining decarburizing slag produced in the previous heat in a furnace, molten iron in the following heat is charged and blown, temp.-raised and refined and then, after reducing the chromium content in the decarburizing slag, the decarburizing slag is removed and successively, a ferro-chromium alloy is melted and decarburization-refined in the same converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、前チャージで生成した
脱炭滓中の酸化クロム分を、次チャージの溶銑で還元し
た後、上記スラグを排滓し、引き続いて同一炉で脱炭精
錬することを特徴とする効率的なステンレス鋼の精錬方
法である。
BACKGROUND OF THE INVENTION The present invention is directed to decarburization and refining in the same furnace after reducing the chromium oxide content in the decarburizing slag produced by the previous charge with the hot metal of the next charge, and then slagging the slag. It is an efficient method for refining stainless steel.

【0002】[0002]

【従来の技術】クロムを含んだ溶鋼の精錬をするための
原料としては、炉外精錬で脱燐脱硫した高炉溶銑、クロ
ム鉱石の溶融還元により生成した含クロム溶銑、ステン
レス鋼スクラップを利用して電気炉で溶製した含クロム
溶鉄等がある。これらの原料は、上吹き転炉、底吹き転
炉、上底吹き転炉、AODで吹酸脱炭精錬され、場合に
よっては、さらに、VODやRH・OBといった真空精
錬炉で吹酸脱炭されることによって、材質特性を満たす
炭素濃度へと低下されている。
As a raw material for refining molten steel containing chromium, blast furnace hot metal dephosphorized and desulfurized by out-of-pile refining, chromium-containing hot metal produced by smelting reduction of chromium ore, and stainless steel scrap are used. There is chromium-containing molten iron melted in an electric furnace. These raw materials are top-blown converters, bottom-blown converters, top-bottom-blended converters, and AOD blown decarburization refining, and in some cases, VOD and RH / OB vacuum refining furnaces. As a result, the carbon concentration is reduced to satisfy the material characteristics.

【0003】しかし、これらの精錬炉においては、吹酸
終了時に、吹酸脱炭中に生成した酸化クロムをFe−S
i等の高価な還元剤を用いて還元回収することが広く行
なわれており、コストが高く大きな問題となっている。
However, in these refining furnaces, the chromium oxide produced during the decarburization of propellic acid is removed by Fe-S at the end of propellant acid.
It is widely practiced to carry out reduction and recovery using an expensive reducing agent such as i, and the cost is high, which is a big problem.

【0004】これに対して、特開昭53−119210
号公報では、脱炭時に生成した酸化クロム濃度の高いス
ラグを出鋼後も転炉内に残留させたまま次チャージの溶
銑を受銑し、当該溶銑に含まれる炭素により酸化クロム
を還元回収する技術が開示されている。しかし、この方
法では、第1チャージの脱炭で生成した酸化クロムを還
元回収した後の、第2チャージでの脱炭時にスラグ量が
極めて多くなるため、脱炭中のクロムの酸化が大きくな
り、第3チャージの溶銑による還元に長時間を要すると
いう極めて大きな問題があり、実用化は困難である。ま
た、溶銑に含まれる炭素による酸化クロムの還元速度は
高温にする必要がある上に、高温でも遅く、昇温、還元
に長時間を要し生産性が著しく落ちるという問題があ
る。
On the other hand, JP-A-53-119210
In the gazette, the slag with high chromium oxide concentration generated during decarburization remains in the converter even after tapping, the hot metal of the next charge is received, and the chromium oxide is reduced and recovered by the carbon contained in the hot metal. The technology is disclosed. However, in this method, the amount of slag becomes extremely large during the decarburization with the second charge after the chromium oxide generated by the decarburization with the first charge is reduced and recovered, so that the oxidation of chromium during the decarburization becomes large. However, there is a very big problem that it takes a long time to reduce the third charge by the hot metal, and it is difficult to put it into practical use. Further, there is a problem that the reduction rate of chromium oxide by the carbon contained in the hot metal needs to be high, and it is slow even at high temperature, and it takes a long time to raise the temperature and reduce the productivity, resulting in a significant decrease in productivity.

【0005】この昇温、還元時間を短縮するには、酸
素の供給速度を増加させる。上吹き酸素と溶鉄との接
触を弱め、溶鉄中のクロムの上吹き酸素による再酸化を
抑制する。の2点が重要であるが、同時に2次燃焼を不
必要に増加させ転炉耐火物の損耗を防止することが必須
となる。しかし、通常の上吹きランスは円形多孔ノズル
から構成されているため、酸素供給速度を増加させると
噴流強度が高まり(ハードブロー)溶鉄との接触が強ま
り再酸化が激しくなる。これを回避するためランスギャ
ップを高くすると2次燃焼が非常に高くなり、転炉耐火
物に著しい損耗を与えるという問題がある。
In order to shorten the temperature rising and reducing times, the oxygen supply rate is increased. It weakens the contact between top-blown oxygen and molten iron and suppresses reoxidation of top-blown oxygen in molten iron. However, at the same time, it is essential to unnecessarily increase secondary combustion and prevent wear of the converter refractory. However, since a normal top-blowing lance is composed of a circular multi-hole nozzle, increasing the oxygen supply rate increases the jet strength (hard blow) and strengthens the contact with molten iron, resulting in severe reoxidation. If the lance gap is increased in order to avoid this, the secondary combustion becomes extremely high, and there is a problem that the converter refractory is significantly worn.

【0006】一方、特公昭47−4770号公報には、
上吹きランスの円形酸素ノズルの先端出口部をスロート
部の間に、管路内で上下動し得る作動機構を有するスピ
ンドルを設けたランスが開示されている。この場合、酸
素は円形ノズルとスピンドルの間隙に生じるスリット部
を通して流れるが、間隙を通過した後の噴流は出口直後
に合体し、常にハードブローとなるため上記問題は解決
されない。
On the other hand, Japanese Patent Publication No. 47-4770 discloses that
A lance is disclosed in which a spindle having an actuating mechanism capable of moving up and down in a pipe line is provided between a throat portion and a tip outlet portion of a circular oxygen nozzle of an upper blowing lance. In this case, oxygen flows through the slit formed in the gap between the circular nozzle and the spindle, but the jet flow after passing through the gap merges immediately after the outlet and always becomes a hard blow, so the above problem cannot be solved.

【0007】[0007]

【発明が解決しようとする課題】本発明は、特開昭53
−119210号公報に開示された技術における、脱炭
時にスラグ量が多くなるためクロムの酸化が大きくなり
還元に長時間を要するという問題、昇温、還元に長時間
を要し生産性が著しく落ちるという問題、及び、特公昭
47−4770号公報に開示された技術における、噴流
が出口直後に合体し、常にハードブローとなるという問
題を解決し、高い生産性を有する脱炭滓を用いたステン
レス鋼の精錬方法を提供するものである。
SUMMARY OF THE INVENTION The present invention is disclosed in Japanese Patent Laid-Open No. Sho 53-53.
In the technology disclosed in Japanese Patent Laid-Open No. 119210, there is a problem in that the amount of slag increases during decarburization, which increases the oxidation of chromium and requires a long time for reduction. And the problem in the technology disclosed in Japanese Patent Publication No. 47-4770 that the jets coalesce immediately after the outlet and always become a hard blow, and stainless steel using a decarburizing slag with high productivity is solved. A method for refining steel is provided.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ランスの
ノズル形状を円ではなく適正に「細長い」形状とした場
合に、ランスから吐き出された後の噴流の減衰が極めて
大きいことに着目し、この原理を、前チャージ脱炭時に
生成したクロム酸化物を溶銑中の炭素での還元時に適用
した場合、円形ノズルと比較して、酸素の供給速度を増
加させても、上吹き酸素と溶鉄との接触を弱め、溶鉄中
のクロムの上吹き酸素による再酸化を抑制することがで
きる上、2次燃焼率は大きくは増加せず、増加したにせ
よ次式で定義される着熱効率が極めて高いため転炉耐火
物の損耗を防止することができることを見いだした。 着熱効率={1−(排ガスが浴温以上に加熱された分の
顕熱量)/(COからCO2 への燃焼による発熱量)}
×100
DISCLOSURE OF THE INVENTION The inventors of the present invention have noticed that when the nozzle shape of the lance is not a circle but a proper “elongate” shape, the jet flow after being discharged from the lance has a great attenuation. However, when this principle is applied during the reduction of the chromium oxide generated during pre-charge decarburization with carbon in the hot metal, compared with the circular nozzle, even if the oxygen supply rate is increased, it does not It is possible to weaken the contact with molten iron and suppress reoxidation by top-blown oxygen in chromium in molten iron, and the secondary combustion rate does not increase significantly, but even if it increases, the heat transfer efficiency defined by the following equation It has been found that it is possible to prevent the wear of converter refractory because it is extremely high. Chakunetsu efficiency = {1 - (sensible heat of the partial exhaust gas is heated above a bath temperature) / (the amount of heat generated by the combustion of CO to CO 2)}
× 100

【0009】本発明はこの知見に基づきなされたもので
ある。その要旨とするところは、(1)クロムを5〜2
5%含有した溶鉄を転炉型反応容器にて脱炭精錬するに
際して、前チャージで生成した酸化クロムを12〜50
%含有するスラグを炉内に残存させたまま、次チャージ
の溶銑を装入し吹酸昇温精錬することで脱炭滓中の酸化
クロムを8%以下に還元した後、炉を傾動させて上記ス
ラグを排滓し、引き続いて同一炉でフェロクロム合金を
溶解しつつ脱炭精錬するステンレス鋼の精錬方法におい
て、同心の3〜16角形の多角形又は同心円の断面を有
する1条のスリット状の酸素供給管を有し、前記酸素供
給管の先端開口面の一部に2〜10個の遮蔽板を配し、
前記遮蔽板で分離された個々の前記先端開口面の長辺長
さB(mm)と短辺長さh(mm)の比B/hが10〜22
5、ランス直径をR(mm)とした場合の(B×h)/R
が0.4〜4である上吹きランスを用い、ランス中心点
を含むランス先端部をランス本体に対して上下方向に移
動させずに酸素を125〜250Nm3 /(Hr・ton)で供給
することを特徴する、高い生産性を有する脱炭滓を用い
たステンレス鋼の精錬方法にある。
The present invention is based on this finding. The main points are (1) Chromium 5 to 2
When decarburizing and refining molten iron containing 5% in a converter-type reaction vessel, the chromium oxide produced by precharging was added to 12 to 50%.
% With the slag contained in the furnace remaining in the furnace, the hot metal of the next charge was charged and the temperature of the molten oxide was refined by blowing acid to reduce the chromium oxide in the decarburizing slag to less than 8%, and then tilt the furnace. In the refining method of stainless steel for decarburizing and refining while slagging the slag and subsequently melting the ferrochrome alloy in the same furnace, one slit-shaped strip having concentric 3 to 16 polygonal or concentric cross sections is used. An oxygen supply pipe is provided, and 2 to 10 shielding plates are arranged on a part of a front end opening surface of the oxygen supply pipe.
The ratio B / h of the long side length B (mm) and the short side length h (mm) of each of the tip end opening surfaces separated by the shielding plate is 10 to 22.
5, (B × h) / R when the lance diameter is R (mm)
Of 0.4 to 4 is used, and oxygen is supplied at 125 to 250 Nm 3 / (Hr · ton) without moving the lance tip including the lance center point in the vertical direction with respect to the lance body. And a method for refining stainless steel using a decarburizing slag having a high productivity.

【0010】[0010]

【作用】本発明の工程を図1に示す。工程Iは脱燐脱硫
溶銑2の転炉3への装入工程を、工程IIは昇温還元工程
を、工程III は中間排滓工程を、工程IVは脱炭及びフェ
ロクロム合金の溶解工程を、工程Vは出鋼工程を示す。
このように、前チャージの脱炭により生成したスラグ5
を残したまま、次チャージの溶銑2を装入し、次に、酸
素を上吹きして昇温するとともにスラグ中の酸化クロム
を還元する。その後、この還元後スラグ4を転炉3を傾
動して排滓した後、炉を直立させ、酸素を上吹きして脱
炭するとともにフェロクロム合金を添加溶解してステン
レス鋼粗溶鋼、もしくは、製品を製造する工程である。
The operation of the present invention is shown in FIG. Step I is a step of charging the dephosphorization desulfurized hot metal 2 into the converter 3, Step II is a temperature-reduction step, Step III is an intermediate slag step, Step IV is a decarburization and ferrochrome alloy melting step, Process V is a tapping process.
In this way, the slag 5 produced by the decarburization of the precharge
With the above remaining, the hot metal 2 for the next charge is charged, then oxygen is blown upward to raise the temperature and the chromium oxide in the slag is reduced. After that, after the reduction, the slag 4 is tilted in the converter 3 and discharged, and then the furnace is erected upright, oxygen is blown upward to decarburize, and at the same time ferrochrome alloy is added and melted to dissolve stainless steel crude molten steel or product. Is a process of manufacturing.

【0011】図2に本発明で記載された上吹きランスの
一例を示す。図2に示されたノズルのように、ランスの
ノズル形状が円ではなく適正に「細長い」形状とした場
合に、ランスから吐き出された後の噴流の減衰が極めて
大きい。この原理をクロムを含有した溶鉄を転炉型反応
容器にて脱炭精錬するに際して、前チャージで生成した
酸化クロムを含有するスラグを炉内に残存させたまま、
次チャージの溶銑を装入し吹酸昇温精錬することで脱炭
滓中のクロム分を還元した後、炉を傾動させて上記スラ
グを排滓し、引き続いて同一炉でフェロクロム合金を溶
解しつつ脱炭精錬するステンレス鋼の精錬方法に適用し
た場合、円形ノズルと比較して、容易に噴流のスラグ面
到達速度を遅くでき(いわゆるソフトブロー)るため、
酸素の供給速度を増加させても、上吹き酸素と溶鉄との
接触を弱め、溶鉄中のクロムの上吹き酸素による再酸化
を抑制することができる上、2次燃焼率は大きくは増加
せず、増加したにせよ次式で定義される着熱効率が極め
て高いため転炉耐火物の損耗を防止することができるこ
とを見いだした。
FIG. 2 shows an example of the top blowing lance described in the present invention. As in the nozzle shown in FIG. 2, when the nozzle shape of the lance is not a circle but a proper “elongate” shape, the jet after being discharged from the lance has a great attenuation. When decarburizing and refining molten iron containing chromium in a converter-type reaction vessel based on this principle, while leaving the slag containing chromium oxide generated in the precharge in the furnace,
After charging the hot metal of the next charge and reducing the chromium content in the decarburizing slag by refining the temperature with blowing acid, tilt the furnace to discharge the slag, and subsequently melt the ferrochrome alloy in the same furnace. When applied to the refining method of stainless steel for decarburizing and refining, it can easily slow down the jet slag surface arrival speed (so-called soft blow) compared to a circular nozzle,
Even if the supply rate of oxygen is increased, the contact between the top-blown oxygen and the molten iron can be weakened, reoxidation by the top-blown oxygen of chromium in the molten iron can be suppressed, and the secondary combustion rate does not increase significantly. However, it has been found that even if the heat resistance is increased, the heat generation efficiency defined by the following equation is extremely high, so that the wear of the converter refractory can be prevented.

【0012】特に、円形ノズルの場合にはソフトブロー
するために操業変更(例えば、ノズルの大径化、多孔化
やランス湯面間距離の増大)をした場合には、必然的に
空間でCOガスがCO2 へ燃焼する2次燃焼率が上がる
ため排ガス温度が急激に上昇し転炉耐火物が著しく損耗
するのに対して、本発明で記載された適正に細長いノズ
ルの場合には、ソフトブローでありながら2次燃焼率が
上がらないという大きな特徴を有する。これは、ノズル
から出た噴流は減衰が激しくマッハ数が1以上のジェッ
トコアの長さが極端に短くなるため、噴流の湯面到達流
速が小さくなるソフトブロー効果を有するのに対して、
空間での雰囲気ガスの巻き込みや噴流から雰囲気空間へ
のガスの飛散状態を支配し、その帰結として2次燃焼率
を支配する噴流の断面形状は、ノズル出口に比較的近い
位置で、すでに、細長い形状から円形へと変換するため
である。このように、ジェットコアの長さを短くし、か
つ、噴流の断面形状を細長い形状から円形へと変化させ
やすい状態を得るには、ノズル形状についての本発明者
らによる詳細な実験検討によれば、下記の点が重要であ
る。
In particular, in the case of a circular nozzle, when the operation is changed for soft blowing (for example, the diameter of the nozzle is increased, the diameter of the nozzle is increased, and the distance between the lance molten metal surfaces is increased), the CO inevitably becomes a space. In the case of the properly elongated nozzle described in the present invention, in the case of the properly elongated nozzle described in the present invention, while the exhaust gas temperature rises sharply and the converter refractory is significantly worn because the secondary combustion rate of gas combustion into CO 2 rises. Although it is a blow, it has a great feature that the secondary combustion rate does not increase. This is because the jet flow emitted from the nozzle has a strong damping and the length of the jet core with a Mach number of 1 or more becomes extremely short, so that the jet flow has a soft blow effect in which the flow velocity at the surface of the jet becomes small.
The cross-sectional shape of the jet flow, which controls the entrainment of atmospheric gas in the space and the state of gas scattering from the jet flow to the atmospheric space and, as a result, controls the secondary combustion rate, is already elongated at a position relatively close to the nozzle outlet. This is because the shape is converted into a circle. As described above, in order to shorten the length of the jet core and obtain the state in which the cross-sectional shape of the jet flow is easily changed from the elongated shape to the circular shape, detailed examination and examination by the inventors of the nozzle shape has been performed. For example, the following points are important.

【0013】(1)図2に示したように、遮蔽板8で分
離された個々のスリット状酸素供給管7の先端開口面の
長辺(B)と短辺(h)の比が大きい、いわゆる細長い
噴出孔とすること。これは、円形孔から出たガスに比べ
て噴流断面の周長が長くなり、噴流外の気体との相互作
用を大きく受け、噴流がノズルを出た直後に大きな減衰
効果(ジェットコアの短縮によるソフトブロー効果)が
得られるためである。この効果は、B/hにして10以
上あれば得られ、図3に示すように高いクロム還元速度
が得られる。また、B/hが225よりも大きいものは
ランス冷却水の配管が困難となり現実的ではない。
(1) As shown in FIG. 2, the ratio of the long side (B) to the short side (h) of the tip opening surface of each slit-shaped oxygen supply pipe 7 separated by the shielding plate 8 is large. Use so-called elongated ejection holes. This is because the circumferential length of the jet cross section is longer than that of the gas discharged from the circular hole, and it is greatly affected by the interaction with the gas outside the jet, and the jet has a large damping effect immediately after it leaves the nozzle (due to the shortening of the jet core). This is because a soft blow effect) can be obtained. This effect is obtained when B / h is 10 or more, and a high chromium reduction rate is obtained as shown in FIG. Further, if B / h is larger than 225, piping of lance cooling water becomes difficult, which is not realistic.

【0014】(2)細長い形状のノズルから出たガス
は、噴出された直後は大きく減衰するが、それ以後は、
ノズル先端からの距離の1/2乗でしか減衰しない特徴
を有する。これに対して、円形ノズルから出たガスは噴
出直後の減衰は小さいが、それ以後は、ノズル先端から
の距離の1乗で減衰する。したがって、噴出直後に大き
く減衰するという(1)の特性を活かしつつ、その後の
減衰を大きくするためには、ノズルから出た後、噴流を
細長い形状から円形断面形状へと変換させる必要があ
る。この条件は、ランス直径R(mm)とした場合の(B
×h)/Rが4以下とすることであり、このことによ
り、図4に示すように2次燃焼率を適正範囲に抑制する
ことができる。また、(B×h)/Rが0.4よりも小
さい場合には、ノズルの加工精度を保つことが困難とな
り現実的ではない。
(2) The gas emitted from the elongated nozzle greatly attenuates immediately after being ejected, but after that,
It has a characteristic that it attenuates only at the 1/2 power of the distance from the nozzle tip. On the other hand, the gas emitted from the circular nozzle has a small attenuation immediately after being ejected, but thereafter, it attenuates at the first power of the distance from the nozzle tip. Therefore, it is necessary to convert the jet flow from the elongated shape to the circular cross-sectional shape after exiting from the nozzle in order to increase the subsequent attenuation while utilizing the characteristic of (1) that it is greatly attenuated immediately after ejection. This condition is (B when the lance diameter is R (mm).
Xh) / R is 4 or less, and as a result, the secondary combustion rate can be suppressed within an appropriate range as shown in FIG. When (B × h) / R is smaller than 0.4, it is difficult to maintain the machining accuracy of the nozzle, which is not realistic.

【0015】尚、ガス供給管の断面は同心多角形、又
は、同心円で囲まれたスリットであり、同心多角形は図
5に例を示した3〜16角形の範囲である。これは、多
角形としては2角形は存在せず、また、16角形よりも
角数を増した場合には加工が困難となるためである。遮
蔽板の個数が2個よりも少ない場合にはBが非常に大き
くなり、10個よりも多い場合にはBが非常に小さくな
るために、いずれにおいても、B/hと(B×h)/R
が適正範囲に入らず効果は得られない。
The cross section of the gas supply pipe is a concentric polygon or a slit surrounded by concentric circles, and the concentric polygon is in the range of 3 to 16 polygons shown in FIG. This is because a polygon does not have a digon, and if the number of angles is larger than that of a hexagon, machining becomes difficult. When the number of shields is less than 2, B is very large, and when it is more than 10, B is very small. Therefore, in both cases, B / h and (B × h) / R
However, the effect cannot be obtained because it does not enter the proper range.

【0016】また、本発明ではランス本体6とランス中
心点aを含むランス先端部は遮蔽板8を介して固着して
おり、中心点aはランス本体6に対して相対的に上下方
向に移動することは無い。このため、従来技術にある中
心点aを含むランス先端部を中子としてランス本体と分
割し、中子のみを上下に移動させる技術に伴った、複雑
な駆動機構を設ける必要が無く、簡単な構造でランスが
製作できる大きな利点を有している。
Further, in the present invention, the lance body 6 and the tip of the lance including the lance center point a are fixed via the shield plate 8, and the center point a moves vertically with respect to the lance body 6. There is nothing to do. For this reason, it is not necessary to provide a complicated drive mechanism according to the technique of dividing the lance tip portion including the center point a in the prior art into a lance body as a core and moving only the core up and down. The structure has the great advantage that the lance can be manufactured.

【0017】ここで、当該発明を適用する工程IVで生成
される溶鋼2のクロム濃度が5%よりも低い場合には工
程IVで酸化ロスされるクロム酸化物が少ないため本発明
を適用する効果が少なく、25%よりも高い場合には工
程IVで酸化ロスされるクロム酸化物が極めて多くなるた
め本発明を適用しても工程IIでは充分に還元できず本発
明は適用できない。工程Iで炉内に残存するスラグ1の
酸化クロムが12%よりも低い場合には、本発明を実施
せずにスラグを廃棄した方が経済的であるため本発明を
適用する効果が少なく、50%よりも多い場合には本発
明を適用しても工程IIでは充分に還元できず本発明は適
用できない。工程III では排滓されるスラグ4に含まれ
る酸化クロムが8%よりも高い場合にはスラグの流動性
が悪く排滓が困難となる。
Here, when the chromium concentration of the molten steel 2 produced in step IV to which the present invention is applied is lower than 5%, the effect of applying the present invention is that the amount of chromium oxide lost in oxidation in step IV is small. When the content is less than 25% and the content of chromium oxide is more than 25%, the amount of chromium oxide lost in oxidation in Step IV becomes extremely large, so that even if the present invention is applied, it cannot be sufficiently reduced in Step II and the present invention cannot be applied. When the chromium oxide of the slag 1 remaining in the furnace in the step I is lower than 12%, it is more economical to discard the slag without carrying out the present invention, and thus the effect of applying the present invention is less, When it is more than 50%, the present invention cannot be applied because the reduction cannot be sufficiently performed in the step II even if the present invention is applied. In step III, when the chromium oxide contained in the slag 4 to be discharged is higher than 8%, the fluidity of the slag is poor and the discharge becomes difficult.

【0018】さらに、本発明の上吹きランスを用いて送
酸するに際しては、酸素供給速度を125〜250Nm3
/(Hr・ton)で供給する必要がある。125Nm3 /(Hr・to
n)よりも低い場合には昇温還元速度が遅いため生産性が
上がらず、250Nm3 /(Hr・ton)よりも大きい場合には
本発明の上吹きランスを用いたとしてもソフトブローに
ならず、酸素ガスによる溶鉄中のクロムが再酸化されク
ロムの還元速度が低下する。
Further, when oxygen is fed using the top-blown lance of the present invention, the oxygen supply rate is 125 to 250 Nm 3.
It is necessary to supply with / (Hr ・ ton). 125Nm 3 / (Hr ・ to
If it is lower than n), the productivity is not improved because the temperature-reducing rate is slow, and if it is higher than 250 Nm 3 / (Hr · ton), even if the upper blowing lance of the present invention is used, soft blow is not possible. However, the chromium in the molten iron is reoxidized by the oxygen gas and the reduction rate of chromium is reduced.

【0019】[0019]

【実施例】実施例の工程は図1と同一である。まず、1
1〜18%クロム鋼の脱炭精錬を実施した前チャージの
吹錬により生成した、酸化クロムを25〜35%含むス
ラグを炉内に残した175トン上底吹き転炉へ、炉外精
錬で充分に脱燐脱硫を実施した溶銑を装入する。次に、
その溶銑とスラグに対して酸素吹錬を実施し昇温ととも
に、スラグ中のクロム酸化物を還元する(昇温還元
期)。その後、炉を傾動させて一部、もしくは大部分の
スラグを排滓し、次いで、炉を直立させ、フェロクロム
合金とフラックスとを添加しつつ送酸し脱炭精錬を実施
する。目的の炭素濃度まで低下した後に、再び炉を傾動
し溶鋼のみを出鋼し、クロム酸化物を含んだスラグは炉
内に残留させる。出鋼した溶鋼は仕上げ脱炭工程へ移動
し、転炉へは、スラグを残したまま次チャージの脱燐脱
硫溶銑を受銑する。ここで、熱的条件やスラグ条件によ
っては、昇温還元期において炭材やフラックスを用いる
場合や、昇温還元期、もしくは脱炭期にスクラップを用
いる場合もある。
EXAMPLE The steps of the example are the same as those in FIG. First, 1
1 to 18% chromium steel was decarburized and refined, and a 175 ton top-bottom blow converter with slag containing 25 to 35% of chromium oxide left in the furnace was generated by pre-charge blowing. Charge hot metal that has been sufficiently dephosphorized and desulfurized. next,
Oxygen blowing is carried out on the hot metal and slag to raise the temperature and reduce the chromium oxide in the slag (heating reduction period). After that, the furnace is tilted to remove a part or most of the slag, and then the furnace is erected upright, and the ferrochrome alloy and the flux are added to feed oxygen to carry out decarburization refining. After the target carbon concentration is reduced, the furnace is tilted again and only the molten steel is tapped, and the slag containing chromium oxide is left in the furnace. The tapped molten steel moves to the finishing decarburization process, and the dephosphorization desulfurized hot metal of the next charge is received in the converter while leaving the slag. Here, depending on thermal conditions and slag conditions, carbonaceous material or flux may be used during the temperature-raising reduction period, or scrap may be used during the temperature-raising reducing period or the decarburization period.

【0020】上吹きランスは、図2に示した形状を基本
とし(タイプa)、図5の(a)に示した6角形のもの
も用いた(タイプb)、ノズル(開口部)の数、形状を
変化させた。ランス先端と浴面との距離は1.5〜3m
の範囲で変化させたが、ランス中心点を含むランス先端
部はランス本体に対して上下方向に移動しなかった。
The upper blowing lance is based on the shape shown in FIG. 2 (type a), and the hexagonal one shown in FIG. 5 (a) is also used (type b), and the number of nozzles (openings) , Changed the shape. The distance between the tip of the lance and the bath surface is 1.5 to 3 m
However, the tip of the lance including the lance center point did not move vertically with respect to the lance body.

【0021】表1に本発明を比較例とともに示す。ここ
で、送酸速度はNm3 /(Hr・ton)の単位で示し、Cr還元
速度はkg/(min・ton)の単位で示した。試験番号1から
8は本発明の実施例であるが、いずれも高い還元速度と
高い着熱効率が得られている。これに対して、試験番号
9から16は比較例を示すが、遮蔽板の数、開口部のB
/h、(B×h)/R、及び、送酸速度のいずれかが本
発明の範囲を外れると、還元速度が低下するか、2次燃
焼率が上がり着熱効率が低下するという問題が発生して
いる。また、試験番号1と同一開口面積を持つ、4個の
直径12mmの円形ノズルを持った多孔ランスを用いた場
合には、2次燃焼率が20%程度であったが、クロム還
元速度が1.2kg/(min・ton)と小さかった。
Table 1 shows the present invention together with comparative examples. Here, the acid transfer rate is shown in the unit of Nm 3 / (Hr · ton), and the Cr reduction rate is shown in the unit of kg / (min · ton). Test Nos. 1 to 8 are examples of the present invention, and all have high reduction rates and high heat deposition efficiency. On the other hand, test numbers 9 to 16 show comparative examples, but the number of shielding plates and B of the opening are
If any of / h, (B × h) / R, and the acid transfer rate is out of the range of the present invention, there is a problem that the reduction rate is decreased or the secondary combustion rate is increased and the heat-adsorption efficiency is decreased. are doing. When a porous lance having four circular nozzles with a diameter of 12 mm having the same opening area as test number 1 was used, the secondary combustion rate was about 20%, but the chromium reduction rate was 1%. It was as small as 2 kg / (min · ton).

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明により、クロム還元速度が大きく
生産性が高い状態で、耐火物溶損を増加させることなし
に高価な還元剤を全く使用しない効率的なステンレス鋼
の精錬が可能となった。
EFFECTS OF THE INVENTION The present invention enables efficient refining of stainless steel in a state where the rate of chromium reduction is high and the productivity is high, without increasing the refractory melting loss and using no expensive reducing agent at all. It was

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施工程を示した概念図。工程Iは脱
燐脱硫溶銑の転炉への装入工程を、工程IIは昇温還元工
程を、工程III は中間排滓工程を、工程IVは脱炭及びフ
ェロクロム合金の溶解工程を、工程Vは出鋼工程を示
す。
FIG. 1 is a conceptual diagram showing an implementation process of the present invention. Step I is a step of charging dephosphorized desulfurized hot metal into a converter, step II is a temperature-reducing step, step III is an intermediate slag step, step IV is a decarburization and ferrochrome alloy melting step, and step V is a step. Indicates a tapping process.

【図2】本発明で記載された上吹きランスの例(同心円
タイプ)。
FIG. 2 is an example of a top blowing lance described in the present invention (concentric type).

【図3】クロム還元速度とB/hの関係を示した実験結
果。
FIG. 3 is an experimental result showing the relationship between the chromium reduction rate and B / h.

【図4】2次燃焼率と(B×h)/Rの関係を示した実
験結果。
FIG. 4 is an experimental result showing the relationship between the secondary combustion rate and (B × h) / R.

【図5】本発明で記載された上吹きランスの例(同心多
角形タイプ)であり、(a)は6角形、(b)は3角
形、(c)は16角形タイプを示す。
FIG. 5 is an example (concentric polygon type) of the top blowing lance described in the present invention, where (a) shows a hexagon, (b) shows a triangle, and (c) shows a hexagon type.

【符号の説明】[Explanation of symbols]

1 前チャージの脱炭により生成したスラグ 2 溶銑あるいは溶鋼 3 転炉 4 還元後スラグ 5 当該チャージの脱炭により生成したスラグ 6 ランス本体 7 スリット状酸素供給管 8 遮蔽板 a ランス中心点 h 短辺長さ B 長辺長さ 1 Slag generated by decarburization of pre-charge 2 Hot metal or molten steel 3 Converter 4 Slag after reduction 5 Slag generated by decarburization of the charge 6 Lance body 7 Slit-like oxygen supply pipe 8 Shielding plate a Lance center point h Short side Length B Long side length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 クロムを5〜25%含有した溶鉄を転炉
型反応容器にて脱炭精錬するに際して、前チャージで生
成した酸化クロムを12〜50%含有するスラグを炉内
に残存させたまま、次チャージの溶銑を装入し吹酸昇温
精錬することで脱炭滓中の酸化クロムを8%以下に還元
した後、炉を傾動させて上記スラグを排滓し、引き続い
て同一炉でフェロクロム合金を溶解しつつ脱炭精錬する
ステンレス鋼の精錬方法において、同心の3〜16角形
の多角形又は同心円の断面を有する1条のスリット状の
酸素供給管を有し、前記酸素供給管の先端開口面の一部
に2〜10個の遮蔽板を配し、前記遮蔽板で分離された
個々の前記先端開口面の長辺長さB(mm)と短辺長さh
(mm)の比B/hが10〜225、ランス直径をR(m
m)とした場合の(B×h)/Rが0.4〜4である上
吹きランスを用い、ランス中心点を含むランス先端部を
ランス本体に対して上下方向に移動させずに酸素を12
5〜250Nm3 /(Hr・ton)で供給することを特徴とす
る、高い生産性を有する脱炭滓を用いたステンレス鋼の
精錬方法。
1. When the molten iron containing 5 to 25% of chromium is decarburized and refined in a converter reactor, a slag containing 12 to 50% of chromium oxide produced by precharging is left in the furnace. As it is, after charging the hot metal of the next charge and refining the temperature with blowing acid, the chromium oxide in the decarburizing slag is reduced to 8% or less, and then the furnace is tilted to remove the slag, and subsequently the same furnace is used. In a refining method for decarburizing and refining a ferrochrome alloy while melting a ferrochrome alloy, there is provided one slit-shaped oxygen supply pipe having a concentric 3 to 16 polygonal or concentric cross section, and the oxygen supply pipe 2 to 10 shielding plates are arranged on a part of the front end opening surface of each of the above, and the long side length B (mm) and the short side length h of each of the front end opening surfaces separated by the shield plate.
(Mm) ratio B / h is 10 to 225, and lance diameter is R (m
(B x h) / R is 0.4 to 4 when m) is used, and oxygen is supplied without moving the lance tip including the lance center point vertically with respect to the lance body. 12
A method for refining stainless steel using a decarburizing slag having high productivity, which is characterized by supplying at 5 to 250 Nm 3 / (Hr · ton).
JP7392395A 1995-01-19 1995-03-30 Method for refining stainless steel using decarburizing slag having high productivity Withdrawn JPH08253805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7392395A JPH08253805A (en) 1995-01-19 1995-03-30 Method for refining stainless steel using decarburizing slag having high productivity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP674595 1995-01-19
JP7-6745 1995-01-19
JP7392395A JPH08253805A (en) 1995-01-19 1995-03-30 Method for refining stainless steel using decarburizing slag having high productivity

Publications (1)

Publication Number Publication Date
JPH08253805A true JPH08253805A (en) 1996-10-01

Family

ID=26340944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7392395A Withdrawn JPH08253805A (en) 1995-01-19 1995-03-30 Method for refining stainless steel using decarburizing slag having high productivity

Country Status (1)

Country Link
JP (1) JPH08253805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483312A (en) * 2016-01-15 2016-04-13 山西太钢不锈钢股份有限公司 Method for reserving slag without reduction for stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483312A (en) * 2016-01-15 2016-04-13 山西太钢不锈钢股份有限公司 Method for reserving slag without reduction for stainless steel

Similar Documents

Publication Publication Date Title
US8142543B2 (en) Refining ferroalloys
EP1721017B1 (en) Method for producing low carbon steel
JP3410553B2 (en) Decarburization refining method of chromium-containing molten steel
JPH08253805A (en) Method for refining stainless steel using decarburizing slag having high productivity
JP2001220617A (en) Gas blowing lance
JP3619331B2 (en) Stainless steel vacuum decarburization method
JPS63290242A (en) Method, converter and lance for producing low carbon/low silicon ferromanganese
JP3577959B2 (en) Oxygen blowing lance
JPH1030110A (en) Method for blowing oxygen in top-bottom combination-blown converter
JP2713795B2 (en) Stainless steel smelting method
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH08253804A (en) Method for dephosphorizing molten iron in high productivity
JPH1112633A (en) Lance for refining molten metal and refining method
JPH0860221A (en) Converter steelmaking method
JPH0673424A (en) Method for efficiently refining stainless steel using decarburized slag
JP4862860B2 (en) Converter blowing method
JPH07331315A (en) Refining method for extra-low carbon steel in converter
SU931754A1 (en) Method for processing crude iron in convertor
JPH1143714A (en) Lance for refining
JP2003138311A (en) Gas top-blowing lance
JPH06240329A (en) Top blowing oxygen lance for refining molten metal and method for refining molten metal
JPH11158528A (en) Lance for gas top-blowing
JPH05247517A (en) Method for decarburizing-refining chromium-containing molten steel
JPS61272308A (en) Lance for top-blown refining
JPS60155612A (en) Refining method in converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604