JPH05249372A - Photographing lens - Google Patents

Photographing lens

Info

Publication number
JPH05249372A
JPH05249372A JP4826492A JP4826492A JPH05249372A JP H05249372 A JPH05249372 A JP H05249372A JP 4826492 A JP4826492 A JP 4826492A JP 4826492 A JP4826492 A JP 4826492A JP H05249372 A JPH05249372 A JP H05249372A
Authority
JP
Japan
Prior art keywords
lens
distance
focusing
plastic
plastic lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4826492A
Other languages
Japanese (ja)
Other versions
JP3162151B2 (en
Inventor
Atsujirou Ishii
石井敦次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP04826492A priority Critical patent/JP3162151B2/en
Publication of JPH05249372A publication Critical patent/JPH05249372A/en
Application granted granted Critical
Publication of JP3162151B2 publication Critical patent/JP3162151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a focusing mechanism so that a cost can be lowered by adopting a method in which part of a lens system is interchanged in order to perform the focusing of a photographing lens. CONSTITUTION:A plastic lens L1 in a meniscus state whose concave surface is faced to a subject side is provided on a place nearest to the subject side, and the plastic lens L1 is switched to the plastic lenses 2-4 in the meniscus state which are integrally molded with the lens L1, whose concave surfaces are faced to the subject side and having different curvature based on an object distance so that the focusing can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラの撮影レンズに
関し、特に、物体側に配置したレンズを交換することに
よりフォーカシングをする撮影レンズに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photographic lens for a camera, and more particularly to a photographic lens for focusing by exchanging a lens arranged on the object side.

【0002】[0002]

【従来の技術】近年、小型のレンズシャッターカメラや
CCDカメラ等においては、急速に低価格化が進んでお
り、それに伴って、これらカメラに使用される撮影レン
ズ系の低コスト化も強く望まれている。
2. Description of the Related Art In recent years, the price of small lens shutter cameras, CCD cameras, etc. has been rapidly reduced, and along with this, it is strongly desired to reduce the cost of photographing lens systems used in these cameras. ing.

【0003】従来、これらのカメラでは、フォーカシン
グは、撮影レンズの一部又は全部を光軸に沿って移動さ
せることによって行っていた。
Conventionally, in these cameras, focusing is performed by moving a part or all of a photographing lens along the optical axis.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、フォー
カシングを上記のような光軸方向の移動によって行う場
合、鏡枠構造が二重化して複雑になる上に、フォーカシ
ング時に移動するレンズ群に要求される位置精度も厳し
くなり、コスト高につながりがちである。
However, when focusing is performed by moving in the optical axis direction as described above, the lens frame structure is duplicated and complicated, and the position required for the lens group that moves during focusing is required. The accuracy becomes strict, and the cost tends to increase.

【0005】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、撮影レンズにおいて、フォー
カシングのためにレンズ系の一部を交換する方式を採用
して、フォーカシング機構を単純にして低コスト化を図
ることである。
The present invention has been made in view of such a situation, and an object thereof is to adopt a system of exchanging a part of a lens system for focusing in a photographing lens to simplify a focusing mechanism. To lower costs.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の撮影レンズは、最も物体側に、物体側に凹面を向け
たメニスカス形状のプラスチックレンズを有し、被写体
距離によって、前記プラスチックレンズを、これと一体
に成形され、曲率の異なる別の物体側に凹面を向けたメ
ニスカス形状のプラスチックレンズと切り換えることに
よって焦点合わせを行うようにしたことを特徴とするも
のである。
The taking lens of the present invention which achieves the above object has a meniscus-shaped plastic lens having a concave surface facing the object side on the most object side, and the plastic lens is adjusted according to the object distance. The lens is characterized in that focusing is performed by switching to a meniscus-shaped plastic lens which is molded integrally with this and has a concave surface facing another object side having a different curvature.

【0007】[0007]

【作用】以下、本発明の構成を採用する理由と作用につ
いて説明する。本発明では、撮影レンズの最も物体側
に、一体成形された2種類以上の物体側に凹面を向けた
メニスカス形状のプラスチックレンズを切り換えられる
ように配置し、被写体距離に応じてこれらを切り換える
ことによってフォーカシングを行っている。図1、図2
はこれらプラスチックレンズの配置の例を示す斜視図で
ある。図1においては、撮影レンズ本体1としてトリプ
レットレンズを用い、このレンズ1により撮像素子5上
に被写体の像を結像させるもので、撮影レンズ本体1の
物体側に、遠距離撮影用のプラスチックレンズ2と中間
距離用のプラスチックレンズ3と近距離用のプラスチッ
クレンズ4とが一体に取り付けられ、交換可能になって
いる。図1の場合は、これらレンズ2〜4はターレット
状に配置され、この円盤を回転することにより交換さ
れ、図2の場合は、レンズ2〜4は1枚のプレート上に
並べられ、このプレートを光軸に垂直に直線的に移動す
ることにより交換される。
The reason and operation of adopting the structure of the present invention will be described below. In the present invention, a meniscus-shaped plastic lens having a concave surface facing the object side of two or more types integrally formed is arranged so as to be switched to the most object side of the taking lens, and these are switched according to the object distance. Focusing is done. 1 and 2
FIG. 3 is a perspective view showing an example of arrangement of these plastic lenses. In FIG. 1, a triplet lens is used as the photographing lens body 1, and an image of a subject is formed on the image pickup device 5 by the lens 1. The plastic lens for long-distance photographing is provided on the object side of the photographing lens body 1. 2 and the plastic lens 3 for the intermediate distance and the plastic lens 4 for the short distance are integrally attached and are replaceable. In the case of FIG. 1, these lenses 2 to 4 are arranged in a turret shape, and they are exchanged by rotating this disk. In the case of FIG. 2, the lenses 2 to 4 are arranged on a single plate. Are exchanged by moving linearly in a direction perpendicular to the optical axis.

【0008】上記のように、最も物体側のレンズ1枚を
切り換えてフォーカシングを行う場合、切り換えるレン
ズのパワーの差は被写体距離によって決定されるが、レ
ンズ全系のパワーに比較すると、比較的弱いものである
ので、切り換えレンズ自体もパワーの比較的弱いもので
構成することが可能であり、そのため、その材質にプラ
スチックを用いても、温度変化による影響は少ない。そ
こで、これら数種類の切り換えレンズを一体成形のプラ
スチックレンズとすることにより、部品点数も少なく、
フォーカシングのための機械的構成も簡単になり、コス
ト低減を図ることができる。
As described above, when focusing is performed by switching one lens closest to the object side, the difference in power between the lenses to be switched is determined by the object distance, but is relatively weak compared to the power of the entire lens system. Since the switching lens itself can be made of one having relatively weak power, even if plastic is used as the material, the influence of temperature change is small. Therefore, by making these several types of switching lenses into integrally molded plastic lenses, the number of parts is small,
The mechanical structure for focusing becomes simple, and the cost can be reduced.

【0009】さらに、以下に示すように、これらフォー
カシング用切り換えレンズにより、レンズ系全体の結像
性能を向上させることができる。
Further, as described below, the focusing performance of the entire lens system can be improved by these focusing switching lenses.

【0010】一般に、ある程度以上の画角を有する撮影
レンズを最少限の枚数で構成しようとすると、ペッツバ
ール和の増大に伴う像面湾曲が問題となる。レンズ系の
低コスト化のために構成枚数を削減したときに発生する
像面湾曲を補正するため、本発明では、上記のプラスチ
ックレンズを、物体側に凹面を向けたメニスカス形状の
ものとし、それより後のレンズ系に入射するマージナル
光線高を高くすることによって、ペッツバール和の補正
を行っている。このため、上記プラスチックレンズにつ
いて、次式を満足するようにすることが望ましい。
In general, when it is attempted to construct a taking lens having an angle of view of a certain degree or more with a minimum number of lenses, the field curvature accompanying the increase of Petzval sum becomes a problem. In order to correct the field curvature that occurs when the number of constituents is reduced to reduce the cost of the lens system, in the present invention, the plastic lens is a meniscus shape with a concave surface facing the object side, The Petzval sum is corrected by increasing the height of the marginal ray that enters the lens system after that. Therefore, it is desirable that the above plastic lens satisfy the following equation.

【0011】 0.8<R1 1 /{R1 1 −(n1 −1)d1 }<1 ・・・(1) R1 /f<−0.5 ・・・(2) ここで、R1 :プラスチックレンズの物体側の面の曲率
半径、 d1 :プラスチックレンズの肉厚、 n1 :プラスチックレンズの屈折率、 f :全系の焦点距離、 である。
0.8 <R 1 n 1 / {R 1 n 1 − (n 1 −1) d 1 } <1 (1) R 1 /f<−0.5 (2) Here, R 1 is the radius of curvature of the object-side surface of the plastic lens, d 1 is the wall thickness of the plastic lens, n 1 is the refractive index of the plastic lens, and f is the focal length of the entire system.

【0012】上記条件式(1)は、前記プラスチックレ
ンズの物体側の面における軸上マージナル光線高を像側
の面におけるそれで割った値を規定したものであり、そ
の下限を越えると、物体側の面の曲率が大きくなりすぎ
て非点収差の発生が大きくなるか、又は、肉厚が大きく
なりすぎて、物体側の面を通過する周辺の光線高が高く
なってレンズ系の大型化を招く等して好ましくない。ま
た、上記条件式(2)は、前記プラスチックレンズの物
体側の曲率半径について規定したもので、その上限を越
えると、凹面の曲率が大きくなりすぎて、この面で発生
する非点収差が大きくなりすぎ、好ましくない。
The above conditional expression (1) defines a value obtained by dividing the axial marginal ray height on the object side surface of the plastic lens by that on the image side surface. The curvature of the surface becomes too large to generate astigmatism, or the wall thickness becomes too large to increase the height of light rays around the object-side surface and increase the size of the lens system. It is not desirable to invite. Further, the conditional expression (2) defines the radius of curvature of the plastic lens on the object side. When the upper limit is exceeded, the curvature of the concave surface becomes too large and the astigmatism generated on this surface becomes large. It becomes too much and is not preferable.

【0013】本発明の実施例として、CCDカメラ用の
撮影レンズを後に記載したが、このような標準画角程度
のCCDカメラ用撮影レンズでは、レンズ枚数を3枚で
構成すると、前記のように像面湾曲が補正しきれないと
いう問題が残ることが多い。本発明では、プラスチック
レンズに前記のように像面湾曲を補正する役割を持たせ
ることによって、それ以降の構成を正、負、正の3枚、
つまり、トリプレットで構成することができる。また、
このような構成とした場合、プラスチックレンズよりも
像面側のいわゆるトリプレットレンズについて、次の条
件式を満足するようにすることが望ましい。
A photographing lens for a CCD camera is described later as an embodiment of the present invention. However, in such a photographing lens for a CCD camera having a standard angle of view, if the number of lenses is three, as described above. The problem often remains that the field curvature cannot be corrected completely. In the present invention, the plastic lens has a role of correcting the field curvature as described above, so that the configuration thereafter is positive, negative, and positive.
That is, it can be composed of triplets. Also,
In the case of such a configuration, it is desirable that the so-called triplet lens on the image surface side of the plastic lens satisfies the following conditional expression.

【0014】 0.4<|R4 |/R3 <1.1 ・・・(3) 1.75<n2 ,n4 ・・・(4) 0.7<|R5 |/|R4 |<1.6 ・・・(5) ここで、R3 、R4 はそれぞれトリプレットの最も物体
側のレンズの物体側の面と像側の面の曲率半径、R5
トリプレット中の負レンズの物体側の面の曲率半径、n
2 、n4 はそれぞれトリプレットの物体側の正レンズと
像側の正レンズの屈折率である。
0.4 <| R 4 | / R 3 <1.1 (3) 1.75 <n 2 , n 4 (4) 0.7 <| R 5 | / | R 4 | <1.6 (5) where R 3 and R 4 are the radii of curvature of the object-side surface and the image-side surface of the most object-side lens of the triplet, respectively, and R 5 is the negative of the triplet. The radius of curvature of the object side surface of the lens, n
2 and n 4 are the refractive indices of the positive lens on the object side and the positive lens on the image side of the triplet, respectively.

【0015】上記条件式(3)は、トリプレットの最も
物体側の正レンズの曲率半径に関するもので、その下限
を越えると、ペッツバール和が増大しすぎ、その上限を
越えると、非点収差やコマフレアの補正が十分でなくな
る。また、条件式(4)は、トリプレット中の正レンズ
の材質の屈折率に関するもので、その下限を越えて屈折
率が小さくなると、ペッツバール和が増大する。さら
に、条件式(5)は、トリプレットの最も物体側の正レ
ンズの像側の面と負レンズの物体側の面の曲率半径の関
係について規定したもので、その上限を越えても、下限
を越えても、球面収差やコマ収差の補正が困難になる。
The conditional expression (3) relates to the radius of curvature of the positive lens closest to the object in the triplet. If the lower limit is exceeded, the Petzval sum increases too much. If the upper limit is exceeded, astigmatism or coma flare occurs. Is not corrected enough. The conditional expression (4) relates to the refractive index of the material of the positive lens in the triplet, and if the refractive index becomes smaller than the lower limit thereof, the Petzval sum increases. Further, the conditional expression (5) defines the relationship between the radius of curvature of the image-side surface of the positive lens closest to the object and the object-side surface of the negative lens of the triplet, and even if the upper limit is exceeded, the lower limit is Even if it exceeds, it becomes difficult to correct spherical aberration and coma.

【0016】また、本発明のレンズ系では、プラスチッ
クレンズの片面又は両面を非球面とすれば、非点収差に
よる像面湾曲をより良好に補正することができる。
Further, in the lens system of the present invention, if one or both surfaces of the plastic lens are made aspherical, the curvature of field due to astigmatism can be better corrected.

【0017】[0017]

【実施例】以下、本発明の撮影レンズの実施例1〜4に
ついて説明する。各実施例のレンズデータは後記する
が、図3に実施例1において遠距離用のプラスチックレ
ンズに切り換えた場合のレンズ断面を示す。中間距離時
及び近距離時に切り換えた場合もほぼ同様の形状であ
り、また、他の実施例2〜4もほぼ同様の形状であるの
で、図示は省く。
EXAMPLES Examples 1 to 4 of the taking lens of the present invention will be described below. Although the lens data of each example will be described later, FIG. 3 shows a lens cross section in the case of switching to the plastic lens for long distance in the example 1. The shapes are substantially the same when switching between the intermediate distance and the short distance, and the other Embodiments 2 to 4 also have substantially the same shape, and therefore the illustration is omitted.

【0018】構成レンズの形状については、フォーカシ
ングのために切り換え可能なプラスチックレンズの第1
レンズL1は、実施例1、3、4の場合は、何れの撮影
距離用にも物体側に凹面を向けた弱いパワーの負メニス
カスレンズであり、実施例2の場合は、何れの撮影距離
用にも物体側に凹面を向けた弱いパワーの正メニスカス
レンズであり、絞りを挟んで、何れの実施例も、第2レ
ンズL2は両凸レンズ、第3レンズL3は両凹レンズ、
第4レンズL4は物体側に凹面を向けた正メニスカスレ
ンズである。
Regarding the shape of the constituent lens, the first plastic lens which can be switched for focusing is used.
The lens L1 is a weak meniscus lens having a weak power with a concave surface facing the object side for any shooting distance in the case of Examples 1, 3, and 4, and for any shooting distance in the case of Example 2. Further, it is a positive meniscus lens of weak power with a concave surface facing the object side, and in any of the examples, the second lens L2 is a biconvex lens, the third lens L3 is a biconcave lens, with a diaphragm interposed therebetween.
The fourth lens L4 is a positive meniscus lens having a concave surface facing the object side.

【0019】非球面については、実施例1、3の場合
は、何れの撮影距離用にも第1レンズL1の物体側の面
1面に用いており、実施例2の場合は、何れの撮影距離
用にも第1レンズL1の両面2面に用いている。実施例
4においては、非球面は使用されていない。
With respect to the aspherical surface, in the case of Examples 1 and 3, it is used for one object-side surface of the first lens L1 for any photographing distance, and in the case of Example 2, any image is taken. It is also used for the distance on both sides of the first lens L1. In Example 4, no aspherical surface is used.

【0020】以下の実施例1〜4のレンズデータにおい
て、記号は、上記の外、fは全系の焦点距離、FNOはF
ナンバー、2ωは画角、r1 、r2 …は各レンズ面の曲
率半径、d1 、d2 …は各レンズ面間の間隔、nd1、n
d2…は各レンズのd線の屈折率、νd1、νd2…は各レン
ズのアッベ数である。また、非球面形状は、光軸方向を
x、光軸に直交する方向をyとした時、次の式で表され
る。x=(y2/r)/[1+{1-P( y2/r2)}1/2 ]+A4
4 +A66 +A88ただし、rは近軸曲率半径、Pは
円錐係数、A4、A6、A8は非球面係数である。
In the following lens data of Examples 1 to 4, the symbols are the above, f is the focal length of the entire system, and F NO is F.
No., 2ω is the angle of view, r 1 , r 2 ... Is the radius of curvature of each lens surface, d 1 , d 2 ... Is the distance between the lens surfaces, n d1 , n
d2 ... d-line refractive index of each lens, ν d1, ν d2 ... is the Abbe number of each lens. Further, the aspherical shape is expressed by the following formula, where x is the optical axis direction and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1-P (y 2 / r 2)} 1/2] + A 4
However y 4 + A 6 y 6 + A 8 y 8, r is a paraxial radius of curvature, P is a conical coefficient, A 4, A 6, A 8 are aspherical coefficients.

【0021】実施例1 f =6.9983 FNO=4.00 2ω=48.5° 〔遠距離時:撮影距離∞〕 r1 = -25.8526(非球面)d1 = 2.5175 nd1 =1.49241 νd1 =57.66 r2 = -38.0345 d2 = 1.4995 r3 = ∞(絞り) d3 = 0.1000 r4 = 4.4444 d4 = 3.2919 nd2 =1.83481 νd2 =42.72 r5 = -2.4258 d5 = 0.0580 r6 = -2.1080 d6 = 0.7034 nd3 =1.67270 νd3 =32.10 r7 = 3.4396 d7 = 0.6245 r8 = -109.3535 d8 = 3.1557 nd4 =1.83481 νd4 =42.72 r9 = -6.4594 非球面係数 第1面 P= 1 A4=-0.14679×10-2 A6= 0.49093×10-3 A8=-0.61938×10-4 |R4 |/R3 =0.55 R1 /f=-3.69 R1 1 /{R1 1 −(n1 −1)d1 }=0.97 〔中間距離時:撮影距離約30cm〕 r1 = -22.0661(非球面)d1 = 2.6666 nd1 =1.49241 νd1 =57.66 r2 = -25.8873 d2 = 1.4995 (以下、遠距離時と同じ) 非球面係数 第1面 P= 1 A4=-0.16477×10-2 A6= 0.46200×10-3 A8=-0.49867×10-41 /f=-3.21 R1 1 /{R1 1 −(n1 −1)d1 }=0.96 〔近距離時:撮影距離約18cm〕 r1 = -17.3216(非球面)d1 = 2.8775 nd1 =1.49241 νd1 =57.66 r2 = -18.6534 d2 = 1.4995 (以下、遠距離時と同じ) 非球面係数 第1面 P= 1 A4=-0.16288×10-2 A6= 0.41907×10-3 A8=-0.41935×10-41 /f=-2.57 R1 1 /{R1 1 −(n1 −1)d1 }=0.95
Example 1 f = 6.9983 F NO = 4.00 2ω = 48.5 ° [at long distance: shooting distance ∞] r 1 = -25.8526 (aspherical surface) d 1 = 2.5175 n d1 = 1.49241 ν d1 = 57.66 r 2 = -38.0345 d 2 = 1.4995 r 3 = ∞ (aperture) d 3 = 0.1000 r 4 = 4.4444 d 4 = 3.2919 n d2 = 1.83481 ν d2 = 42.72 r 5 = -2.4258 d 5 = 0.0580 r 6 = -2.1080 d 6 = 0.7034 n d3 = 1.67270 ν d3 = 32.10 r 7 = 3.4396 d 7 = 0.6245 r 8 = -109.3535 d 8 = 3.1557 n d4 = 1.83481 ν d4 = 42.72 r 9 = -6.4594 First surface P = 1 A 4 = -0.14679 × 10 -2 A 6 = 0.490 93 × 10 -3 A 8 = -0.61938 × 10 -4 │R 4 | / R 3 = 0.55 R 1 /f=-3.69 R 1 n 1 / {R 1 n 1 -(N 1 -1) d 1 } = 0.97 [intermediate distance: shooting distance about 30 cm] r 1 = -22.0661 (aspherical surface) d 1 = 2.6666 n d1 = 1.49241 ν d1 = 57.66 r 2 = -25.8873 d 2 = 1.4995 (Hereinafter, the same as for long distance) Aspheric surface coefficient 1st surface P = 1 A 4 = -0.16477 × 10 -2 A 6 = 0.46 200 × 10 −3 A 8 = −0.49867 × 10 −4 R 1 /f=−3.21 R 1 n 1 / {R 1 n 1 − (n 1 −1) d 1 } = 0.96 [Short distance: shooting distance Approximately 18 cm] r 1 = -17.3216 (aspherical surface) d 1 = 2.8775 n d1 = 1.49241 ν d1 = 57.66 r 2 = -18.6534 d 2 = 1.4995 (hereinafter, the same as at long distance) Aspherical surface 1st surface P = 1 A 4 = -0.16288 × 10 -2 A 6 = 0.41907 × 10 -3 A 8 = -0.41935 × 10 -4 R 1 /f=-2.57 R 1 n 1 / {R 1 n 1 - (n 1 -1 ) D 1 } = 0.95
.

【0022】実施例2 f =9.2983 FNO=3.50 2ω=48.5° 〔遠距離時:撮影距離∞〕 r1 = -14.7617(非球面)d1 = 4.1810 nd1 =1.49241 νd1 =57.66 r2 = -8.8978(非球面)d2 = 1.9897 r3 = ∞(絞り) d3 = 0.1000 r4 = 6.5552 d4 = 2.8821 nd2 =1.83481 νd2 =42.72 r5 = -3.6592 d5 = 0.0760 r6 = -3.2835 d6 = 0.7513 nd3 =1.67270 νd3 =32.10 r7 = 4.3350 d7 = 1.8418 r8 = -52.5414 d8 = 2.5650 nd4 =1.83481 νd4 =42.72 r9 = -9.5011 非球面係数 第1面 P= 1 A4=-0.81496×10-3 A6= 0.61083×10-4 A8=-0.91285×10-6 第2面 P= 1 A4= 0.20349×10-3 A6= 0.67969×10-4 A8= 0.45548×10-5 |R4 |/R3 =0.56 R1 /f=-1.58 R1 1 /{R1 1 −(n1 −1)d1 }=0.91 〔近距離時:撮影距離約30cm〕 r1 = -14.4400(非球面)d1 = 4.2931 nd1 =1.49241 νd1 =57.66 r2 = -8.3986(非球面)d2 = 1.9897 (以下、遠距離時と同じ) 非球面係数 第1面 P= 1 A4=-0.94548×10-3 A6= 0.60192×10-4 A8=-0.69690×10-6 第2面 P= 1 A4= 0.18892×10-3 A6= 0.61947×10-4 A8= 0.45427×10-51 /f=-1.59 R1 1 /{R1 1 −(n1 −1)d1 }=0.91
Example 2 f = 9.2983 F NO = 3.50 2ω = 48.5 ° [at long distance: shooting distance ∞] r 1 = -14.7617 (aspherical surface) d 1 = 4.1810 n d1 = 1.49241 ν d1 = 57.66 r 2 = -8.8978 (aspherical surface) d 2 = 1.9897 r 3 = ∞ (aperture) d 3 = 0.1000 r 4 = 6.5552 d 4 = 2.8821 n d2 = 1.83481 ν d2 = 42.72 r 5 = -3.6592 d 5 = 0.0760 r 6 =- 3.2835 d 6 = 0.7513 n d3 = 1.67270 ν d3 = 32.10 r 7 = 4.3350 d 7 = 1.8418 r 8 = -52.5414 d 8 = 2.5650 n d4 = 1.83481 ν d4 = 42.72 r 9 = -9.5011 Aspheric surface 1st surface P = 1 A 4 = -0.81496 x 10 -3 A 6 = 0.610 83 x 10 -4 A 8 = -0.91285 x 10 -6 2nd surface P = 1 A 4 = 0.20349 x 10 -3 A 6 = 0.67969 x 10 -4 A 8 = 0.45548 × 10 -5 │R 4 | / R 3 = 0.56 R 1 /f=-1.58 R 1 n 1 / {R 1 n 1 − (n 1 −1) d 1 } = 0.91 [At short distance] : Shooting distance of about 30 cm] r 1 = -14.4400 (aspherical surface) d 1 = 4.2931 n d1 = 1.49241 ν d1 = 57.66 r 2 = -8.3986 (aspherical surface) d 2 = 1 .9897 (Hereinafter, the same as for long distance) Aspheric surface coefficient 1st surface P = 1 A 4 = -0.94548 × 10 -3 A 6 = 0.60192 × 10 -4 A 8 = -0.69690 × 10 -6 2nd surface P = 1 A 4 = 0.18892 × 10 -3 A 6 = 0.61947 × 10 -4 A 8 = 0.45427 × 10 -5 R 1 /f=-1.59 R 1 n 1 / {R 1 n 1 - (n 1 -1) d 1 } = 0.91
.

【0023】実施例3 f =7.0094 FNO=4.00 2ω=48.5° 〔遠距離時:撮影距離∞〕 r1 = -4.8668(非球面)d1 = 2.3464 nd1 =1.49241 νd1 =57.66 r2 = -9.1278 d2 = 1.6895 r3 = ∞(絞り) d3 = 0.1000 r4 = 3.9626 d4 = 3.5571 nd2 =1.77250 νd2 =49.66 r5 = -4.0040 d5 = 0.1768 r6 = -2.5753 d6 = 0.7405 nd3 =1.69895 νd3 =30.12 r7 = 5.1536 d7 = 0.6453 r8 = -13.1147 d8 = 1.7500 nd4 =1.83481 νd4 =42.72 r9 = -4.2623 非球面係数 第1面 P= 1 A4= 0.69824×10-3 A6= 0.53274×10-3 A8=-0.76668×10-4 |R4 |/R3 =1.01 R1 /f=-0.70 R1 1 /{R1 1 −(n1 −1)d1 }=0.86 〔近距離時:撮影距離約30cm〕 r1 = -4.6376(非球面)d1 = 2.3965 nd1 =1.49241 νd1 =57.66 r2 = -8.2231 d2 = 1.6111 (以下、遠距離時と同じ) 非球面係数 第1面 P= 1 A4= 0.96211×10-3 A6= 0.50894×10-3 A8=-0.89362×10-41 /f=-0.67 R1 1 /{R1 1 −(n1 −1)d1 }=0.85
Example 3 f = 7.0094 F NO = 4.00 2ω = 48.5 ° [at long distance: shooting distance ∞] r 1 = -4.8668 (aspherical surface) d 1 = 2.3464 n d1 = 1.49241 ν d1 = 57.66 r 2 = -9.1278 d 2 = 1.6895 r 3 = ∞ (aperture) d 3 = 0.1000 r 4 = 3.9626 d 4 = 3.5571 n d2 = 1.77250 ν d2 = 49.66 r 5 = -4.0040 d 5 = 0.1768 r 6 = -2.5753 d 6 = 0.7405 n d3 = 1.69895 ν d3 = 30.12 r 7 = 5.1536 d 7 = 0.6453 r 8 = -13.1147 d 8 = 1.7500 n d4 = 1.83481 ν d4 = 42.72 r 9 = -4.2623 Aspheric surface 1st surface P = 1 A 4 = 0.69824 x 10 -3 A 6 = 0.53274 x 10 -3 A 8 = -0.76668 x 10 -4 │R 4 | / R 3 = 1.01 R 1 /f=-0.70 R 1 n 1 / {R 1 n 1 − (N 1 -1) d 1 } = 0.86 [Near distance: shooting distance approx. 30 cm] r 1 = -4.6376 (aspherical surface) d 1 = 2.3965 n d1 = 1.49241 ν d1 = 57.66 r 2 = -8.2231 d 2 = 1.6111 (hereinafter, the same as during long-distance) aspheric coefficients first surface P = 1 a 4 = 0.96211 × 10 -3 a 6 = 0.50894 10 -3 A 8 = -0.89362 × 10 -4 R 1 /f=-0.67 R 1 n 1 / {R 1 n 1 - (n 1 -1) d 1} = 0.85
.

【0024】実施例4 f =6.9992 FNO=4.00 2ω=48.5° 〔遠距離時:撮影距離∞〕 r1 = -6.0173 d1 = 2.5719 nd1 =1.49241 νd1 =57.66 r2 = -6.7674 d2 = 1.5000 r3 = ∞(絞り) d3 = 0.1000 r4 = 4.3731 d4 = 2.8816 nd2 =1.83481 νd2 =42.72 r5 = -2.7750 d5 = 0.0696 r6 = -2.3594 d6 = 0.7000 nd3 =1.72825 νd3 =28.46 r7 = 3.8826 d7 = 0.4550 r8 = -14.6693 d8 = 2.6116 nd4 =1.83481 νd4 =42.72 r9 = -5.4886 |R4 |/R3 =0.63 R1 /f=-0.86 R1 1 /{R1 1 −(n1 −1)d1 }=0.88 〔近距離時:撮影距離約30cm〕 r1 = -5.1657 d1 = 2.0575 nd1 =1.49241 νd1 =57.66 r2 = -5.6464 d2 = 1.5000 (以下、遠距離時と同じ) R1 /f=-0.74 R1 1 /{R1 1 −(n1 −1)d1 }=0.88
Example 4 f = 6.9992 F NO = 4.00 2ω = 48.5 ° [at long distance: shooting distance ∞] r 1 = -6.0173 d 1 = 2.5719 n d1 = 1.49241 ν d1 = 57.66 r 2 = -6.7674 d 2 = 1.5000 r 3 = ∞ (aperture) d 3 = 0.1000 r 4 = 4.3731 d 4 = 2.8816 n d2 = 1.83481 ν d2 = 42.72 r 5 = -2.7750 d 5 = 0.0696 r 6 = -2.3594 d 6 = 0.7000 n d3 = 1.72825 ν d3 = 28.46 r 7 = 3.8826 d 7 = 0.4550 r 8 = -14.6693 d 8 = 2.6116 nd 4 = 1.83481 ν d4 = 42.72 r 9 = -5.4886 | R 4 | / R 3 = 0.63 R 1 / f =- 0.86 R 1 n 1 / {R 1 n 1 − (n 1 −1) d 1 } = 0.88 [Near distance: shooting distance approx. 30 cm] r 1 = -5.1657 d 1 = 2.0575 n d1 = 1.49241 ν d1 = 57.66 r 2 = -5.6464 d 2 = 1.5000 (hereinafter, the same as at long distance) R 1 /f=-0.74 R 1 n 1 / {R 1 n 1 − (n 1 −1) d 1 } = 0.88
.

【0025】上記実施例1の遠距離時(a)、中間距離
時(b)、近距離時(c)の球面収差、非点収差、歪曲
収差、倍率色収差を示す収差図を図4に、また、実施例
2〜4の遠距離時(a)、近距離時(b)の球面収差、
非点収差、歪曲収差、倍率色収差を示す収差図をそれぞ
れ図5〜7に示す。
FIG. 4 is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification of Example 1 at long distance (a), intermediate distance (b), and short distance (c). In addition, spherical aberration at long distance (a) and short distance (b) in Examples 2 to 4,
Aberration diagrams showing astigmatism, distortion, and lateral chromatic aberration are shown in FIGS.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、フォーカシング機構を低コスト化できると共
に、像面湾曲を良好に補正したコンパクトな撮影レンズ
を実現することができる。
As is apparent from the above description, according to the present invention, it is possible to reduce the cost of the focusing mechanism, and it is possible to realize a compact photographing lens in which the field curvature is well corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づくプラスチックレンズの配置の1
例を示す斜視図である。
FIG. 1 is an illustration of a plastic lens arrangement 1 according to the present invention.
It is a perspective view which shows an example.

【図2】他のプラスチックレンズの配置の例を示す斜視
図である。
FIG. 2 is a perspective view showing an example of arrangement of another plastic lens.

【図3】実施例1において遠距離用のプラスチックレン
ズに切り換えた場合のレンズ断面を示す図である。
FIG. 3 is a diagram showing a lens cross section when a plastic lens for long distance is switched to in Example 1.

【図4】実施例1の遠距離時(a)、中間距離時
(b)、近距離時(c)の球面収差、非点収差、歪曲収
差、倍率色収差を示す収差図である。
FIG. 4 is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification at a long distance (a), an intermediate distance (b), and a short distance (c) in Example 1.

【図5】実施例2の遠距離時(a)、近距離時(b)の
球面収差、非点収差、歪曲収差、倍率色収差を示す収差
図である。
FIG. 5 is an aberration diagram showing spherical aberration, astigmatism, distortion, and chromatic aberration of magnification of Example 2 at long distance (a) and short distance (b).

【図6】実施例3の図5と同様な収差図である。FIG. 6 is an aberration diagram similar to FIG. 5 of Example 3.

【図7】実施例4の図5と同様な収差図である。FIG. 7 is an aberration diagram similar to FIG. 5 of Example 4.

【符号の説明】[Explanation of symbols]

1…撮影レンズ本体 2…遠距離撮影用のプラスチックレンズ 3…中間距離撮影用のプラスチックレンズ 4…近距離撮影用のプラスチックレンズ 5…撮像素子 L1…第1レンズ L2…第2レンズ L3…第3レンズ L4…第4レンズ 1 ... Shooting lens main body 2 ... Long-distance shooting plastic lens 3 ... Intermediate-distance shooting plastic lens 4 ... Short-distance shooting plastic lens 5 ... Imaging element L1 ... First lens L2 ... Second lens L3 ... Third Lens L4 ... 4th lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最も物体側に、物体側に凹面を向けたメ
ニスカス形状のプラスチックレンズを有し、被写体距離
によって、前記プラスチックレンズを、これと一体に成
形され、曲率の異なる別の物体側に凹面を向けたメニス
カス形状のプラスチックレンズと切り換えることによっ
て焦点合わせを行うようにしたことを特徴とする撮影レ
ンズ。
1. A meniscus-shaped plastic lens having a concave surface facing the object side is provided on the most object side, and the plastic lens is formed integrally with the object lens side according to the object distance, and the meniscus-shaped plastic lens is formed on another object side having a different curvature. A photographic lens characterized in that focusing is performed by switching to a meniscus-shaped plastic lens having a concave surface.
JP04826492A 1992-03-05 1992-03-05 Shooting lens Expired - Fee Related JP3162151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04826492A JP3162151B2 (en) 1992-03-05 1992-03-05 Shooting lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04826492A JP3162151B2 (en) 1992-03-05 1992-03-05 Shooting lens

Publications (2)

Publication Number Publication Date
JPH05249372A true JPH05249372A (en) 1993-09-28
JP3162151B2 JP3162151B2 (en) 2001-04-25

Family

ID=12798580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04826492A Expired - Fee Related JP3162151B2 (en) 1992-03-05 1992-03-05 Shooting lens

Country Status (1)

Country Link
JP (1) JP3162151B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387199A1 (en) * 2002-07-30 2004-02-04 Milestone Co., Ltd. Image pickup lens
JP2005018041A (en) * 2003-05-30 2005-01-20 Olympus Corp Image forming optical system and electronic apparatus using the same
JP2006030290A (en) * 2004-07-12 2006-02-02 Olympus Corp Imaging apparatus
JP2006293190A (en) * 2005-04-14 2006-10-26 Olympus Corp Electronic imaging device equipped with compact photographic optical system
US10768394B2 (en) 2018-01-22 2020-09-08 Largan Precision Co., Ltd. Electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011076124A1 (en) * 2011-05-19 2012-11-22 Kaltenbach & Voigt Gmbh Method and system for cleaning and maintaining or operating a medical hand-held device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387199A1 (en) * 2002-07-30 2004-02-04 Milestone Co., Ltd. Image pickup lens
US7009783B2 (en) 2002-07-30 2006-03-07 Milestone Co., Ltd. Pickup lens
CN100359358C (en) * 2002-07-30 2008-01-02 里程碑株式会社 Camera lens
JP2005018041A (en) * 2003-05-30 2005-01-20 Olympus Corp Image forming optical system and electronic apparatus using the same
JP2006030290A (en) * 2004-07-12 2006-02-02 Olympus Corp Imaging apparatus
JP4632706B2 (en) * 2004-07-12 2011-02-16 オリンパス株式会社 Imaging device
JP2006293190A (en) * 2005-04-14 2006-10-26 Olympus Corp Electronic imaging device equipped with compact photographic optical system
US10768394B2 (en) 2018-01-22 2020-09-08 Largan Precision Co., Ltd. Electronic device

Also Published As

Publication number Publication date
JP3162151B2 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
JP6037221B2 (en) Wide angle lens, imaging lens unit, imaging device and information device
JP4612823B2 (en) Zoom lens and imaging apparatus having the same
US10437026B2 (en) Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
JP5510634B2 (en) Wide angle lens and optical apparatus having the wide angle lens
JP4881035B2 (en) Zoom lens and imaging apparatus having the same
JP4632724B2 (en) Zoom lens
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
US7599123B2 (en) Zoom lens system, imaging apparatus and method for varying focal length
US7492526B2 (en) High zoom ratio zoom lens, optical apparatus using the same, and method for varying focal length
JP5265218B2 (en) Zoom lens
JP4666977B2 (en) Zoom lens and imaging apparatus having the same
US5592334A (en) Zoom lens system
JP4931136B2 (en) Zoom lens
JP2001318310A (en) Single focus lens
JPH1078543A (en) Optical system
JP4911679B2 (en) Zoom lens and image pickup apparatus including the same
JP2006220715A (en) Zoom lens and imaging apparatus using the same
US5623371A (en) Macro lens system
JP4902179B2 (en) Zoom lens and imaging apparatus having the same
JP3324802B2 (en) Shooting lens
JP4624744B2 (en) Wide angle zoom lens
JP2003149545A (en) Front-shutter type single focal point lens
JPH09311273A (en) Variable focal distance lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP2572237B2 (en) Wide angle lens with long back focus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010130

LAPS Cancellation because of no payment of annual fees