JPH05248926A - Mass variation measuring device - Google Patents

Mass variation measuring device

Info

Publication number
JPH05248926A
JPH05248926A JP5178392A JP5178392A JPH05248926A JP H05248926 A JPH05248926 A JP H05248926A JP 5178392 A JP5178392 A JP 5178392A JP 5178392 A JP5178392 A JP 5178392A JP H05248926 A JPH05248926 A JP H05248926A
Authority
JP
Japan
Prior art keywords
mass
load cell
load
measured
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5178392A
Other languages
Japanese (ja)
Inventor
Eiji Nakamu
栄治 中務
Takashi Honda
敬 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5178392A priority Critical patent/JPH05248926A/en
Publication of JPH05248926A publication Critical patent/JPH05248926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure accurately the mass variation of a specimen placed in a specific atmosphere such as in a furnace without being influenced by the buoyance due to the process gas or the drift existing in the load cell itself. CONSTITUTION:A specimen A is borne by a load cell 7 through a jig 6, and the vibration system is excited by a driving mechanism 8. The load W sensed by the load cell 7 is fed to a signal processing means 16, and the mass M of the mass point Y when this vibration system is assumed as a single vibration is determined. Time change of the mass (m) of the specimen A is observed from the time change of the mass M.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉などの特殊雰囲気下
に置かれた被測定物の質量変化を計測するために特に有
用となる質量変化測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass change measuring device which is particularly useful for measuring the mass change of an object to be measured placed in a special atmosphere such as a furnace.

【0002】[0002]

【従来の技術】例えば、炉に置かれる被測定物として射
出成形体がある。射出成形体は原料にワックスを混合し
所定形状にバインドしたものであり、炉において先ずデ
ワックス処理され、しかる後、予備ないし本焼結工程が
行われる。デワックス処理工程は、真空排気した炉内に
処理ガスを充填して射出成形体を加熱し、成形体中に含
まれるワックスを徐々に蒸発させて減圧除去する過程で
あり、また、焼結工程は、デワックス後のポーラス状の
射出成形体を収縮・凝結させる過程である。この際、温
度制御や圧力制御が早急に過ぎると、射出成形体の軽量
化や収縮が予想以上に速く進行し、射出成形体にひび割
れ等を引き起こす原因となる。しかして、従来では炉内
における射出成形体の変化を実際に計測するのが困難で
あったため、焼結完了後、炉から取り出された成形品の
ひび割れなどを検査し、温度制御や圧力制御がいかにあ
るべきかを経験や感に頼って評価するようにしてきた。
2. Description of the Related Art For example, an injection molded body is an object to be measured placed in a furnace. The injection-molded body is obtained by mixing a raw material with wax and binding it into a predetermined shape, and is first subjected to dewaxing treatment in a furnace, and thereafter, preliminary or main sintering steps are performed. The dewaxing process is a process in which a process gas is filled in a vacuum-exhausted furnace to heat an injection molded body, and wax contained in the molded body is gradually evaporated to remove it under reduced pressure. The process of shrinking and solidifying a porous injection-molded body after dewaxing. At this time, if the temperature control and the pressure control are passed too quickly, the weight reduction and the shrinkage of the injection-molded body progress faster than expected, which causes the injection-molded body to crack. In the past, however, it was difficult to actually measure the change in the injection molded body in the furnace, so after the completion of sintering, the molded product taken out of the furnace was inspected for cracks, etc., and temperature control and pressure control were performed. I have tried to evaluate how it should be based on experience and feelings.

【0003】しかし、このような手法では評価に客観性
が乏しく、いつまでたっても作業が熟練を積んだ特定作
業者の技能の域を出ず、製品の歩留まりを向上させるこ
とにも難しい問題がある。
However, in such a method, the objectivity of the evaluation is poor, and there is a problem that it is difficult to improve the yield of products because the skill of a specific worker who is skilled in the work is beyond the limit. ..

【0004】そこで、近時になって、射出成形体を炉内
にて宙吊り状態で保持する治具を挿入し、その治具の上
端をロードセルに担持させて、治具上端に掛かる荷重を
連続的に検出するようにした重量測定装置が開発されて
いる。この装置においては、重量測定により間接的に被
測定物の質量を求めることができる。
Therefore, recently, a jig for holding the injection molded body in a suspended state in the furnace is inserted, and the upper end of the jig is carried by the load cell to continuously apply the load applied to the upper end of the jig. A weight measuring device has been developed for detecting the weight. In this device, the mass of the object to be measured can be indirectly obtained by weighing.

【0005】[0005]

【発明が解決しようとする課題】ところが、炉内には高
圧の処理ガス等が充満していることが多く、被測定物が
一般にそれらのガスから浮力を受けた状態にあるのが通
例である。この浮力Fは、ガスの密度をρ、被測定物の
体積をVとした場合に、F=ρ×Vで表すことができ
る。したがって、上述した測定装置の検出結果から浮力
による影響を取り除かない限り、質量の正確な測定は不
可能である。しかるに、炉内のガス密度は常に一定であ
るとは限らず、また、被測定物の体積も焼結処理等にお
いては刻々と変化するので、浮力を算出して測定結果の
適正な補償を行うことは一般に困難である。また、この
種の測定装置では、主要部品であるロードセル等にゲイ
ンドリフトやナルドリフトが存在し、治具においても、
タイトボックスの内外の差圧が加わった状態にあること
から、それらの誤差要因によっても補償が一層困難なも
のになっている。
However, the furnace is often filled with high-pressure processing gas and the like, and the object to be measured is generally in a state of being subjected to buoyancy from these gases. . This buoyancy F can be expressed by F = ρ × V, where ρ is the gas density and V is the volume of the object to be measured. Therefore, accurate measurement of the mass is impossible unless the influence of buoyancy is removed from the detection result of the above-described measuring device. However, the gas density in the furnace is not always constant, and the volume of the object to be measured changes every moment during the sintering process, etc., so the buoyancy is calculated and the measurement results are properly compensated. Things are generally difficult. In addition, in this type of measuring device, there is gain drift and null drift in the load cell, which is a major component, and even in jigs,
Since the pressure difference between the inside and outside of the tight box is applied, it is more difficult to compensate due to these error factors.

【0006】本発明は、これらの不具合を克服して正確
な測定を行うことができるようにした質量変化測定装置
を提供することを目的としている。
It is an object of the present invention to provide a mass change measuring device capable of overcoming these problems and performing accurate measurement.

【0007】[0007]

【課題を解決するための手段】本発明は、かかる目的を
達成するために、次のような構成を採用したものであ
る。
The present invention adopts the following constitution in order to achieve the above object.

【0008】すなわち、本発明に係る質量変化測定装置
は、被測定物を弾性体たる治具を介して保持するロード
セルと、被測定物を間欠的に励振させる加振制御手段
と、この加振制御手段が被測定物を励振させたときにロ
ードセルに現われる荷重の振動波形を検出し、その周期
Tと減衰定数nとから質点の質量を算出する信号処理手
段とを具備してなることを特徴とする。
That is, the mass change measuring apparatus according to the present invention comprises a load cell for holding an object to be measured through a jig which is an elastic body, an excitation control means for intermittently exciting the object to be measured, and an excitation device for this excitation. The control means includes a signal processing means for detecting the vibration waveform of the load appearing in the load cell when the object to be measured is excited and calculating the mass of the mass point from the cycle T and the damping constant n. And

【0009】[0009]

【作用】信号処理手段は、ロードセルの検出荷重に現わ
れる振動波形から、振動の周期と減衰定数を割り出す。
そして、それらの値と、予め与えられている振動系の弾
性率とから、運動の式に基づいて質点の質量を算出す
る。この質量は被測定物の質量の他に治具等の質量を含
む広い概念の値となるが、その経時的な変化は、振動系
に他の質量変化要因が存在しない限り、被測定物の質量
変化に対応したものとなる。しかも、このような測定手
法によると、測定過程において被測定物に作用する浮力
や、ロードセルのゲインおよびゼロ点、治具に作用する
差圧などの項を含まないため、浮力の影響やロードセル
のドリフトの影響等を測定から排除することができる。
The signal processing means determines the vibration period and the damping constant from the vibration waveform appearing in the detected load of the load cell.
Then, the mass of the mass point is calculated based on the equation of motion from these values and the elastic modulus of the vibration system given in advance. This mass is a value of a wide concept that includes the mass of the jig etc. in addition to the mass of the object to be measured, but its change with time does not change as long as there are no other mass change factors in the vibration system. It corresponds to the change in mass. Moreover, according to such a measurement method, since the terms such as the buoyancy acting on the object to be measured in the measurement process, the gain and zero point of the load cell, and the differential pressure acting on the jig are not included, the influence of the buoyancy and the load cell The influence of drift etc. can be excluded from the measurement.

【0010】[0010]

【実施例】以下、本発明の一実施例を、図面を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は、質量変化測定装置を熱処理炉一般
に適用した例を示している。炉1は、チャンバ2内に断
熱材3を配置し、その断熱材3の内側にヒータ4によっ
て加熱されるタイトボックス5を配設したもので、タイ
トボックス5内に射出成形体等の試料Aを収容してデワ
ックスや焼結等の各種処理を行い得るようになってい
る。同図中、Qは、試料Aに接触させる処理ガスの流れ
を示すものである。一方、本実施例の質量変化測定装置
は、その試料Aの質量変化を計測するために、該試料A
を弾性体である治具6を介して宙吊り状態でロードセル
7に担持させ、このロードセル7を駆動機構8により昇
降駆動可能に保持して、ロードセル7に掛かる荷重を検
出するようにしている。
FIG. 1 shows an example in which the mass change measuring device is applied to a heat treatment furnace in general. In a furnace 1, a heat insulating material 3 is arranged in a chamber 2, and a tight box 5 heated by a heater 4 is arranged inside the heat insulating material 3. In the tight box 5, a sample A such as an injection molded body is prepared. It is adapted to be able to carry out various processes such as dewaxing and sintering. In the figure, Q indicates the flow of the processing gas brought into contact with the sample A. On the other hand, the mass change measuring apparatus of the present embodiment uses the sample A in order to measure the mass change of the sample A.
Is supported by the load cell 7 in a suspended state via a jig 6 which is an elastic body, and the load cell 7 is held so as to be vertically movable by a drive mechanism 8 to detect the load applied to the load cell 7.

【0012】治具6は、頂板部9aにスリット9bを有
し内部に試料Aを収容した受枠9と、サブチャンバ10
からチャンバ1、タイトボックス5およびスリット9b
を介して受枠9内に下端部11bを垂下させたプロ−ブ
11と、このプローブ11の上端部11aをロードセル
7の測定端7a側に弾性的に担持させるばね12とから
なり、下端部11bをスリット9bよりも大径なものに
して受枠9の頂板部9aの下面に添設させている。ロー
ドセル7は、その固定端7bを剛性を有したコ字形のア
ーム13に支持されたもので、測定端7a側に作用する
荷重によりその測定端7aが固定端7bに対して相対的
に撓んだ際に、その撓みを図示しない歪ゲージが検出
し、連続的な荷重信号として出力するようになってい
る。駆動機構8は、本発明の加振制御手段としての役割
を担うもので、前記ア−ム13からサブチャンバ10を
貫通して上方に突出するロッド14と、このロッド14
をアーム13、ロードセル7、治具6および試料Aとと
もに昇降駆動するステップモータ15とから構成されて
いる。そして、前記ロードセル7が検出する荷重を、制
御及び信号処理手段16に入力している。
The jig 6 has a slit 9b in the top plate 9a and a receiving frame 9 containing the sample A therein, and a sub-chamber 10.
To chamber 1, tight box 5 and slit 9b
The probe 11 has a lower end portion 11b hung in the receiving frame 9 via a spring, and a spring 12 for elastically carrying the upper end portion 11a of the probe 11 on the measuring end 7a side of the load cell 7. Has a diameter larger than that of the slit 9b and is attached to the lower surface of the top plate portion 9a of the receiving frame 9. The load cell 7 has a fixed end 7b supported by a U-shaped arm 13 having rigidity, and the measuring end 7a flexes relative to the fixed end 7b due to a load acting on the measuring end 7a side. At this time, the strain gauge (not shown) detects the bending and outputs it as a continuous load signal. The drive mechanism 8 plays a role as the vibration control means of the present invention, and the rod 14 penetrating the sub chamber 10 from the arm 13 and protruding upward, and the rod 14
Is composed of an arm 13, a load cell 7, a jig 6, and a step motor 15 for driving up and down together with the sample A. Then, the load detected by the load cell 7 is input to the control and signal processing means 16.

【0013】制御及び信号処理手段16は、駆動機構8
を制御すると共に前記ロードセル7が検出する荷重を一
定の手順に沿って信号処理するように構成されている。
詳述すると、例えば前記駆動機構8によりステップモー
タ15を間欠的に駆動し、ロッド14を介して治具6に
一定周期で上下往復動させるとき、治具6の方向転換時
にロードセル7、治具6および試料Aからなる被測定系
(振動系)に振動が生じる。その振動の時間変化は、ロ
ードセル7が検出する荷重をW、駆動機構の変位をXと
して、図2に示すようになる。また、この振動系は、質
点の変位をY、その質量をM、系全体の弾性率をkとし
た場合に、図3に示すような単振動モデルで表すことが
でき、変位Yに関する自由振動の解は、角速度をω、振
幅初期値をA、初期位相角をα、減衰定数をn、弾性率
をk、時間をtとして、
The control and signal processing means 16 includes a drive mechanism 8
Is controlled, and the load detected by the load cell 7 is signal-processed according to a fixed procedure.
More specifically, for example, when the step motor 15 is intermittently driven by the driving mechanism 8 to reciprocate vertically on the jig 6 via the rod 14 at a constant cycle, when the jig 6 changes its direction, the load cell 7, the jig Vibration occurs in the system to be measured (vibration system) including 6 and sample A. The time variation of the vibration is as shown in FIG. 2, where W is the load detected by the load cell 7 and X is the displacement of the drive mechanism. Further, this vibration system can be represented by a simple vibration model as shown in FIG. 3, where Y is the displacement of the mass point, M is its mass, and k is the elastic modulus of the entire system. The solution of is that the angular velocity is ω, the initial amplitude value is A, the initial phase angle is α, the damping constant is n, the elastic modulus is k, and the time is t,

【数1】 [Equation 1]

【数2】 となる。一方、ロードセル7の検出荷重Wの波形も同様
の関係式が成立つと考えられるので、荷重の波形から角
速度ωと減衰定数nを求めることができる。前記制御及
び信号処理手段16は、そのための具体的な構成とし
て、振動の周期Tから角速度ω=2π/Tを求め、ま
た、1周期Tにおける減少率e-nt から減衰定数nを求
めるように構成されている。また、この信号処理手段1
6は、上述した角速度ωおよび減衰定数nの値と、弾性
率k(事前に求めておく)の値とから、式(2)に従っ
て質量Mを求めるように構成されている。しかして、こ
のMの値は試料Aの質量mを始めとして受枠4やプロー
ブ6の質量などを含んだ広い範囲に亘るものとなるが、
それら振動系の構成要素である受枠4、プローブ6等は
処理中に質量が殆ど変化しないので、結果的に質量Mの
時間的な変化は試料Aの質量mの変化に対応することに
なる。したがって、質量mのみの連続的な変化を計測す
ることができる。しかも、この装置においては、測定過
程において、試料Aに作用する浮力、ロードセル7のゲ
インおよびゼロ点、治具6に作用する差圧なに影響され
ないので、浮力の影響やロードセル7のドリフトの影響
等を排除した測定が可能になる。そのため、この装置を
用いて例えばデワックス処理を行えば、試料Aの質量変
化を正確に検出し、デワックス速度をコントロールする
こと等が可能になる。
[Equation 2] Becomes On the other hand, since it is considered that the same relational expression holds for the waveform of the detected load W of the load cell 7, the angular velocity ω and the damping constant n can be obtained from the waveform of the load. As a specific configuration for that purpose, the control and signal processing means 16 obtains the angular velocity ω = 2π / T from the period T of vibration and also obtains the damping constant n from the reduction rate e −nt in one period T. It is configured. Also, this signal processing means 1
6 is configured to determine the mass M according to the equation (2) from the values of the angular velocity ω and the damping constant n described above, and the value of the elastic modulus k (preliminarily determined). Then, the value of M is in a wide range including the mass m of the sample A and the mass of the receiving frame 4 and the probe 6,
Since the masses of the receiving frame 4, the probe 6, and the like, which are components of the vibration system, hardly change during the processing, the temporal change of the mass M corresponds to the change of the mass m of the sample A as a result. Therefore, it is possible to measure a continuous change of only the mass m. In addition, in this device, since the buoyancy acting on the sample A, the gain and zero point of the load cell 7 and the differential pressure acting on the jig 6 are not affected in the measurement process, the influence of the buoyancy and the influence of the drift of the load cell 7 It becomes possible to perform measurement without such factors. Therefore, if dewaxing is performed using this apparatus, for example, it is possible to accurately detect the mass change of the sample A and control the dewaxing speed.

【0014】なお、本発明は上述した実施例のみに限定
されるものではない。例えば、上記実施例では駆動機構
8に三角波を与えるようにしているが、それ以外の例え
ば矩形波や台形波等を加えるようにしてもよい。また、
プローブ6又はロードセル7の弾性率が適切ならば、ば
ね12は省略することができる。さらに、この装置は、
本発明者が特願平3−63590号で提案した動的測定
方法たる重量・変位測定装置に併用することも有効とな
る。その際には、受枠が降下した位置に該受枠を載置す
る支持台が配設されることになる。さらにまた、この装
置は無重力下でも使用可能である。
The present invention is not limited to the above-mentioned embodiments. For example, in the above embodiment, the drive mechanism 8 is provided with a triangular wave, but other than that, for example, a rectangular wave or a trapezoidal wave may be added. Also,
The spring 12 can be omitted if the elastic modulus of the probe 6 or the load cell 7 is appropriate. In addition, this device
It is also effective for the present inventor to use it in combination with a weight / displacement measuring device which is a dynamic measuring method proposed in Japanese Patent Application No. 3-63590. In that case, a support base for mounting the receiving frame is arranged at a position where the receiving frame is lowered. Furthermore, the device can also be used under weightlessness.

【0015】[0015]

【発明の効果】本発明に係る質量変化測定装置は、以上
説明した構成であるから、炉などの特種雰囲気下に置か
れた試料の質量変化を、処理ガスによる浮力の影響や、
ロードセル自体に存するドリフトの影響等を受けずに正
確に測定できる効果がある。
Since the mass change measuring apparatus according to the present invention has the configuration described above, the mass change of the sample placed in a special atmosphere such as a furnace is affected by the influence of buoyancy due to the processing gas,
There is an effect that accurate measurement can be performed without being affected by the drift existing in the load cell itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、質量変化測定装置を
適用した熱処理炉を示す図。
FIG. 1 is a diagram showing a heat treatment furnace to which a mass change measuring apparatus is applied according to an embodiment of the present invention.

【図2】同実施例において測定中にロードセルが検出す
る荷重Wと振動系の質点の変位Xとの関係を示す図。
FIG. 2 is a diagram showing a relationship between a load W detected by a load cell during measurement and a displacement X of a mass point of a vibration system in the same example.

【図3】同実施例の振動系をモデルによって示す図。FIG. 3 is a diagram showing a model of the vibration system of the embodiment.

【符号の説明】[Explanation of symbols]

A…被測定物(試料) 6…治具 7…ロードセル 8…駆動機構(加振制御手段) 16…制御及び信号処理手段 X…駆動機構の変位 Y…質点の変位 W…検出荷重 A ... Object to be measured (sample) 6 ... Jig 7 ... Load cell 8 ... Drive mechanism (excitation control means) 16 ... Control and signal processing means X ... Displacement of drive mechanism Y ... Displacement of mass point W ... Detected load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被測定物を弾性体たる治具を介して保持す
るロードセルと、被測定物を間欠的に励振させる加振制
御手段と、この加振制御手段が被測定物を励振させたと
きにロードセルに現われる荷重の振動波形を検出し、そ
の周期Tと減衰定数nから被測定物の質量を算出する信
号処理手段とを具備してなることを特徴とする質量変化
測定装置。
1. A load cell for holding an object to be measured through a jig which is an elastic body, a vibration control means for intermittently exciting the object to be measured, and this vibration control means excites the object to be measured. A mass change measuring device characterized by comprising a signal processing means for detecting a vibration waveform of a load sometimes appearing in the load cell and calculating the mass of the object to be measured from its cycle T and a damping constant n.
JP5178392A 1992-03-10 1992-03-10 Mass variation measuring device Pending JPH05248926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5178392A JPH05248926A (en) 1992-03-10 1992-03-10 Mass variation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5178392A JPH05248926A (en) 1992-03-10 1992-03-10 Mass variation measuring device

Publications (1)

Publication Number Publication Date
JPH05248926A true JPH05248926A (en) 1993-09-28

Family

ID=12896547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5178392A Pending JPH05248926A (en) 1992-03-10 1992-03-10 Mass variation measuring device

Country Status (1)

Country Link
JP (1) JPH05248926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514006A (en) * 2008-03-11 2011-04-28 メトリックス・リミテッド Semiconductor wafer monitoring apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514006A (en) * 2008-03-11 2011-04-28 メトリックス・リミテッド Semiconductor wafer monitoring apparatus and method
US9349624B2 (en) 2008-03-11 2016-05-24 Metryx Limited Semiconductor wafer monitoring apparatus and method

Similar Documents

Publication Publication Date Title
Tillett A study of the impact of spheres on plates
CN110998253B (en) Apparatus and method for performing impact excitation techniques
CN109813597A (en) Material Testing Machine and curable grip detection method
CN101666782A (en) Measuring device of rigidity and damping of tangential contact
CA1082366A (en) Method and apparatus for determining weight and mass
CN106769560B (en) A kind of I-beam mechanics parameter lossless detection method based on vibration
US1414077A (en) Method and apparatus for inspecting materiai
JPH05248926A (en) Mass variation measuring device
EP0506005A2 (en) A device for measuring the dimension of an object
US10281269B2 (en) Method and device for determining a height of a settled bed in a mixture in a loading space
US3972227A (en) Method of ultrasonic measurements
CN103063810B (en) Automation inserting degree tester and testing method
CN106769561A (en) A kind of lower Hollow Transmission Shafts mechanics parameter lossless detection method of temperature loading effect
JPH1073525A (en) Measuring apparatus for specific gravity
JPH0843185A (en) Mass measuring method and device
JPH05149861A (en) Method and apparatus for measuring physical properties of fluid
US6756548B2 (en) Apparatus and method for measuring mass in a microgravity environment
SU1730562A1 (en) Method of producing fatigue crack of preset length
JPH07167768A (en) Simultaneous measuring method of pressure-volume-temperature characteristics in material
KR950010392B1 (en) Iner-pore measuring apparatus of subminiature molding products using surface heat-vibration
RU2091722C1 (en) Method determining mass of articles during pneumatic transportation
CN114002092B (en) Real-time compensation method for measuring error of load sensor in fatigue experiment
SU1543294A2 (en) Method of testing materials for fatigue in lateral bending
DE60031431D1 (en) Method for penetrometric measurement of the consistency of substances and device for implementing the method
JP2672696B2 (en) Capillary radius and contact angle measuring device for powder layer