JPH05247531A - Manufacture of steel excellent in low temperature toughness in weld-heat affected zone - Google Patents
Manufacture of steel excellent in low temperature toughness in weld-heat affected zoneInfo
- Publication number
- JPH05247531A JPH05247531A JP4991792A JP4991792A JPH05247531A JP H05247531 A JPH05247531 A JP H05247531A JP 4991792 A JP4991792 A JP 4991792A JP 4991792 A JP4991792 A JP 4991792A JP H05247531 A JPH05247531 A JP H05247531A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- toughness
- affected zone
- slab
- weld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は小入熱溶接から中入熱溶
接の熱影響部(HAZ)の低温靭性が優れた鋼の製造法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steel having excellent low temperature toughness in the heat affected zone (HAZ) of small heat input welding to medium heat input welding.
【0002】[0002]
【従来の技術】低合金鋼のHAZ靭性は、(1)結晶粒
のサイズ、(2)高炭素マルテンサイト(M* )、上部
ベイナイト(Bu)などの硬化相の分散状態、(3)析
出硬化状態、(4)粒界脆化の有無、(5)元素のミク
ロ偏析など種々の冶金的要因に支配される。これらの要
因は低温靭性に大きな影響を与えることが知られてお
り、HAZ靭性を改善するために数多くの技術が開発実
用化されている。2. Description of the Related Art HAZ toughness of a low alloy steel depends on (1) grain size, (2) dispersed state of hardened phases such as high carbon martensite (M * ) and upper bainite (Bu), and (3) precipitation. It is governed by various metallurgical factors such as the hardening state, (4) presence or absence of grain boundary embrittlement, and (5) elemental microsegregation. It is known that these factors have a great influence on the low temperature toughness, and many techniques have been developed and put to practical use in order to improve the HAZ toughness.
【0003】特に優れている技術として、Ti酸化物と
TiNを微細分散した鋼(特願昭62−42769)が
知られている。この鋼では、溶接後の冷却過程でγ粒内
のTi酸化物よりフェライトを発生させてミクロ組織を
微細化して靭性を向上させている。A steel (Japanese Patent Application No. 62-42769) in which Ti oxide and TiN are finely dispersed is known as a particularly excellent technique. In this steel, ferrite is generated from the Ti oxide in the γ grains in the cooling process after welding to refine the microstructure and improve the toughness.
【0004】しかしながら、1400℃以上の温度にさ
らされる溶融線近傍のごく狭い領域では、溶接熱により
酸化物は溶解しないが、TiNが溶解し、その後の溶接
熱でTiCとして生成するため、靭性の劣化が生じる。
このように、局部的な脆化領域が存在した場合、その悪
影響はシャルピー試験では、極めて少ないが、CTOD
試験で大きな差が見られる。従って、この鋼の多パス溶
接部のCTOD特性は鋼の成分系にもよるが、−10〜
−30℃程度でCTOD値が0.25mm程度を満足させ
ることが限界であった。However, in a very narrow region near the fusion line exposed to a temperature of 1400 ° C. or higher, the oxide does not dissolve due to welding heat, but TiN dissolves and is produced as TiC by the subsequent welding heat, so that the toughness is reduced. Deterioration occurs.
As described above, when a local embrittlement region is present, the adverse effect thereof is extremely small in the Charpy test.
The test shows a big difference. Therefore, although the CTOD characteristics of the multi-pass weld of this steel depend on the composition system of the steel,
The limit was to satisfy the CTOD value of about 0.25 mm at about -30 ° C.
【0005】[0005]
【発明が解決しようとする課題】従来の技術では、HA
Zの溶融線近傍のごく狭い領域において靭性の劣化が生
じ、多パス溶接部のCTOD特性は、鋼の成分系にもよ
るが、0.25mm程度を満足させることが限界であっ
た。現在のところ小〜中入熱溶接において、−40℃以
下での良好なCTOD特性を満足できる鋼の製造技術は
存在せず、新知見に基づいた新しい鋼の開発が強く望ま
れていた。In the prior art, HA is used.
The toughness deteriorates in a very narrow region near the melting line of Z, and the CTOD property of the multipass weld depends on the composition system of the steel, but it was limited to satisfying about 0.25 mm. At present, in the small to medium heat input welding, there is no steel manufacturing technology capable of satisfying good CTOD characteristics at -40 ° C or lower, and development of new steel based on new knowledge has been strongly desired.
【0006】本発明は、小〜中入熱溶接においてHAZ
靭性(特にCTOD特性)の極めて優れた鋼を安価に製
造する技術を提供するものである。The present invention is applicable to HAZ in small to medium heat input welding.
The present invention provides a technique for inexpensively manufacturing steel having extremely excellent toughness (particularly CTOD characteristics).
【0007】[0007]
【課題を解決するための手段】本発明の要旨は、重量%
で、C:0.06〜0.15%、Si:0.4%以下、
Mn:0.8〜2.0%、P:0.020%以下、S:
0.005%以下、Al:0.004%以下、Ti:
0.004〜0.013%、N:0.0035〜0.0
070%、O:0.0010〜0.0030%を含有
し、SUMMARY OF THE INVENTION The gist of the present invention is the weight%
C: 0.06 to 0.15%, Si: 0.4% or less,
Mn: 0.8-2.0%, P: 0.020% or less, S:
0.005% or less, Al: 0.004% or less, Ti:
0.004-0.013%, N: 0.0035-0.0
070%, O: 0.0010 to 0.0030% is contained,
【数2】 が0.6〜1.0の範囲で、且つ−0.020%≦〔T
i〕−2〔O〕−3.4〔N〕≦−0.010を満足
し、残部が鉄および不可避的不純物からなる実質的にA
lを添加しない鋼を連続鋳造法によってスラブとし、こ
れを1200℃以下の温度で再加熱後、厚板圧延を行な
うことを特徴とする溶接熱影響部の低温靭性が優れた鋼
の製造法である。[Equation 2] Is in the range of 0.6 to 1.0, and −0.020% ≦ [T
i] −2 [O] −3.4 [N] ≦ −0.010, with the balance being iron and inevitable impurities.
In a method for producing steel having excellent low-temperature toughness in the weld heat-affected zone, which is characterized in that steel without addition of 1 is made into a slab by a continuous casting method, and this is reheated at a temperature of 1200 ° C. or lower, and then thick plate rolling is there.
【0008】更に本発明は重量%で、C:0.06〜
0.15%、Si:0.4%以下、Mn:0.8〜2.
0%、P:0.020%以下、S:0.005%以下、
Al:0.004%以下、Ti:0.004〜0.01
3%、N:0.0035〜0.0065%、O:0.0
010〜0.0030%及び、更にNb:0.005〜
0.020%、V:0.005〜0.030%、Ni:
0.05〜1.0%、Cu:0.05〜0.5%、C
a:0.0005〜0.005%、REM:0.005
〜0.05%の一種または二種以上を含有し、Further, in the present invention, C: 0.06% by weight.
0.15%, Si: 0.4% or less, Mn: 0.8-2.
0%, P: 0.020% or less, S: 0.005% or less,
Al: 0.004% or less, Ti: 0.004 to 0.01
3%, N: 0.0035 to 0.0065%, O: 0.0
010 to 0.0030%, and further Nb: 0.005
0.020%, V: 0.005-0.030%, Ni:
0.05-1.0%, Cu: 0.05-0.5%, C
a: 0.0005 to 0.005%, REM: 0.005
~ 0.05% containing one or more,
【数3】 が0.6〜1.0の範囲で、且つ−0.020%≦〔T
i〕−2〔O〕−3.4〔N〕≦−0.010を満足
し、残部が鉄およひ不可避的不純物からなる実質的にA
lを添加しない鋼を連続鋳造法によってスラブとし、こ
れを1200℃以下の温度で再加熱後、厚板圧延を行な
うことを特徴とする溶接熱影響部の低温靭性が優れた鋼
の製造法である。[Equation 3] Is in the range of 0.6 to 1.0, and −0.020% ≦ [T
i] −2 [O] −3.4 [N] ≦ −0.010, with the balance being iron and unavoidable impurities, and substantially A
In a method for producing steel having excellent low-temperature toughness in the weld heat-affected zone, which is characterized in that steel without addition of 1 is made into a slab by a continuous casting method, and this is reheated at a temperature of 1200 ° C. or lower, and then thick plate rolling is there.
【0009】本発明者らの研究によれば、CTOD特性
が問題となるような小〜中入熱溶接部のHAZ靭性は、
1)鋼の化学成分、2)ミクロ組織(結晶粒の大きさと
硬化相の分布状態)、3)析出硬化(溶接熱により一旦
溶解する析出硬化元素が溶接の後熱により再析出して硬
化)、4)ミクロ組織中で硬化相と同じ影響を及ぼす酸
化物の量などに大きく依存することを明らかにした。According to the research conducted by the present inventors, the HAZ toughness of a small to medium heat input weld where CTOD characteristics are a problem is found to be
1) Chemical composition of steel, 2) Microstructure (size of crystal grains and distribution of hardening phase), 3) Precipitation hardening (precipitation hardening element that is once dissolved by welding heat re-precipitates and hardens by post-welding heat) 4) It was clarified that the microstructure largely depends on the amount of oxides that have the same effect as the hardening phase.
【0010】このため、本発明者らは、鋼中に従来より
微細に酸化物を分散させ、TiNが溶解し、その後生成
するTiCを極力少なくするため、種々の検討を行い、
適正なTi,O,N量のバランスが重要であることを見
いだした。For this reason, the present inventors have made various studies in order to disperse oxides in steel more finely than in the past, to dissolve TiN and to reduce TiC generated thereafter as much as possible.
It was found that an appropriate balance of Ti, O and N contents is important.
【0011】また同時に、上述の知見を生かすために
は、併せて、適正なベース成分も必須であることを明ら
かにし、その適正範囲をつきとめた。Ti酸化物(主と
してTi2 O3 )は微細なアシキュラーフェライトを生
成して靭性を向上させるが、試験条件が厳しい場合(−
40℃以下の低温でのCTOD特性が問題とされるケー
ス)、Ti酸化物が脆性亀裂の発生を促進する悪い作用
を生じる。このため、脆性亀裂の発生を起こさないよう
にTi酸化物の大きさと数を抑制する必要がある。At the same time, in order to make use of the above knowledge, it was also clarified that a proper base component is also essential, and its proper range was identified. Ti oxide (mainly Ti 2 O 3 ) forms fine acicular ferrite to improve toughness, but when the test conditions are severe (-
In the case where the CTOD characteristic at a low temperature of 40 ° C. or lower is a problem), the Ti oxide has a bad effect of promoting the occurrence of brittle cracks. Therefore, it is necessary to suppress the size and number of Ti oxides so that brittle cracks do not occur.
【0012】本発明者らは、種々の検討の結果、Tiと
Oを適正範囲にすることにより前記の課題を解決した。
すなわち、Ti量は0.004%〜0.013%が適正
範囲で、O量は0.0010〜0.0030%が適正範
囲である。TiやO量がこの範囲より多い場合は、酸化
物数が増加し、そのサイズも大きくなり脆性亀裂が発生
し易くなる。また、この範囲より少ない場合は、有効な
酸化物が生成しないため、ミクロ組織が微細化せず、靭
性は向上しない。As a result of various studies, the present inventors have solved the above-mentioned problems by setting Ti and O within proper ranges.
That is, the Ti amount is 0.004% to 0.013% in the proper range, and the O amount is 0.0010 to 0.0030% in the proper range. When the amount of Ti or O is larger than this range, the number of oxides increases, the size also increases, and brittle cracks easily occur. On the other hand, if the amount is less than this range, an effective oxide is not produced, so that the microstructure is not refined and the toughness is not improved.
【0013】Ti酸化物は溶鋼の凝固中に優先して生成
するが、酸素と結合しないTiはNと結合し、TiNが
生成する。TiNは溶接時の1350℃以下の温度では
ミクロ組織を微細化して靭性を向上させるが、1400
℃を超える温度では溶解する。Ti oxide is preferentially formed during the solidification of molten steel, but Ti that does not combine with oxygen combines with N to form TiN. TiN improves the toughness by refining the microstructure at a temperature of 1350 ° C. or lower during welding.
Melts at temperatures above ° C.
【0014】溶解したTiは冷却中に、TiNやTiC
を形成する。この場合、Ti量が多く、N量が少ないと
TiCが形成され靭性が著しく劣化する。従って、靭性
を劣化させないため、N量の規制とともにTi,O,N
量のバランスを適正範囲に規制することが必要条件であ
り、N量は、0.0035〜0.0065%、Ti,
O,Nのバランスは、−0.020%≦〔Ti〕−2
〔O〕−3.4〔N〕≦−0.010%が適合範囲であ
る。The melted Ti is cooled by TiN and TiC during cooling.
To form. In this case, when the amount of Ti is large and the amount of N is small, TiC is formed and the toughness is significantly deteriorated. Therefore, since the toughness is not deteriorated, the Ti content, Ti content, O content, N content, and N content are regulated.
It is a necessary condition to regulate the balance of the amount within an appropriate range, and the N amount is 0.0035 to 0.0065%, Ti,
The balance of O and N is -0.020% ≤ [Ti] -2
[O] -3.4 [N] ≤-0.010% is the conforming range.
【0015】しかしながら、たとえTi,O,N量を規
制して鋼中にTi酸化物やTiNを微細分散させたとし
ても基本成分が適正でなければ、優れたHAZ靭性は得
られない。以下この点について説明する。However, even if the amounts of Ti, O, and N are regulated to finely disperse Ti oxide and TiN in the steel, excellent HAZ toughness cannot be obtained if the basic components are not proper. This point will be described below.
【0016】Cの下限0.06%は、母材および溶接部
の強度の確保のため必要である。しかし、C量が多すぎ
ると、母材の低温靭性や溶接性、HAZ靭性も劣化させ
るので、上限を0.015%とした。The lower limit of 0.06% of C is necessary to secure the strength of the base material and the welded portion. However, if the amount of C is too large, the low temperature toughness, weldability, and HAZ toughness of the base material deteriorate, so the upper limit was made 0.015%.
【0017】Siは脱酸上、鋼に含まれる元素である
が、多く添加すると溶接性、HAZ靭性が劣化するた
め、上限を0.4%に限定した。HAZ靭性を改善する
観点から0.15%以下が望ましい。Si is an element contained in steel for deoxidation, but if added in a large amount, the weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.4%. From the viewpoint of improving the HAZ toughness, 0.15% or less is desirable.
【0018】Mnは強度、靭性を確保するため不可欠な
元素であり、その下限は0.8%である。Mnはγ粒界
に生成する粗大な初析フェライトを防止しHAZ靭性改
善に効果があるがMnが多すぎると溶接性、HAZ靭性
を劣化させるので上限を2.0%とした。Mn is an essential element for securing strength and toughness, and its lower limit is 0.8%. Mn has the effect of preventing coarse proeutectoid ferrite generated at γ grain boundaries and improving the HAZ toughness, but if Mn is too much, the weldability and HAZ toughness are deteriorated, so the upper limit was made 2.0%.
【0019】本発明鋼において不純物であるP,Sをそ
れぞれ0.020%,0.005%以下とした理由は母
材、溶接部の低温靭性をより一層向上させるためであ
る。Pの低減はHAZにおける粒界破壊を減少させ、S
の低減は粒界フィライトの生成を抑制する傾向がある。The reason why the impurities P and S in the steel of the present invention are 0.020% and 0.005% or less, respectively, is to further improve the low temperature toughness of the base metal and the welded portion. Reduction of P reduces grain boundary fracture in HAZ, and S
Reduction tends to suppress the formation of grain boundary phyllite.
【0020】Alは一般に脱酸上鋼に含まれる元素であ
るが、本発明鋼では好ましくない元素であり、その上限
を0.004%とした。これはAlが鋼中に含まれてい
るとTiより早くOと結合しTi酸化物が生成しないた
めである。Although Al is an element generally contained in deoxidized upper steel, it is an unfavorable element in the steel of the present invention, and its upper limit is set to 0.004%. This is because when Al is contained in the steel, it bonds with O earlier than Ti and Ti oxide is not formed.
【0021】つぎにNb,V,Ni,Cu,Ca,RE
Mを添加する理由を説明する。Nbはγ粒界に生成する
フェライトを抑制し、Ti酸化物を核とする微細なフィ
ライトの生成を促進する働きがある。しかしながら、多
すぎると逆に微細なフェライトの生成を妨げるので0.
005〜0.020%を規制範囲とした。Next, Nb, V, Ni, Cu, Ca, RE
The reason for adding M will be described. Nb has a function of suppressing ferrite generated in the γ grain boundary and promoting generation of fine phyllite having Ti oxide as a nucleus. However, if it is too large, the formation of fine ferrite is adversely affected.
The regulation range was 005 to 0.020%.
【0022】VはNbとほぼ同じ効果を持つ元素である
が、0.005%以下では効果が少なく、上限は0.0
30%まで許容できる。Niは溶接性、HAZ靭性に悪
影響をおよぼすことが少なく、母材の強度や靭性を向上
させるが1.0%を超えると溶接性に好ましくないた
め、1.0%を上限とした。CuはNiとほぼ同様な効
果をもち、耐食性、耐水素誘起割れ性などにも効果があ
るが、0.5%を超えると熱間圧延時にCuクラックが
発生し、製造困難となる。このため、上限を0.5%と
した。V is an element having almost the same effect as Nb, but if 0.005% or less, the effect is small, and the upper limit is 0.0.
Up to 30% is acceptable. Ni has little adverse effect on weldability and HAZ toughness and improves the strength and toughness of the base material, but if it exceeds 1.0%, it is not preferable for weldability, so 1.0% was made the upper limit. Cu has almost the same effect as Ni and is also effective in corrosion resistance, hydrogen induced cracking resistance, etc., but if it exceeds 0.5%, Cu cracks occur during hot rolling, which makes manufacturing difficult. Therefore, the upper limit is set to 0.5%.
【0023】Ca,REMは硫化物(MnS)の形態を
制御し、低温靭性の改善や耐水素誘起割れ性に効果を発
揮する。しかし、Ca量が0.0005%、REMが
0.005%以下では効果が少ないので、それぞれの下
限とした。また、CaとREMは添加量が多すぎると靭
性や清浄度を害するため、それぞれの上限を0.005
%,0.05%とした。Ca and REM control the morphology of sulfide (MnS), and have an effect on improving low temperature toughness and hydrogen-induced cracking resistance. However, when the amount of Ca is 0.0005% and REM is 0.005% or less, the effect is small, so the respective lower limits are set. Further, Ca and REM impair the toughness and cleanliness if the addition amounts are too large, so the respective upper limits are set to 0.005.
% And 0.05%.
【0024】鋼の成分を上記のように限定しても、製造
法が適切でなければ溶接継手の良好な靭性は得られな
い。このため、製造条件についても限定する必要があ
る。発明鋼としての特性を得るためには、まず、工業的
には連続鋳造法で製造することが必須である。この理由
は、連続鋳造法では溶鋼の冷却速度が速く、スラブ中に
微細なTi酸化物が多量に得られるためである。大型鋼
塊では、凝固時の冷却速度が遅いため、微細なTi酸化
物を得ることができない。Even if the steel composition is limited as described above, good toughness of the welded joint cannot be obtained unless the manufacturing method is appropriate. Therefore, it is necessary to limit the manufacturing conditions. In order to obtain the characteristics of the invention steel, it is essential industrially to manufacture it by a continuous casting method. The reason for this is that in the continuous casting method, the molten steel has a high cooling rate and a large amount of fine Ti oxide is obtained in the slab. In a large steel ingot, fine Ti oxide cannot be obtained because the cooling rate during solidification is slow.
【0025】連続鋳造法の場合、スラブ厚の増加により
冷却速度が遅くなるため、微細なTi酸化物が少なくな
る。このため、適用するスラブ厚は350mm以下が好ま
しい。スラブの再加熱温度は1200℃以下とする必要
がある。これ以上の温度で再加熱するとTiNが粗大化
するため、溶接の1350℃以下のHAZのミクロ組織
微細化が不十分となる。In the case of the continuous casting method, the cooling rate becomes slower due to the increase in the slab thickness, so that the fine Ti oxide is reduced. Therefore, the applied slab thickness is preferably 350 mm or less. The reheating temperature of the slab needs to be 1200 ° C or lower. When reheated at a temperature higher than this, TiN becomes coarse, so that the microstructure refinement of the HAZ at 1350 ° C. or lower for welding becomes insufficient.
【0026】つぎに、スラブ再加熱後の圧延法は加工熱
処理法で製造することが望ましい。この理由はたとえ優
れたHAZ靭性が得られたとしても、母材の靭性が劣っ
ていると鋼材として不十分なためである。加工熱処理の
方法としては、1)制御圧延、2)制御圧延−加速冷
却、3)圧延後直接焼入−焼戻などが挙げられるが、最
も好ましい方法は制御圧延と加速冷却の組み合わせであ
る。なお、この鋼を製造後、脱水素などの目的でAc1
変態点以下の温度に再加熱しても、本発明鋼の特徴を損
なうものではない。Next, the rolling method after the slab is reheated is preferably manufactured by a thermo-mechanical treatment method. The reason for this is that even if excellent HAZ toughness is obtained, if the toughness of the base material is poor, it will be insufficient as a steel material. Examples of the method of thermomechanical treatment include 1) controlled rolling, 2) controlled rolling-accelerated cooling, 3) direct quenching after rolling-tempering, and the most preferable method is a combination of controlled rolling and accelerated cooling. After manufacturing this steel, Ac 1
Reheating to a temperature below the transformation point does not impair the characteristics of the steel of the present invention.
【0027】[0027]
【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板を製造し、実溶接継手を作成しシャルピーやCTO
D試験を実施した。溶接は一般に試験溶接として用いら
れている潜弧溶接(SAW)法で溶接溶け込み線(F
L)が垂直になるようにK開先で実施した。また、シャ
ルピー試験は板厚の1/4tよりBondノッチ(溶接
金属とHAZが50%)で実施し、CTOD試験はt
(板厚)×2tの断面疲労ノッチで実施した。[Examples] Steel plates of various steel components are manufactured in a converter-continuous casting-thick plate process, and actual welded joints are prepared to obtain Charpy or CTO.
D test was performed. Welding is performed using the latent arc welding (SAW) method which is generally used as test welding.
It carried out by K groove so that L) might become vertical. In addition, the Charpy test was performed with a Bond notch (weld metal and HAZ 50%) from 1/4 t of the plate thickness, and the CTOD test was t
(Plate thickness) × 2t The cross-sectional fatigue notch was performed.
【0028】表1に実施例を示す。Table 1 shows examples.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】本発明で製造した鋼板(本発明鋼)はすべ
て良好なHAZ靭性を有するのに対し本発明によらない
比較鋼はHAZ靭性が劣り、厳しい環境下で使用される
鋼板として適切でない。The steel sheets produced according to the present invention (invention steels) all have good HAZ toughness, whereas the comparative steels not according to the present invention have poor HAZ toughness and are not suitable as steel sheets used in harsh environments.
【0032】比較鋼において鋼11はAl量が多いた
め、ミクロ組織が微細化せず、このため−50℃のCT
OD値が5本中4本が低い値であった。また、鋼12で
は、酸素量が多いため、5本のCTOD値がすべて低い
値であった。鋼13では、Ti,N,Oバランスが悪
く、f(Ti)が規制範囲内とならなかったため、5本
中4本で低いCTOD値が発生した。鋼14では、D1
* が低いためミクロ組織が微細化せず、シャルピー、C
TOD値共に低い値が発生した。さらに、鋼15ではD
1 * が高すぎたため、シャルピー、CTOD値共に低い
値が発生した。本発明鋼は厚板に適用することが最も好
ましいが、ホットコイル、形鋼などにも適用可能であ
る。Among the comparative steels, Steel 11 had a large amount of Al, so the microstructure did not become finer.
4 of the 5 OD values were low. Further, in Steel 12, since the oxygen content was large, all five CTOD values were low values. Steel 13 had a poor Ti, N, O balance and f (Ti) did not fall within the regulation range, so that a low CTOD value occurred in 4 out of 5 steels. For steel 14, D 1
Since the * is low, the microstructure does not become fine, and Charpy, C
A low TOD value was generated. Furthermore, for steel 15, D
Since 1 * was too high, both Charpy and CTOD values were low. The steel of the present invention is most preferably applied to thick plates, but is also applicable to hot coils, shaped steel and the like.
【0033】[0033]
【発明の効果】本発明により製造した鋼は、溶接時に溶
融線近傍においてもHAZ組織が微細化し、HAZの全
域で優れた低温靭性を示す。これにより、極低温域(−
40℃以下)や低温タンク、ラインパイプなどの厳しい
環境で使用される鋼材の製造を可能とした。The steel produced according to the present invention has a fine HAZ structure even in the vicinity of the melting line during welding, and exhibits excellent low temperature toughness throughout the HAZ. As a result, the extremely low temperature range (-
(40 ° C or less), low temperature tanks, line pipes, and other steel products that can be used in harsh environments.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯田 征司 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Isoda 1 Kimitsu, Kimitsu City Nippon Steel Corporation Kimitsu Steel Works
Claims (2)
下、 Mn:0.8〜2.0%、 P :0.020%
以下、 S :0.005%以下、 Al:0.004%
以下、 Ti:0.004〜0.013%、N :0.0035
〜0.0070%、 O :0.0010〜0.0030% を含有し、 【数1】 が0.6〜1.0の範囲で、且つ−0.020%≦〔T
i〕−2〔O〕−3.4〔N〕≦−0.010を満足
し、 残部が鉄および不可避的不純物からなる実質的にAlを
添加しない鋼を連続鋳造法によってスラブとし、これを
1200℃以下の温度で再加熱後、厚板圧延を行なうこ
とを特徴とする溶接熱影響部の低温靭性が優れた鋼の製
造法。1. By weight%, C: 0.06-0.15%, Si: 0.4% or less, Mn: 0.8-2.0%, P: 0.020%
Below, S: 0.005% or less, Al: 0.004%
Hereinafter, Ti: 0.004 to 0.013%, N: 0.0035
.About.0.0070%, O.sub.2: 0.0010 to 0.0030%, and Is in the range of 0.6 to 1.0, and −0.020% ≦ [T
i) -2 [O] -3.4 [N] ≦ −0.010 is satisfied, and a balance of iron and unavoidable impurities, which is substantially free of Al, is formed into a slab by a continuous casting method. A method for producing steel having excellent low-temperature toughness in a weld heat-affected zone, which comprises reheating at a temperature of 1200 ° C. or lower and then performing plate rolling.
5〜0.030%、 Ni:0.05〜1.0%、 Cu :0.05
〜0.5%、 Ca:0.0005〜0.005%、REM:0.00
5〜0.05% の一種または二種以上を含有することを特徴とする請求
項1記載の溶接熱影響部の低温靭性が優れた鋼の製造
法。2. In% by weight, Nb: 0.005 to 0.020%, V: 0.00
5 to 0.030%, Ni: 0.05 to 1.0%, Cu: 0.05
~ 0.5%, Ca: 0.0005 to 0.005%, REM: 0.00
The method for producing a steel having excellent low temperature toughness in a weld heat affected zone according to claim 1, wherein the steel contains 5 to 0.05% of one kind or two or more kinds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4049917A JP2587564B2 (en) | 1992-03-06 | 1992-03-06 | Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4049917A JP2587564B2 (en) | 1992-03-06 | 1992-03-06 | Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05247531A true JPH05247531A (en) | 1993-09-24 |
JP2587564B2 JP2587564B2 (en) | 1997-03-05 |
Family
ID=12844365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4049917A Expired - Lifetime JP2587564B2 (en) | 1992-03-06 | 1992-03-06 | Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2587564B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6415321A (en) * | 1987-07-08 | 1989-01-19 | Nippon Steel Corp | Production of steel for electron beam welding having excellent low-temperature toughness |
JPH02125812A (en) * | 1988-07-14 | 1990-05-14 | Nippon Steel Corp | Manufacture of cu added steel having superior toughness of weld heat-affected zone |
JPH02175815A (en) * | 1988-09-28 | 1990-07-09 | Nippon Steel Corp | Manufacture of high tensile steel stock for welded construction excellent in toughness |
-
1992
- 1992-03-06 JP JP4049917A patent/JP2587564B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6415321A (en) * | 1987-07-08 | 1989-01-19 | Nippon Steel Corp | Production of steel for electron beam welding having excellent low-temperature toughness |
JPH02125812A (en) * | 1988-07-14 | 1990-05-14 | Nippon Steel Corp | Manufacture of cu added steel having superior toughness of weld heat-affected zone |
JPH02175815A (en) * | 1988-09-28 | 1990-07-09 | Nippon Steel Corp | Manufacture of high tensile steel stock for welded construction excellent in toughness |
Also Published As
Publication number | Publication date |
---|---|
JP2587564B2 (en) | 1997-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1533392A1 (en) | Steel product for high heat input welding and method for production thereof | |
JPH0860292A (en) | High tensile strength steel excellent in toughness in weld heat-affected zone | |
JP2653594B2 (en) | Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone | |
JPH03236419A (en) | Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance | |
JPH0541683B2 (en) | ||
JPH0527703B2 (en) | ||
JP2005213534A (en) | Method for producing steel material excellent in toughness at welding heat affected zone | |
JPH0757886B2 (en) | Process for producing Cu-added steel with excellent weld heat-affected zone toughness | |
JPH03162522A (en) | Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone | |
JP7410438B2 (en) | steel plate | |
JPS63210235A (en) | Manufacture of steel excellent in toughness at low temperature in welding heat affected zone | |
JPH09194990A (en) | High tensile strength steel excellent in toughness in weld heat-affected zone | |
JP2002371338A (en) | Steel superior in toughness at laser weld | |
JPH04371520A (en) | Production of thick 9% ni steel having excellent ctod characteristic of base material and weld heat-affected zone | |
JPH07278653A (en) | Production of steel excellent in cold toughness on welding heat affected zone | |
JPH11131177A (en) | Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production | |
JP3882701B2 (en) | Method for producing welded structural steel with excellent low temperature toughness | |
JPH06240406A (en) | Steel plate with high strength and high toughness | |
JPH0525580B2 (en) | ||
JP2587564B2 (en) | Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone | |
JP2652538B2 (en) | Method for producing high-strength steel with excellent weldability and low-temperature toughness | |
JP2653616B2 (en) | Manufacturing method of high strength steel for large heat input welding with excellent low temperature toughness | |
JP7323086B1 (en) | Steel plate and its manufacturing method | |
JP5659949B2 (en) | Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same | |
JPH0578740A (en) | Manufacture of steel excellent in low temperature toughness in weld heat affected zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 16 |