JPH0524609B2 - - Google Patents

Info

Publication number
JPH0524609B2
JPH0524609B2 JP59163312A JP16331284A JPH0524609B2 JP H0524609 B2 JPH0524609 B2 JP H0524609B2 JP 59163312 A JP59163312 A JP 59163312A JP 16331284 A JP16331284 A JP 16331284A JP H0524609 B2 JPH0524609 B2 JP H0524609B2
Authority
JP
Japan
Prior art keywords
electrode
focusing
voltage
electron beam
quadrupole lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59163312A
Other languages
Japanese (ja)
Other versions
JPS6142841A (en
Inventor
Shigeya Ashizaki
Koichi Sugawara
Hideo Muranishi
Masao Natsuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16331284A priority Critical patent/JPS6142841A/en
Priority to US06/760,247 priority patent/US4701677A/en
Publication of JPS6142841A publication Critical patent/JPS6142841A/en
Publication of JPH0524609B2 publication Critical patent/JPH0524609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/62Electrostatic lenses
    • H01J29/626Electrostatic lenses producing fields exhibiting periodic axial symmetry, e.g. multipolar fields
    • H01J29/628Electrostatic lenses producing fields exhibiting periodic axial symmetry, e.g. multipolar fields co-operating with or closely associated to an electron gun
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、インライン形式のカラー受像管と、
その駆動手段とからなるカラー受像管装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides an in-line type color picture tube;
The present invention relates to a color picture tube device comprising a drive means for the color picture tube device.

従来例の構成とその問題点 3つの電子ビーム放射部を水平一直線上に配列
してなるインライン形式のカラー受像管では、ビ
ーム偏向手段としての偏向ヨークにサドル型やト
ロイダル型のものを用いることによつて水平偏向
磁界分布をピンクツシヨン状に、そして垂直偏向
磁界分布をパレル状にそれぞれ歪ませている。こ
のようにすると、セルフコンバージエンス効果が
得られるので、コンバージエンス系の構成を大幅
に簡素化できる。
Conventional configuration and its problems In an in-line color picture tube in which three electron beam emitters are arranged horizontally in a straight line, a saddle-type or toroidal-type deflection yoke is used as the beam deflection means. Therefore, the horizontal deflection magnetic field distribution is distorted into a pink tension shape, and the vertical deflection magnetic field distribution is distorted into a parallel shape. In this way, a self-convergence effect can be obtained, so that the configuration of the convergence system can be significantly simplified.

しかしその反面、第1図に示すように螢光体ス
クリーン面1のとくに周辺部に現われる輝点すな
わちビームスポツト2が偏向歪によつて非円形に
歪み、螢光体スクリーン面1の周辺部における解
像度が低下する。なお、ビームスポツト2は横長
棒円状の高輝度コアー部3と、これに付随した低
輝度ヘイズ部4とからなる。
However, on the other hand, as shown in FIG. 1, the bright spots or beam spots 2 that appear particularly in the peripheral area of the phosphor screen surface 1 are distorted into a non-circular shape due to deflection distortion. Resolution decreases. The beam spot 2 consists of a high-brightness core part 3 in the shape of an oblong bar and a low-brightness haze part 4 attached thereto.

このような偏向歪による解像度の低下は、電子
銃の主レンズ内および偏向磁界内を通過する電子
ビームの径を小さくすることによつて軽減できる
が、そのために電子銃の陰極と主レンズとの間隔
を狭めたり、あるいはプリフオーカスレンズで単
にビームを強く絞る方法をとるとレンズ倍率が過
大となり、螢光体スクリーン面の中央部に現われ
るビームスポツトが径大化するという好ましくな
い結果を招く。
This reduction in resolution due to deflection distortion can be alleviated by reducing the diameter of the electron beam that passes through the main lens of the electron gun and the deflection magnetic field, but to do so, the distance between the cathode of the electron gun and the main lens can be reduced. If the distance is narrowed or the beam is simply narrowed down strongly using a prefocus lens, the lens magnification will become excessive, leading to an undesirable result in which the beam spot appearing in the center of the phosphor screen becomes larger in diameter.

第2図に示すように、ビームスポツトの水平方
向径を考慮した場合の最適フオーカス電圧は、螢
光体スクリーン面上のどの位置でも不変であるの
に対し、ビームスポツトの垂直方向径を考慮した
場合の最適フオーカス電圧は、螢光体スクリーン
面の周辺部(とくにE、NE方面での)へ行くに
従つて高くなる。したがつて、ビームスポツトの
水平方向径のみを考慮した最適フオーカス電圧
(第2図では6KV)で駆動させると、螢光体スク
リーン面の周辺部に現われるビームスポツトが垂
直方向でオーバフオーカスとなり、前述のような
垂直方向ヘイズを生じる。
As shown in Figure 2, the optimal focus voltage when considering the horizontal diameter of the beam spot remains unchanged at any position on the phosphor screen surface, whereas the optimal focus voltage when considering the vertical diameter of the beam spot The optimum focus voltage in this case becomes higher toward the periphery of the phosphor screen surface (especially in the E and NE directions). Therefore, if the beam spot is driven at the optimum focus voltage (6KV in Figure 2) that takes into account only the horizontal diameter of the beam spot, the beam spot that appears at the periphery of the phosphor screen becomes overfocused in the vertical direction. This results in vertical haze as described above.

そこで第3図に示すように、螢光体クスリーン
面の中央部における垂直方向フオーカス電圧を水
平方向最適フオーカス電圧よりも低くすると、螢
光体スクリーン面の中央部における解像度は若干
低下するものの、周辺部における解像度を高める
ことができる。
Therefore, as shown in Figure 3, if the vertical focus voltage at the center of the phosphor screen is lower than the horizontal optimum focus voltage, the resolution at the center of the phosphor screen will decrease slightly, but It is possible to increase the resolution in the area.

発明の目的 本発明の目的とするところは、前述のような妥
協的方法をとることなく、つまり、螢光体スクリ
ーン面の中央部における解像度を犠牲にすること
なく、螢光体スクリーン面の全域で高い解像度が
得られるカラー受像管装置を提供することにあ
る。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an image of the entire area of the phosphor screen surface without resorting to the above-mentioned compromises, i.e. without sacrificing the resolution in the central part of the phosphor screen surface. An object of the present invention is to provide a color picture tube device that can obtain high resolution.

発明の構成 本発明のカラー受像管装置によると、垂直方向
に長い3個の電子ビーム通過孔を水平方向に並設
してなる板状の4極レンズ生成用第1電極と、水
平方向に長い3個の電子ビーム通過孔を水平方向
に並設してなる板状の4極レンズ生成用第2電極
とを、Vfocなる一定の集束電圧が印加される複
数の集束電極間に配列し、前記複数のうちの終段
に位置する集束電極に隣接した最終加速電極に一
定の高電圧Vaを印加するともに、前記第1およ
び第2電極の少なくとも一方に印加される電圧
を、電子ビームの偏向角度の変化に伴い変化させ
るのであり、これを以下図面に示した実施例とと
もに詳しく説明する。
Structure of the Invention According to the color picture tube device of the present invention, a first electrode for generating a quadrupole lens in the form of a plate having three vertically long electron beam passing holes arranged in parallel in the horizontal direction; A plate-shaped quadrupole lens generating second electrode formed by horizontally arranging three electron beam passing holes is arranged between a plurality of focusing electrodes to which a constant focusing voltage Vfoc is applied. A constant high voltage Va is applied to the final accelerating electrode adjacent to the focusing electrode located at the final stage of the plurality of electrodes, and the voltage applied to at least one of the first and second electrodes is adjusted depending on the deflection angle of the electron beam. This will be explained in detail below with reference to embodiments shown in the drawings.

実施例の説明 第4図において、5は制御電極、6はVg2なる
加速電圧が印加される加速電極、7は第1集束電
極、8は4極レンズ電界生成用第1電極、9は第
2集束電極、10は4極レンズ電界生成用第2電
極、11は第3集束電極、12はVaなる高電圧
が印加させる最終加速電極を示す。ただし、第
1,第2および第3集束電極7,9,11は管内
において共通接続されており、これにVfocなる
集束電圧が印加される。4極レンズ電界生成用第
1電極8は、第5図のaに平面形状を示すように
水平方向に並設された3個の垂直方向に長い電気
ビーム通過孔13,14,15を有する板状のも
ので、これにV1なる数百ボルトの電圧が印加さ
れる。また、4極レンズ電界生成用第2電極10
は、第5図のbに平面形状を示すように水平方向
に並設された3個の水平方向に長い電子ビーム通
過孔16,17,18を有する板状のもので、こ
れにV2なる数百ボルトの電圧が印加される。
Description of Examples In FIG. 4, 5 is a control electrode, 6 is an acceleration electrode to which an acceleration voltage of V g2 is applied, 7 is a first focusing electrode, 8 is a first electrode for generating a quadrupole lens electric field, and 9 is a first electrode. 2 focusing electrodes, 10 a second electrode for generating a quadrupole lens electric field, 11 a third focusing electrode, and 12 a final accelerating electrode to which a high voltage V a is applied. However, the first, second, and third focusing electrodes 7, 9, and 11 are commonly connected within the tube, and a focusing voltage Vfoc is applied thereto. The quadrupole lens electric field generation first electrode 8 is a plate having three vertically long electric beam passing holes 13, 14, and 15 arranged horizontally in parallel, as shown in the plan view shown in FIG. 5a. A voltage of several hundred volts called V1 is applied to this. In addition, a second electrode 10 for generating a quadrupole lens electric field
is a plate-shaped one having three horizontally long electron beam passing holes 16, 17, and 18 arranged in parallel in the horizontal direction as shown in the plan view in FIG . A voltage of several hundred volts is applied.

V1、V2がもとにVfocよりも低い一定電圧に保
持されるとき、4極レンズ電界生成用第1電極8
の3個の電子ビーム通過孔13,14,15付近
に、3つの前段の4段レンズ電界が生成され、4
極レンズ電界生成用第2電極10の3個の電子ビ
ーム通過孔16,17,18付近に、3つの後段
の4極レンズ電界が生成される。4極レンズ電界
はいずれも第6図に示すようなもので、前段の4
極レンズ電界を通過した電子ビームはその断面形
状に関して水平方向で集束作用を受け、垂直方向
では発散作用を受ける。また、後段の4極レンズ
電界を通過した電子ビームは、その断面形状に関
して水平方向で発散作用を受け、垂直方向では集
束作用を受ける。したがつて、前段および後段の
4極レンズ電界を通過した電子ビームが両レンズ
電界から受けたレンズ作用は完全に相殺されるこ
とになり、通常の軸対称多段レンズ電界を通過し
たのと結果的に等価となる。そして、かかる相殺
作用が働く条件は、V1、V2をともに高めてVfoc
に近づけていく過程においても変化しない。た
だ、前段および後段の4極レンズ電界がともに弱
くなるので、螢光体スクリーン面に到達する電子
ビームは、その断面形状に関して水平および垂直
方向でアンダーフオーカスの状態になる。そし
て、このようなアンダーフオーカスの状態から
V1のみを下げていくと、前段の4極レンズ電界
だけが強くなり、螢光体スクリーン面に到達した
電子ビームはその断面形状に関して水平方向で集
束作用を、そして垂直方向では発散作用をそれぞ
れ受けたものとなり、水平方向で最適フオーカス
状態となる。また、垂直方向ではアンダーフオー
カスの度合いが増す。
When V 1 and V 2 are maintained at a constant voltage lower than Vfoc, the quadrupole lens electric field generation first electrode 8
Three front-stage four-stage lens electric fields are generated near the three electron beam passing holes 13, 14, and 15, and
Three subsequent quadrupole lens electric fields are generated near the three electron beam passage holes 16, 17, and 18 of the second pole lens electric field generation electrode 10. The four-pole lens electric field is as shown in Figure 6, and the four poles in the previous stage are
The electron beam that has passed through the polar lens electric field is subjected to a focusing effect in the horizontal direction with respect to its cross-sectional shape, and a diverging effect in the vertical direction. Furthermore, the electron beam that has passed through the electric field of the quadrupole lens in the latter stage is subjected to a diverging effect in the horizontal direction with respect to its cross-sectional shape, and is subjected to a converging effect in the vertical direction. Therefore, the lens effects received by the electron beam from both lens electric fields after passing through the front and rear quadrupole lens electric fields are completely canceled out, resulting in an electron beam that passes through a normal axisymmetric multi-stage lens electric field. is equivalent to The conditions for such a countervailing effect are to increase both V 1 and V 2 and reduce Vfoc.
It does not change even in the process of approaching . However, since the electric fields of both the front and rear quadrupole lenses become weak, the electron beam reaching the phosphor screen surface is underfocused in the horizontal and vertical directions with respect to its cross-sectional shape. And from this state of underfocus
When V 1 is lowered, only the electric field of the quadrupole lens in the front stage becomes stronger, and the electron beam that reaches the phosphor screen has a focusing effect in the horizontal direction and a diverging effect in the vertical direction with respect to its cross-sectional shape. This results in optimal focus in the horizontal direction. Furthermore, the degree of underfocus increases in the vertical direction.

一方、インライン形式カラー受像管用偏向ヨー
クを装着したカラー受像管装置では、前述のよう
に電子ビームはその断面形状に関し、ビーム偏向
角度の増大に伴い垂直方向で集束の度合いを増す
ので、電子ビームの偏向角度が増加するのに伴
い、V1のみをV2と同様の数百ボルトから徐々に
下げていくなら、螢光体スクリーン面に到達する
電子ビームの断面形状を、水平および垂直の両方
向において最適フオーカス状態となすことができ
るのであり、螢光体スクリーン面の全域において
径小にしてかつ真円に近いビームスポツトを得る
ことが可能となる。
On the other hand, in a color picture tube device equipped with an in-line type color picture tube deflection yoke, the degree of convergence of the electron beam in the vertical direction increases as the beam deflection angle increases due to the cross-sectional shape of the electron beam, as described above. If, as the deflection angle increases, only V 1 is gradually lowered from a few hundred volts similar to V 2 , the cross-sectional shape of the electron beam reaching the phosphor screen surface can be changed both horizontally and vertically. This allows an optimum focus state to be achieved, and it is possible to obtain a beam spot with a small diameter and close to a perfect circle over the entire area of the phosphor screen surface.

また、後段の4極レンズ電界の生成に寄与する
第2電極10の形状および設置位置等を適当に選
ぶことによつては、V1を低い電圧に保持してお
き、ビーム偏向角度の増大に伴つてV2を低い電
圧から徐々に高めていくことによつても、あるい
はV1およびV2を相対的に変化させることによつ
ても、前述と同様の効果を得ることができる。
In addition, by appropriately selecting the shape and installation position of the second electrode 10 that contributes to the generation of the quadrupole lens electric field in the latter stage, it is possible to maintain V 1 at a low voltage and increase the beam deflection angle. Accordingly, the same effect as described above can be obtained by gradually increasing V 2 from a low voltage or by relatively changing V 1 and V 2 .

第7図に本発明の他の実施例を示す。ここで
は、4極レンズ電界生成用の第1および第2電極
8,10を、第1集束電極7と第2集束電極9と
の間に比べて配列しており、V1、V2の各値は前
述と同様に変化される。
FIG. 7 shows another embodiment of the present invention. Here, the first and second electrodes 8 and 10 for generating a quadrupole lens electric field are arranged between the first focusing electrode 7 and the second focusing electrode 9, and each of V 1 and V 2 is The values are changed in the same way as before.

発明の効果 本発明は前述のように構成されるので、第1お
よび第2電極を数百ボルト以下という比較的低い
電圧に保ちながら、また、主レンズに影響を与え
ることなく、螢光体スクリーン面の全域に径小に
してかつ真円に近いビームスポツトを生成せしめ
得るのであり、とくに高精細度再生画面が要求さ
れる装置に適用してすぐれた効果を得ることがで
きる。
Effects of the Invention Since the present invention is configured as described above, it is possible to maintain the first and second electrodes at a relatively low voltage of several hundred volts or less, and to maintain the phosphor screen without affecting the main lens. It is possible to generate a beam spot with a small diameter and close to a perfect circle over the entire area of the surface, and particularly when applied to an apparatus that requires a high-definition reproduction screen, excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインライン形式カラー受像管のビーム
スポツトの形状歪みを説明するための図、第2図
は同形状歪みの位置と最適フオーカス電圧との関
係を示す特性図、第3図は垂直方向フオーカス電
圧をその最適値よりも下げて偏向歪みを軽減させ
る場合のフオーカス電圧特性図、第4図は本発明
を実施したカラー受像管装置の電子銃の側面図、
第5図のa,bは同電子銃の4極レンズ電界生成
用第1および第2電極の平面図、第6図は4極レ
ンズ電界を示す図、第7図は本発明の他の実施例
の電子銃の側面図である。 7……第1集束電極、8……4極レンズ電界生
成用第1電極、9……第2集束電極、10……4
極レンズ電界生成用第2電極、11……第3集束
電極。
Figure 1 is a diagram to explain the shape distortion of the beam spot of an in-line color picture tube, Figure 2 is a characteristic diagram showing the relationship between the position of the shape distortion and the optimum focus voltage, and Figure 3 is a diagram for vertical focus. A focus voltage characteristic diagram when deflection distortion is reduced by lowering the voltage below its optimum value. FIG. 4 is a side view of an electron gun of a color picture tube device implementing the present invention.
FIGS. 5a and 5b are plan views of the first and second electrodes for generating the quadrupole lens electric field of the electron gun, FIG. 6 is a diagram showing the quadrupole lens electric field, and FIG. 7 is another embodiment of the present invention. FIG. 2 is a side view of an example electron gun. 7...First focusing electrode, 8...First electrode for generating a quadrupole lens electric field, 9... Second focusing electrode, 10...4
A second electrode for generating a polar lens electric field, 11... a third focusing electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 垂直方向に長い3個の電子ビーム通過孔を水
平方向に並設してなる板状の4極レンズ生成用第
1電極と、水平方向に長い3個の電子ビーム通過
孔を水平方向に並設してなる板状の4極レンズ生
成用第2電極とを、Vfocなる一定の集束電圧が
印加される複数の集束電極間に配列し、前記複数
のうちの終段に位置する集束電極に隣接した最終
加速電極に一定の高電圧Vaを印加するとともに、
前記第1および第2電極の少なくとも一方に印加
される電圧を、電子ビームの偏向角度の変化に伴
い変化させることを特徴とするカラー受像管装
置。
1 A first electrode for generating a quadrupole lens in the form of a plate with three vertically long electron beam passing holes arranged in parallel in the horizontal direction; A plate-shaped quadrupole lens generating second electrode is arranged between a plurality of focusing electrodes to which a constant focusing voltage Vfoc is applied, and a focusing electrode located at the final stage of the plurality of focusing electrodes is While applying a constant high voltage Va to the adjacent final accelerating electrode,
A color picture tube device characterized in that a voltage applied to at least one of the first and second electrodes is changed in accordance with a change in a deflection angle of an electron beam.
JP16331284A 1984-07-30 1984-08-02 Color picture tube Granted JPS6142841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16331284A JPS6142841A (en) 1984-08-02 1984-08-02 Color picture tube
US06/760,247 US4701677A (en) 1984-07-30 1985-07-29 Color cathode ray tube apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16331284A JPS6142841A (en) 1984-08-02 1984-08-02 Color picture tube

Publications (2)

Publication Number Publication Date
JPS6142841A JPS6142841A (en) 1986-03-01
JPH0524609B2 true JPH0524609B2 (en) 1993-04-08

Family

ID=15771437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16331284A Granted JPS6142841A (en) 1984-07-30 1984-08-02 Color picture tube

Country Status (1)

Country Link
JP (1) JPS6142841A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581680B2 (en) * 1986-10-22 1997-02-12 株式会社日立製作所 Electron gun for color CRT
JP2569027B2 (en) * 1986-12-05 1997-01-08 株式会社日立製作所 Electron gun for color picture tube
JPS63181245A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Electron gun for cathode-ray tube
JPS63241842A (en) * 1987-03-30 1988-10-07 Toshiba Corp Color cathode-ray tube
JP2825264B2 (en) * 1989-04-05 1998-11-18 株式会社東芝 Color picture tube equipment
JPH0545881U (en) * 1991-09-27 1993-06-18 三星電管株式會社 Electron gun for cathode ray tube
KR950006601B1 (en) * 1992-08-12 1995-06-19 삼성전관주식회사 Dynamic focusing electron gun
KR20000009401A (en) * 1998-07-24 2000-02-15 김영남 Dynamic quadruple electrode structure of electron gun for color cathode-ray tube
KR100459220B1 (en) * 2002-02-28 2004-12-03 엘지.필립스디스플레이(주) Elctric Gun for Color CRT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360145A (en) * 1989-07-28 1991-03-15 Fujitsu Ltd Structure of package

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360145A (en) * 1989-07-28 1991-03-15 Fujitsu Ltd Structure of package

Also Published As

Publication number Publication date
JPS6142841A (en) 1986-03-01

Similar Documents

Publication Publication Date Title
JPH07147146A (en) Picture tube device
US5300854A (en) Electrode structure for an electron gun for a cathode ray tube
JPH0524609B2 (en)
JP2862993B2 (en) Electron gun for color cathode ray tube
JPS63241842A (en) Color cathode-ray tube
JPH05151911A (en) Display device and cathode-ray tube
US5523648A (en) Electron gun with dynamic focus
JPH0131259B2 (en)
JPH0560211B2 (en)
KR910009635B1 (en) Dynamic focus electron gun
KR100381320B1 (en) Display device and cathode ray tube
CN1261965C (en) Electron gun for cathod-ray tube
JPH09199049A (en) Electron gun
US7122977B2 (en) Cathode-ray tube apparatus
JPH0360145B2 (en)
JP2804051B2 (en) Color picture tube equipment
JP2004516635A5 (en)
US7030548B2 (en) Cathode-ray tube apparatus
JP2878731B2 (en) Color picture tube equipment
JP2004516635A (en) Display device and cathode ray tube
JP3074179B2 (en) Cathode ray tube
JPS58818B2 (en) color picture tube
JPS60140637A (en) Electron gun for color picture tube
JPH07147145A (en) Electron gun for cathode-ray tube
JP2004515048A (en) Display device and cathode ray tube

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term