JPH0524459B2 - - Google Patents
Info
- Publication number
- JPH0524459B2 JPH0524459B2 JP59087362A JP8736284A JPH0524459B2 JP H0524459 B2 JPH0524459 B2 JP H0524459B2 JP 59087362 A JP59087362 A JP 59087362A JP 8736284 A JP8736284 A JP 8736284A JP H0524459 B2 JPH0524459 B2 JP H0524459B2
- Authority
- JP
- Japan
- Prior art keywords
- column
- mass spectrometer
- valve
- sample
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000523 sample Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
- G01N30/7206—Mass spectrometers interfaced to gas chromatograph
- G01N30/7213—Mass spectrometers interfaced to gas chromatograph splitting of the gaseous effluent
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Description
【発明の詳細な説明】
イ 産業上の利用分野
本発明はガスクロマトグラフ質量分析計に関
し、特にガスクロマトグラフ質量分析計の試料導
入系の構成に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a gas chromatograph mass spectrometer, and particularly to the configuration of a sample introduction system of a gas chromatograph mass spectrometer.
ロ 従来の技術
ガスクロマトグラフ質量分析計ではクロマトグ
ラフと質量分析計との間に分子セパレータを挿入
してガスクロマトグラフの流出ガスからキヤリヤ
ガスを除去し、試料成分を濃縮して質量分析計に
導入するようになつている。分子セパレータとし
てはジエツト型分子セパレータが用いられるが、
最適ガス流量があり、ガスクロマトグラフでパツ
クドカラムを用いた場合には能率良く作動するも
のゝキヤピラリカラムを用いた場合にはキヤリヤ
ガスの流量が少いため能率良く作動できない。ま
たキヤピラリカラムの場合、キヤリヤガスが少い
ので、特に濃縮プロセスを設けなくてもよいと云
う考え方もあつて、従来から、キヤピラリカラム
を用いる場合にはジエツト形分子セパレータを通
さずにカラム流出ガスを直接質量分析計に導入す
ることが行われていた。B. Conventional technology In a gas chromatograph mass spectrometer, a molecular separator is inserted between the chromatograph and the mass spectrometer to remove a carrier gas from the outflow gas of the gas chromatograph, concentrate sample components, and introduce them into the mass spectrometer. It's getting old. A jet type molecular separator is used as a molecular separator.
There is an optimum gas flow rate, and when a packed column is used in a gas chromatograph, it operates efficiently; however, when a capillary column is used, it cannot operate efficiently because the flow rate of the carrier gas is small. In addition, in the case of a capillary column, there is a concept that there is no need for a special concentration process because the carrier gas is small. It was being introduced into an analyzer.
所でジエツト型分子セパレータは管系の形から
見るとT字管であつて、ガスクロマトグラフと質
量分析計を接続する管の途中から側管を引出して
排気ポンプに接続したものであり、ガスクロマト
グラフから流出したガスの大部分をこの側管によ
つて吸引し、一部だけを質量分析計に導入してい
るものであり、分子セパレータに弁機構を付加す
ることにより、このクロマトグラフ流出ガスを側
路に引出す機能を利用してクロマトグラフから流
出する溶媒(試料を溶解させるための溶媒)を側
路に引出し、質量分析計に流入しないようにする
ことが行われている。溶媒は試料成分よりも量的
に大量であり、これが質量分析計に流入すると、
質量分析計のイオン源のフイラメントやヒータの
劣化を速め、質量分析計の内面を汚染する等好ま
しくないことが多いので、クロマトグラフから流
出した溶媒が質量分析計に流入しないようにする
のである。この種の技術はソルベントカツトと呼
ばれるが、キヤピラリカラムを質量分析計に直結
した場合は、このソルベントカツトができない。 By the way, a jet-type molecular separator is a T-shaped tube when viewed from the tubular shape, and a side tube is pulled out from the middle of the tube that connects the gas chromatograph and the mass spectrometer and is connected to the exhaust pump. Most of the gas flowing out from the chromatograph is sucked in through this side pipe, and only a portion is introduced into the mass spectrometer.By adding a valve mechanism to the molecular separator, this gas flowing out from the chromatograph can be absorbed. The function of drawing out to the side channel is used to draw out the solvent (solvent for dissolving the sample) flowing out of the chromatograph into the side channel so that it does not flow into the mass spectrometer. The solvent is quantitatively larger than the sample components, and when it enters the mass spectrometer,
Solvents that flow out of the chromatograph are prevented from flowing into the mass spectrometer because this often causes undesirable effects such as accelerating the deterioration of the filament and heater of the ion source of the mass spectrometer and contaminating the internal surface of the mass spectrometer. This type of technique is called solvent cutting, but this solvent cutting is not possible if the capillary column is directly connected to a mass spectrometer.
キヤピラリカラムを用いた場合でもジエツト型
分子セパレータを通して試料成分を質量分析計に
導入する方法も実施されている。この方法はカラ
ム流出ガスにジエツト型分子セパレータに対する
適当流量になる迄キヤリヤガスを追加して分子セ
パレータを通すものであつて、もともと、パツク
ドカラムを用いた場合のジエツト型分子セパレー
タの試料成分収率が30%程度と推定されているの
で、それよりも試料成分濃度が薄められている今
の場合、試料成分の収率はもつと低くなつてしま
い、試料の損失が大きい。 Even when a capillary column is used, a method has been implemented in which sample components are introduced into a mass spectrometer through a jet-type molecular separator. In this method, a carrier gas is added to the column effluent gas until it reaches an appropriate flow rate for the jet-type molecular separator, and the gas is passed through the molecular separator. Originally, when using a packed column, the sample component yield of the jet-type molecular separator was 30%. %, so in the current case where the sample component concentration is diluted more than that, the yield of the sample component will be lower and the loss of the sample will be large.
ハ 目的
本発明はクロマトグラフにキヤピラリカラムを
適用し、質量分析計と直結する場合において、ソ
ルベントカツトを可能にすることを主たる目的と
する。C. Purpose The main object of the present invention is to enable solvent cutting when a capillary column is applied to a chromatograph and directly connected to a mass spectrometer.
ニ 構成
前段キヤピラリカラムと流路抵抗とをT字管で
接続し、流路抵抗を質量分析計のイオン源に直結
し、上記T字管の枝管を排気系に接続した構成を
特徴とする。上記した流路抵抗は単なる抵抗管で
もよく、或はそれ自身キヤピラリカラムであつて
もよい。T字管の枝管はニードル弁のような抵抗
可変の調節弁を介して排気系に接続し、この調節
弁にバイパスを設け、このバイパス内に開閉弁を
挿入し、溶媒流出時この開閉弁を開いて溶媒を急
速吸引する。D. Configuration The first stage capillary column and the flow path resistance are connected by a T-shaped tube, the flow path resistance is directly connected to the ion source of the mass spectrometer, and a branch pipe of the T-shaped tube is connected to the exhaust system. The flow path resistance described above may be a simple resistance tube, or may itself be a capillary column. The branch pipe of the T-tube is connected to the exhaust system through a variable resistance control valve such as a needle valve, a bypass is provided to this control valve, and an on-off valve is inserted into this bypass, and when the solvent flows out, this on-off valve is closed. Open and rapidly aspirate the solvent.
ホ 実施例
第1図は本発明の一実施例を示す。1は前段カ
ラム、2は後段カラムで何れもキヤピラリカラム
であり、両者はT字管3によつて直列に接続さ
れ、前段カラム1には試料導入室4が接続され、
後段カラムは質量分析計5におけるイオン源6に
直結されている。この実施例では質量分析計5は
四重極型のものを用いており、7が四重極の電極
棒、8はイオン検出器である。T字管3の枝管は
電磁弁9を介して排気ポンプ10に接続されてい
る。この電磁弁はキヤピラリカラム1から溶媒が
流出している間開かれており、溶媒は排気ポンプ
10によつて吸引除去される。電磁弁9が閉じる
と、T字管3及び枝管がデツドスペースになるの
で、電磁弁9と並列に可変ニードル弁11を設
け、T字管3を常時排気している。E. Embodiment FIG. 1 shows an embodiment of the present invention. 1 is a front column, and 2 is a rear column, both of which are capillary columns, and both are connected in series by a T-tube 3, and a sample introduction chamber 4 is connected to the front column 1.
The latter column is directly connected to the ion source 6 in the mass spectrometer 5. In this embodiment, the mass spectrometer 5 is a quadrupole type, and 7 is a quadrupole electrode rod and 8 is an ion detector. A branch pipe of the T-shaped pipe 3 is connected to an exhaust pump 10 via a solenoid valve 9. This solenoid valve is open while the solvent is flowing out from the capillary column 1, and the solvent is removed by suction by the exhaust pump 10. When the solenoid valve 9 is closed, the T-shaped pipe 3 and the branch pipe become a dead space, so a variable needle valve 11 is provided in parallel with the solenoid valve 9 to constantly exhaust the T-shaped pipe 3.
第2図はT字管3の拡大図である。前段カラム
1、後段カラム2は夫々T字管に挿入されてい
る。 FIG. 2 is an enlarged view of the T-tube 3. The front column 1 and the rear column 2 are each inserted into a T-shaped tube.
第1図に戻つて、14はカラム1,2及び試料
導入室等を収納している加熱槽であり、試料導入
室4にはキヤリヤガス溜12からキヤリヤガスの
Heが圧力調整弁13を通して供給されている。
この実施例では前段カラム1に通常のキヤピラリ
カラムより稍太いカラム(通常内径0.25mm以下に
対し、0.3mm以上)を用い、マイクロシリンジの
針をキヤピラリカラムに挿入して試料溶液をカラ
ム内に直接注入して気化させるカラムインジエク
シヨン法によつて試料導入を行なつている。前段
カラム1のキヤリヤガス流量は約2ml/分であ
り、これに対して後段カラム2のガス流量は約1
ml/分で、約半分の1ml/分はT字管3において
ニードル弁11を通して吸引除去されている。T
字管3は試料成分濃縮の機能はないから、この実
施例の場合、試料成分の半分は損失となつている
が、キヤリヤガスを追加してジエツト型分子セパ
レータで試料成分を濃縮するよりは試料収率が良
い。 Returning to FIG. 1, 14 is a heating tank that houses the columns 1 and 2, the sample introduction chamber, etc., and the sample introduction chamber 4 is filled with carrier gas from the carrier gas reservoir 12.
He is supplied through a pressure regulating valve 13.
In this example, a column that is slightly thicker than a normal capillary column (inner diameter of 0.3 mm or more, compared to the usual 0.25 mm or less) is used as the first column 1, and the sample solution is directly injected into the column by inserting the needle of a microsyringe into the capillary column. The sample is introduced using the column injection method, which vaporizes the sample. The carrier gas flow rate in front column 1 is approximately 2 ml/min, whereas the gas flow rate in rear column 2 is approximately 1 ml/min.
ml/min, approximately half of which, 1 ml/min, is removed by suction in the T-tube 3 through the needle valve 11. T
Since the double tube 3 does not have the function of concentrating sample components, in this example, half of the sample components are lost, but the sample concentration is better than adding a carrier gas and concentrating the sample components with a jet-type molecular separator. Good rate.
へ 効果
本発明によるときは、前段カラムと後段カラム
との間にT字管を設けて枝管を排気系に接続する
ので、溶媒の質量分析計への流入をカツトするに
は枝管の電磁弁を開くだけでよい。このとき後段
カラムの抵抗のため、前段カラム流出ガスは後段
カラムに流入することなく枝管により排出され
る。これは電磁弁を開いたときは後段カラムの前
後圧力は共に0気圧になつて略等しいから後段カ
ラム内のガス流が停止するからである。後段カラ
ムなしにソルベントカツトを行おうとすると、カ
ラムと質量分析計をつなぐ管路内に開閉弁を設
け、開閉弁の前側に枝管を設けて、開閉弁を閉じ
枝管から排気するようにせねばならず、開閉弁の
溶媒による汚染、開閉弁を設けることにより生ず
るデツトスペースの問題等技術的困難が多くなる
ので、前段カラムと後段カラムとの間にT字管を
設けることの意味は大きい。Effects According to the present invention, a T-shaped pipe is provided between the front column and the rear column and the branch pipe is connected to the exhaust system. Just open the valve. At this time, due to the resistance of the latter column, the gas flowing out of the former column is discharged through the branch pipe without flowing into the latter column. This is because when the electromagnetic valve is opened, the pressures before and after the rear column are both 0 atmospheres and are substantially equal, so the gas flow in the rear column is stopped. If you try to perform a solvent cut without a post-column, you will need to install an on-off valve in the pipe connecting the column and the mass spectrometer, install a branch pipe in front of the on-off valve, and close the on-off valve to exhaust the air from the branch pipe. Otherwise, there will be many technical difficulties such as contamination of the on-off valve by the solvent and problems with dead space caused by providing the on-off valve, so it is significant to provide a T-shaped pipe between the front column and the back column.
更に本発明によるときは、後段カラムの抵抗に
より、T字管3から前段カラムを外しても質量分
析計内の高真空が維持できるので、質量分析計内
の高真空を保つたまゝで前段カラム1を交換する
ことができる。 Furthermore, according to the present invention, the high vacuum inside the mass spectrometer can be maintained even if the front column is removed from the T-tube 3 due to the resistance of the rear column. 1 can be exchanged.
更にまた枝管を通してガスの排除ができるの
で、前段カラムに試料導入量が多くガス流量の大
きなカラムを用いても、質量分析計への試料導入
量を適量に調節可能であり、従つて前段カラムに
は通常のキヤピラリカラムだけでなく、より太い
カラム、マイクロパツクドカラム等を用いること
ができ、カラム選択の自由度が大である。 Furthermore, since gas can be removed through the branch pipe, even if a column with a large gas flow rate and a large amount of sample introduced into the front column is used, the amount of sample introduced into the mass spectrometer can be adjusted to an appropriate amount. In addition to ordinary capillary columns, thicker columns, micropacked columns, etc. can be used for this purpose, giving a great degree of freedom in column selection.
第1図は本発明の一実施例の構成を示す管路
図、第2図は上記実施例におけるT字管の拡大断
面図である。
1……前段カラム、2……後段カラム、3……
T字管、4……試料導入室、5……質量分析計、
9……電磁弁、10……排気ポンプ、11……流
量調節用ニードル弁、12……キヤリヤガス溜、
14……加熱槽。
FIG. 1 is a pipe line diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a T-shaped pipe in the above embodiment. 1...First column, 2...Last column, 3...
T-tube, 4...sample introduction chamber, 5...mass spectrometer,
9... Solenoid valve, 10... Exhaust pump, 11... Needle valve for flow rate adjustment, 12... Carrier gas reservoir,
14... Heating tank.
Claims (1)
とをT字管を介して直列に接続し、流路抵抗を質
量分析計のイオン源に直接接続し、上記T字管の
枝管を開閉弁を介して排気系に接続し、上記開閉
弁と並列に流量調節弁を設けたことを特徴とする
ガスクロマトグラフ質量分析計。1 Connect the front column of the gas chromatograph and the flow resistance in series via a T-shaped tube, connect the flow resistance directly to the ion source of the mass spectrometer, and connect the branch pipes of the T-shaped tube through the on-off valve. A gas chromatograph mass spectrometer, characterized in that the gas chromatograph mass spectrometer is connected to an exhaust system and is provided with a flow control valve in parallel with the on-off valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59087362A JPS60231161A (en) | 1984-04-30 | 1984-04-30 | Gas chromatograph mass spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59087362A JPS60231161A (en) | 1984-04-30 | 1984-04-30 | Gas chromatograph mass spectrometer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60231161A JPS60231161A (en) | 1985-11-16 |
JPH0524459B2 true JPH0524459B2 (en) | 1993-04-07 |
Family
ID=13912777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59087362A Granted JPS60231161A (en) | 1984-04-30 | 1984-04-30 | Gas chromatograph mass spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60231161A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2555637Y2 (en) * | 1991-07-18 | 1997-11-26 | 株式会社堀場製作所 | Flame ionization analyzer |
US7211793B2 (en) | 2004-11-09 | 2007-05-01 | Cummins, Inc | Mass spectrometry system and method |
GB2540365B (en) * | 2015-07-14 | 2019-12-11 | Thermo Fisher Scient Bremen Gmbh | Control of gas flow |
JP7142374B2 (en) * | 2020-06-24 | 2022-09-27 | フロンティア・ラボ株式会社 | Gas phase component analyzer and gas phase component analysis method |
US12013381B2 (en) | 2020-06-24 | 2024-06-18 | Frontier Laboratories Ltd. | Gas phase component analysis device and gas phase component analysis method |
-
1984
- 1984-04-30 JP JP59087362A patent/JPS60231161A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60231161A (en) | 1985-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5547497A (en) | Apparatus for gas chromatography | |
US4160161A (en) | Liquid chromatograph/mass spectrometer interface | |
US4662914A (en) | Flow-limited direct GC/MS interface | |
US4124358A (en) | Sample-injection device for process gas chromatography with capillary columns | |
US5141534A (en) | Sample collection and inlet systems for gas chromatography apparatus | |
JPH0524459B2 (en) | ||
US5174149A (en) | Process and device for the vaporization injection of liquid samples in gas chromatographic analysis apparatuses | |
JP2950697B2 (en) | Direct connection method and apparatus for high performance liquid chromatograph / mass spectrometer | |
US3507147A (en) | Sample inlet method and apparatus for gas analyzers employing a storage column and gas separator | |
EP0338572A1 (en) | Liquid chromatograph-direct coupled mass spectrometer | |
US8297106B2 (en) | Gas chromatography system and method | |
US4418039A (en) | Solute transfer technique | |
JP3322325B2 (en) | Sample concentrator for analysis | |
JPH0119537B2 (en) | ||
JPS628526Y2 (en) | ||
WO2000019193A1 (en) | Split flow electrospray device for mass spectrometry | |
JPH0587794A (en) | Liquid chromatograph-mass spectroscope | |
JP4185728B2 (en) | Method and apparatus for analyzing trace impurities in gas | |
JP2008256714A (en) | Gas chromatograph | |
JP2550947B2 (en) | Gas chromatograph mass spectrometer | |
JPS5829560Y2 (en) | mass spectrometer | |
JPS5981556A (en) | Cutting off device of sample introduction between chromatograph and succeeding analyzing equipment | |
JPH0868786A (en) | Chromatograph | |
JPS60188844A (en) | Liquid chromatograph for dispensing | |
JPH0438285Y2 (en) |