JP7142374B2 - Gas phase component analyzer and gas phase component analysis method - Google Patents
Gas phase component analyzer and gas phase component analysis method Download PDFInfo
- Publication number
- JP7142374B2 JP7142374B2 JP2020215423A JP2020215423A JP7142374B2 JP 7142374 B2 JP7142374 B2 JP 7142374B2 JP 2020215423 A JP2020215423 A JP 2020215423A JP 2020215423 A JP2020215423 A JP 2020215423A JP 7142374 B2 JP7142374 B2 JP 7142374B2
- Authority
- JP
- Japan
- Prior art keywords
- gas phase
- column
- phase component
- sample
- pyrolysis furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
本発明は、気相成分分析装置及び気相成分分析方法に関する。 The present invention relates to a gas phase component analysis device and a gas phase component analysis method.
従来、気相成分を分析する方法として、ガスクロマトグラフィーが知られている。前記ガスクロマトグラフィーに用いる気相成分分析装置(ガスクロマトグラフ)として、例えば、試料を加熱して気相成分混合物を生成する加熱手段と、該加熱手段に接続されて該加熱手段で生成した該気相成分混合物を個々の成分に分離する分離カラムと、該分離カラムを収容する恒温槽(オーブン)と、該分離カラムに接続されて該分離カラムで分離された成分を検出する検出器とを備えるものが知られている。 Gas chromatography is conventionally known as a method for analyzing gas phase components. As a gas phase component analyzer (gas chromatograph) used for gas chromatography, for example, a heating means for heating a sample to generate a gas phase component mixture, and the gas generated by the heating means connected to the heating means. A separation column that separates a phase component mixture into individual components, a constant temperature bath (oven) that houses the separation column, and a detector that is connected to the separation column and detects the components separated by the separation column. things are known.
前記加熱手段では、試料を熱分解するか揮散させ、あるいは試料を加熱して該試料に含まれる成分を熱脱着させることにより前記気相成分混合物を生成させる。前記検出器には、質量分析検出器(MS)、水素炎イオン化検出装置(FID)、電子捕捉検出器(ECD)等が用いられる。 The heating means thermally decomposes or volatilizes the sample, or heats the sample to thermally desorb components contained in the sample to generate the gas phase component mixture. A mass spectrometry detector (MS), a flame ionization detector (FID), an electron capture detector (ECD), or the like is used as the detector.
前記気相成分分析装置では、試料濃度が0.01質量%未満の希薄試料を分析する場合には、前述のようにして生成した気相成分混合物の90質量%以上を前記分離カラムに導入して分析を行う。ところが、このようにすると、前記気相成分混合物がカルボン酸を含む場合に用いられるTMAH(tetramethylanmoniumhydoxide)等の未反応のメチル化剤により前記分離カラムが劣化したり、HMDS(hexamethyldisilazane)等のシリル化剤により前記検出器に用いる水素炎イオン化検出装置(FID)の感度が変化したりするという問題がある。また、前記気相成分分析装置では、高感度検出を目的として、前記分離カラムに通常の10~50倍の前記気相成分混合物を注入すると、質量分析検出器(MS)を検出器に用いる場合には、多量の溶媒が質量分析検出器(MS)に流入することにより、高真空が保持できなくなり動作不良となるという問題がある。 When analyzing a dilute sample having a sample concentration of less than 0.01% by mass in the gas phase component analyzer, 90% by mass or more of the gas phase component mixture produced as described above is introduced into the separation column. analysis. However, in this case, the separation column is deteriorated by unreacted methylating agent such as TMAH (tetramethylanmonium hydride) used when the gas phase component mixture contains carboxylic acid, or the separation column is deteriorated by silylation such as HMDS (hexamethyldisilazane). There is a problem that the sensitivity of a flame ionization detector (FID) used as the detector changes depending on the agent. In addition, in the gas phase component analysis device, when the gas phase component mixture is injected into the separation column in an amount 10 to 50 times the usual amount for the purpose of high-sensitivity detection, when a mass spectrometry detector (MS) is used as a detector has a problem that a large amount of solvent flows into the mass spectrometry detector (MS), which makes it impossible to maintain a high vacuum, resulting in malfunction.
前述のような問題を解決するために、前記加熱手段に、スプリットベントを備え、前記気相成分混合物の一部を選択的に該分離カラムに導入する一方、残部を外部に排出するようにした気相成分分析装置が知られている(例えば、特許文献1参照)。
In order to solve the above-mentioned problems, the heating means is provided with a split vent so that part of the gas phase component mixture is selectively introduced into the separation column while the rest is discharged to the outside. A gas-phase component analyzer is known (see
特許文献1記載の気相成分分析装置は、試料濃度が0.01質量%以上の試料を分析する場合に、前述のようにして生成した気相成分混合物の90~99%をスプリットベントから外部に放出し、該気相成分混合物の1~10%を前記分離カラムに導入して分析を行う。この結果、特許文献1記載の気相成分分析装置によれば、前記メチル化剤、シリル化剤、溶媒等の不要成分を外部に排出し、分析対象成分のみを前記分離カラムに導入することができる。
The gas phase component analyzer described in
しかしながら、特許文献1記載の気相成分分析装置では、前記分離カラムに導入される気相成分混合物の量が少なくなると、検出感度が低下するという不都合がある。
However, the gas-phase component analyzer described in
本発明は、かかる不都合を解消して、不要な非分析対象成分による分離カラムや検出器の劣化を防止することができ、しかも優れた検出感度を得ることができる気相成分分析装置及び気相成分分析方法を提供することを目的とする。 The present invention is a gas phase component analyzer and a gas phase component analyzer that can eliminate such inconveniences, prevent deterioration of the separation column and detector due to unnecessary non-analyte components, and can obtain excellent detection sensitivity. An object is to provide a component analysis method.
かかる目的を達成するために、本発明の気相成分分析装置は、
熱分解炉と、前記熱分解炉の周囲に配置されたヒータと、前記熱分解炉の先端が挿入されるGC注入口と、を備え、前記熱分解炉に投入された試料カップに収容された試料としての固体試料を前記ヒータにより加熱して気相成分混合物を生成させる加熱装置と、
一端が前記GC注入口に挿入されて前記熱分解炉の先端に対向し、前記加熱装置で生成した前記気相成分混合物が導入される第1のカラムと、
接続手段を介して前記第1のカラムに接続される分離カラムである第2のカラムと、
前記第1のカラムと前記第2のカラムと前記接続手段とを収容する恒温槽と、
前記第2のカラムを通過した気相成分を検出する検出手段と、を備える気相成分分析装置において、
前記接続手段に接続される吸引手段を備えることを特徴とする。
In order to achieve such an object, the gas phase component analyzer of the present invention
Equipped with a pyrolysis furnace, a heater arranged around the pyrolysis furnace, and a GC inlet into which the tip of the pyrolysis furnace is inserted, and housed in a sample cup put into the pyrolysis furnace a heating device for heating a solid sample as a sample with the heater to generate a gas phase component mixture;
a first column, one end of which is inserted into the GC injection port and faces the tip of the pyrolysis furnace, into which the gas phase component mixture produced by the heating device is introduced;
a second column, which is a separation column, connected to the first column via connecting means;
a constant temperature bath containing the first column, the second column, and the connection means;
A gas phase component analyzer comprising a detection means for detecting a gas phase component that has passed through the second column,
It is characterized by comprising suction means connected to the connection means.
また、本発明の気相成分分析方法は、前記気相成分分析装置を用いる気相成分分析方法であって、
前記加熱装置で前記ヒータにより前記試料としての固体試料を加熱して前記気相成分混合物を生成させる際に、前記吸引手段を作動させた後に前記試料カップに収容された前記試料を前記熱分解炉に投入し、前記試料を投入した時からさらに所定時間にわたり前記吸引手段を作動させ、前記吸引手段を介して非分析対象成分を外部に放出する一方、前記第1のカラムの温度を前記非分析対象成分の沸点より高く分析対象成分の沸点より低い温度として、前記分析対象成分を選択的に前記第1のカラムに捕捉させる工程と、
前記所定時間後に前記吸引手段を停止させ、前記恒温槽の温度を前記分析対象成分の沸点以上の温度に上昇させ、前記分析対象成分を前記第2のカラムに導入する工程と、を備えることを特徴とする。
Further, the gas phase component analysis method of the present invention is a gas phase component analysis method using the gas phase component analysis device,
When the solid sample as the sample is heated by the heater in the heating device to generate the gas phase component mixture, the sample contained in the sample cup is transferred to the pyrolysis furnace after the suction means is operated. , and the suction means is operated for a predetermined period of time from the time the sample is charged , and the non-analyte component is discharged outside through the suction means, while the temperature of the first column is reduced to the non-analytical a step of selectively trapping the analyte component in the first column at a temperature higher than the boiling point of the target component and lower than the boiling point of the analyte component;
A step of stopping the suction means after the predetermined time, raising the temperature of the constant temperature bath to a temperature equal to or higher than the boiling point of the component to be analyzed, and introducing the component to be analyzed into the second column. Characterized by
本発明の気相成分分析装置及び気相成分分析方法では、まず、前記加熱手段で前記試料を加熱して、該試料を熱分解するか揮散させ、あるいは該試料から気相成分を熱脱着させ、前記気相成分混合物を生成させる。このとき、前記吸引手段を作動させた後に前記加熱手段に前記試料を投入又は注入し、該試料を投入又は注入した時からさらに該吸引手段を所定時間作動させると、前記気相成分混合物が吸引され、該気相成分混合物の全量が前記第1のカラムに導入される。前記気相成分混合物は高沸点で低揮発性の分析対象成分と溶媒等の低沸点で高揮発性の非分析対象成分とを含んでいるが、前記第1のカラムは非分析対象成分の沸点より高く分析対象成分の沸点より低い温度とされているので、該非分析対象成分は該第1のカラムに捕捉されることなくさらに前記吸引手段の方向に吸引される一方、該分析対象成分は選択的に該第1のカラムに捕捉される。 In the gas phase component analysis apparatus and gas phase component analysis method of the present invention, first, the sample is heated by the heating means to thermally decompose or volatilize the sample, or thermally desorb the gas phase components from the sample. , to produce the gas phase component mixture. At this time, when the sample is charged or injected into the heating means after the suction means is operated, and the suction means is operated for a predetermined time after the sample is charged or injected, the gas phase component mixture is sucked. and the entire gas phase mixture is introduced into the first column. The gas phase component mixture contains a high boiling point, low volatility analyte component and a low boiling point, high volatility non-analyte component such as a solvent, wherein the first column has a boiling point of the non-analyte component Since the temperature is higher than the boiling point of the analyte component, the non-analyte component is sucked further toward the suction means without being captured by the first column, while the analyte component is selected. effectively trapped in the first column.
ここで、前記第1のカラムは前記接続手段を介して前記第2のカラムに接続されており、前記吸引手段も該接続手段に接続されている。しかし、該第2のカラムは流路抵抗として作用するので、前記非分析対象成分は前記第2のカラムに導入されることなく、前記吸引手段に吸引され、該吸引手段を介して外部に放出される。 Here, said first column is connected to said second column via said connection means, and said suction means is also connected to said connection means. However, since the second column acts as a flow path resistance, the non-analyte components are not introduced into the second column, but are sucked into the suction means and released to the outside through the suction means. be done.
前記非分析対象成分が外部に放出されたならば、次に、前記所定時間後に前記吸引手段を停止させ、前記恒温槽の温度を前記分析対象成分の沸点以上の温度に上昇させる。このようにすると、前記第1のカラムに捕捉されていた前記分析対象成分が気化し、前記接続手段の方向に移動する。このとき、前記吸引手段は停止されており、該接続手段の該吸引手段に接続する方向は閉鎖された状態となっているので、気化した前記分析対象成分は前記第2のカラムに導入される。前記第2のカラムは分離カラムであるので、該第2のカラムに導入された前記分析対象成分は個々の気相成分に分離され、該第2のカラムを通過した個々の気相成分が前記検出手段で検出される。 After the non-analyte component is released to the outside, the suction means is stopped after the predetermined time, and the temperature of the constant temperature bath is raised to a temperature equal to or higher than the boiling point of the analyte component. In this way, the analyte trapped in the first column is vaporized and moves towards the connecting means. At this time, since the suction means is stopped and the direction of connecting the connection means to the suction means is closed, the vaporized analyte component is introduced into the second column. . Since the second column is a separation column, the analyte components introduced into the second column are separated into individual gas phase components, and the individual gas phase components that have passed through the second column are separated into the Detected by the detection means.
上述のように、本発明の気相成分分析装置及び気相成分分析方法では、前記加熱手段で生成した前記気相成分混合物の全量が前記第1のカラムに導入されるが、溶媒等の非分析対象成分が外部に放出される一方、分析対象成分は該第1のカラムに捕捉され、濃縮された後、前記第2のカラムに導入される。従って、本発明の気相成分分析装置及び気相成分分析方法によれば、溶媒等の不要な非分析対象成分による分離カラムや検出器の劣化を防止することができ、しかも優れた検出感度を得ることができる。 As described above, in the gas phase component analysis apparatus and the gas phase component analysis method of the present invention, the entire amount of the gas phase component mixture generated by the heating means is introduced into the first column, but non-aqueous substances such as solvents are introduced into the first column. While the analyte component is released to the outside, the analyte component is trapped in the first column, concentrated, and then introduced into the second column. Therefore, according to the gas-phase component analyzer and the gas-phase component analysis method of the present invention, it is possible to prevent deterioration of the separation column and detector due to unnecessary non-analyte components such as solvents, and to achieve excellent detection sensitivity. Obtainable.
本発明の気相成分分析装置は、前記加熱装置で生成した前記気相成分混合物の一部を選択的に該第1の分離カラムに導入する一方、残部を外部に排出する選択的導入手段(バックフラッシュ装置等)を前記GC注入口に備えていてもよい。 The gas phase component analyzer of the present invention includes selective introduction means ( backflush device, etc.) may be provided at the GC inlet .
また、本発明の気相成分分析方法において、前記試料の前記熱分解炉への投入時からさらに前記吸入手段を作動させる時間としての前記所定時間は、1秒間~3分間の範囲の時間であることが好ましく、前記非分析対象成分を確実に外部に放出することができる。前記所定時間は試料を熱分解炉に投入した時から1秒間未満であるときには、前記非分析対象成分を十分に外部に放出することができず、試料を投入又は注入した時から3分間を超えてもそれ以上の効果は得られない。 Further, in the gas phase component analysis method of the present invention, the predetermined time as the time for further operating the suction means from the time when the sample is put into the pyrolysis furnace is a time in the range of 1 second to 3 minutes. Preferably, the non-analyte components can be reliably released to the outside. If the predetermined time is less than 1 second from the time the sample is put into the pyrolysis furnace, the non-analyte component cannot be sufficiently released to the outside, and the time exceeds 3 minutes from the time the sample is put or injected. However, no further effect is obtained.
また、本発明の気相成分分析方法において、前記第1のカラムの温度を前記非分析対象成分の沸点より高く前記分析対象成分の沸点より低い温度とする歳に、前記第1のカラムを冷媒により冷却することが好ましく、当該第1のカラムの温度を確実に該分析対象成分の沸点より低い温度とすることができる。 Further, in the gas phase component analysis method of the present invention, when the temperature of the first column is higher than the boiling point of the non-analyte component and lower than the boiling point of the analyte component, the first column is cooled to ensure that the temperature of the first column is below the boiling point of the analyte.
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Embodiments of the present invention will now be described in more detail with reference to the accompanying drawings.
図1に示すように、本実施形態の気相成分分析装置1は、ガスクロマトグラフであり、加熱装置2と、加熱装置2に接続された恒温槽3と、恒温槽3に接続された検出装置4とを備えている。
As shown in FIG. 1, the gas
加熱装置2は、化学的に不活性な中空円筒状の石英管からなる熱分解炉21と、熱分解炉21の周囲に設けられたヒータ22と、熱分解炉21の先端が挿入されるGC注入口23とを備える。ヒータ22は図示しない温度制御装置により所定の条件で熱分解炉21の加熱を行うようになっている。熱分解炉21は、GC注入口23の上部に加熱されたパイプ等で接続されるか又は、着脱自在に装着されている。また、熱分解炉21は、前記石英管に代えて、ステンレス管の内面に石英薄膜を形成して不活性とした管からなるものであってもよい。
The heating device 2 includes a
また、GC注入口23は図示しないヒータを備え、該ヒータはヒータ22と同様に図示しない温度制御装置により所定の条件でGC注入口23の加熱を行うようになっている。GC注入口23は、上部に熱分解炉21が接続又は装着されない場合は、上端に図示しないセプタムが装着される。
The
加熱装置2は、熱分解炉21の上方に接続された試料導入部24を備え、試料導入部24には熱分解炉21にキャリアガスを導入するキャリアガス導入手段としてのキャリアガス導管25が接続されている。キャリアガス導管25の他端部は、流量制御装置26を介してキャリアガス源27に接続されている。また、キャリアガス導管25は、GC注入口23の上部に熱分解炉21が接続又は装着されない場合には、GC注入口23に接続されている。
The heating device 2 includes a
この結果、キャリアガス源27から供給されるキャリアガスが流量制御装置26により所定の流量に調整されて熱分解炉21又はGC注入口23に導入される。
As a result, the carrier gas supplied from the
恒温槽3には、第1のカラムとしてのプレカラム31と、分離カラムである第2のカラムとしての主分離カラム32と、プレカラム31と主分離カラム32とを接続する接続手段としての三方向管(T字管)33とが収容されている。プレカラム31は、一端がGC注入口23に挿入されて熱分解炉21の先端に対向する一方、他端が三方向管33を介して主分離カラム32に接続されている。主分離カラム32は、一端が三方向管33を介してプレカラム31に接続される一方、他端が検出装置4内に収容されている四重極質量分析検出器等の検出手段41に接続されている。
The
三方向管33は、プレカラム31と主分離カラム32とを直線的に接続する一方、プレカラム31と主分離カラム32との接続方向に直交する方向で排気導管34に接続されており、排気導管34は恒温槽3の外部に設けられた真空ポンプ等の吸引ポンプ5に接続されている。
The three-
プレカラム31としては、例えば、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラム又は、内径0.1~0.5mm程度、長さ0.5~19mで内面に各種ポリマーを塗布したキャピラリーカラム、もしくは、ポリマーを塗布せずに内面を化学的に不活性化したキャピラリーチューブを用いることができる。また、主分離カラム32としては、例えば、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラムを用いることができる。
The
尚、プレカラム31は、GC注入口23と三方向管33とに対して着脱自在であり、分析対象に応じてプレカラム31を選択することができる。
The
検出手段41としては、前記4重極質量分析検出器等の質量分析検出器(MS)、水素炎イオン化検出装置(FID)、電子捕捉検出器(ECD)等を用いることができる。 As the detection means 41, a mass spectrometry detector (MS) such as the quadrupole mass spectrometry detector, a flame ionization detector (FID), an electron capture detector (ECD), or the like can be used.
次に、図1に示す気相成分分析装置1を用いる本実施形態の気相成分分析方法について説明する。
Next, the gas phase component analysis method of this embodiment using the gas phase
本実施形態の気相成分分析方法では、まず、キャリアガス源27から流量制御装置26を介してヘリウム、窒素等のキャリアガスを5~150ml/分の流量で熱分解炉21に供給しながら、ヒータ22により熱分解炉21を所定の温度に加熱する。次に、吸引ポンプ5を作動させた後に、試料カップ6に収容された固体試料又は液体試料を加熱炉21に投入し、該固体試料を熱分解するか該液体試料を揮散させ、あるいは該固体試料から気相成分を熱脱着させることにより、気相成分混合物を生成させる。
In the gas phase component analysis method of the present embodiment, first, a carrier gas such as helium or nitrogen is supplied from the
また、GC注入口23の上部に熱分解炉21が接続又は装着されない場合には、図示しないマイクロシリンジにより液体試料又は気体試料を前記セプタムからGC注入口23に注入して加熱することにより、該液体試料又は該気体試料を揮散させ、気相成分混合物を生成させることができる。
Further, when the
次に、吸引ポンプ5を、前記試料を投入又は注入した時からさらに所定時間、例えば、1秒間~3分間の範囲の時間作動させ、前記気相成分混合物の全量をプレカラム31に導入する。このとき、プレカラム31は恒温槽3により所定の温度に制御され、あるいは液体窒素、液体二酸化炭素、氷等の冷媒により冷却されて、前記気相成分混合物に含まれる非分析対象成分の沸点より高く分析対象成分の沸点より低い温度とされている。この結果、溶媒等の高揮発性の非分析対象成分はプレカラム31に捕捉されることなくさらに吸引ポンプ5の方向に吸引される一方、前記分析対象成分は選択的にプレカラム31に捕捉されて濃縮される。
Next, the
ここで、プレカラム31は三方向管(T字管)33を介して主分離カラム32に接続されており、吸引ポンプ5も排気導管34を介して三方向管33に接続されているが、主分離カラム32が流路抵抗として作用するため、前記非分析対象成分は実質的に主分離カラム32に導入されることなく、排気導管34を介して吸引手段ポンプ5に吸引され、外部に放出される。尚、主分離カラム32が質量分析検出器(MS)に接続されている場合、質量分析検出器の内部は真空になっているので、前記非分析対象成分がわずかに主分離カラム32に導入されるが、導入される該非分析対象成分は微量であるので、主分離カラム32の劣化や、質量分析検出器の動作不良を引き起こすことはない。
Here, the
次に、前記所定時間後に吸引ポンプ5を停止させ、恒温槽3の温度を前記分析対象成分の沸点以上の温度に上昇させると、プレカラム31に捕捉されていた該分析対象成分が気化し、三方向管33方向に移動する。このとき、排気導管34では吸引ポンプ5が弁として作用し、吸引ポンプ5が停止されて閉弁された状態となっているので、気化した前記分析対象成分はキャリアガスの流量を制御することにより主分離カラム32に導入されて、個々の気相成分に分離され、検出手段41で検出される。
Next, when the
上述のように、気相成分分析装置1を用いる本実施形態の気相成分分析方法によれば、溶媒等の非分析対象成分が外部に放出される一方、分析対象成分はプレカラム31に捕捉され、濃縮された後、主分離カラム32に導入されるので、該非分析対象成分による主分離カラム32や検出手段41の劣化を防止することができ、しかも優れた検出感度を得ることができる。
As described above, according to the gas phase component analysis method of the present embodiment using the gas
気相成分分析装置1は、図2に示すように、GC注入口23に、前記気相成分混合物を選択的にプレカラム31に導入する選択的導入手段としてのスプリットベント35を備えていてもよい。スプリットベント35は、熱分解炉21から導入され、又はGC注入口23で生成した前記気相成分混合物の一部をプレカラム31に導入する一方、残部を排気管36から外部に排出する。
As shown in FIG. 2, the gas
図2に示す気相成分分析装置1によれば、スプリットベント35を備えることにより、試料濃度が0.01質量%以上の試料を分析する場合に、熱分解炉21から導入され、又はGC注入口23で生成した前記気相成分混合物の90~99%を外部に放出し、該気相成分混合物の1~10%をプレカラム31から主分離カラム32に導入して分析を行うことができる。また、スプリットベント35を備える気相成分分析装置1は、本実施形態の気相成分分析方法に用いるときには、まず、スプリットベント35を5秒~5分間閉じ、吸入ポンプ5を作動させた後に、キャリアガス源27から流量制御装置26を介してヘリウム、窒素等のキャリアガスを5~150ml/分の流量で熱分解炉21に供給しながら、前記試料を加熱炉21又はGC注入口23に投入又は注入し、熱分解、揮散又は熱脱着させ、気相成分混合物を生成させる。吸引ポンプ5が作動することにより、スプリットベント35が実質的に作用せず、吸引ポンプ5が停止した後にはスプリットベント35が通常通り作用して、前述のように流量が制御されたキャリアガスがプレカラム31に導入されるので、図1に示す気相成分分析装置1と同様に作動することができる。
According to the gas-
次に、実施例を示す。 Next, an example is shown.
〔実施例1〕
本実施例では、まず、炭素数9~22の炭化水素と、そのエステルを、それぞれ500ppmの濃度で含有するヘキサン溶液を調製し、試料とした。
[Example 1]
In this example, first, a hexane solution containing a hydrocarbon having 9 to 22 carbon atoms and an ester thereof at a concentration of 500 ppm each was prepared and used as a sample.
次に、図2に示す気相成分分析装置1を用い、前記試料1μLをマイクロシリンジでGC注入口23に注入し、該試料を揮散させて、気相成分混合物を生成させた。
Next, using the gas
本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラムを用い、主分離カラム32として、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:UA5-30M-0.25F)を用いた。また、検出手段41として、四重極質量分析検出器(スキャン範囲:m/z 10~400)を用いた。
In this embodiment, in the gas
分析は、キャリアガス源26から流量制御装置25を介して1.0mL/分の流量のキャリアガスをGC注入口23に供給し、スプリットベント35のスプリット比1/10(導入される気相成分の1/10をプレカラム31に導入する)、GC注入口23の温度350℃、恒温槽3の温度を40℃に2分間保持した後、20℃/分の昇温速度で300℃まで加熱する条件で行った。吸引ポンプ5を全く作動させなかった場合の分析結果を図3の上段に、試料注入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合の分析結果を図3の下段に示す。
In the analysis, a carrier gas was supplied from the
図3から、吸引ポンプ5を全く作動させなかった場合には、保持時間1~5分の範囲に溶媒のピークが現れ、絶対強度が1×107となるのに対し、試料注入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合には、溶媒のピークが全く見られず、絶対強度が1×108と10倍になっている上、各炭化水素も明瞭に分離しており、優れた検出感度を得ることができることが明らかである。
From FIG. 3, when the
〔実施例2〕
本実施例では、まず、平均分子量300000のポリスチレンを0.5μg/μL、内部標準としてのメチルステアレートを0.05μg/μLの濃度でそれぞれ含むジクロロメタン溶液を調製し、試料とした。
[Example 2]
In this example, first, a dichloromethane solution containing 0.5 μg/μL of polystyrene with an average molecular weight of 300,000 and 0.05 μg/μL of methyl stearate as an internal standard was prepared as a sample.
次に、図2に示す気相成分分析装置1を用い、試料カップ6に前記試料5μLを採取し、室温(25℃)で溶媒を揮散させた後、600℃に加熱された加熱炉21に投入し、該試料を熱分解させて、気相成分混合物を生成させた。
Next, using the gas
本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ2m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ1.0μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:Ultra ALLOY 50)を用い、主分離カラム32として、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.5μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:Ultra ALLOY+-5)を用いた。また、検出手段41として、四重極質量分析検出器(スキャン範囲:m/z 29~350)を用いた。
In this embodiment, in the gas
分析は、キャリアガス源26から流量制御装置25を介して1.0mL/分の流量のキャリアガス(ヘリウム)を加熱炉21に供給し、スプリットベント35のスプリット比1/16、GC注入口23の温度300℃、恒温槽3の温度を40℃に2分間保持した後、20℃/分の昇温速度で280℃まで加熱し、280℃に6分間保持する条件で行った。吸引ポンプ5を全く作動させなかった場合の分析結果を図4の上段に、試料投入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合の分析結果を図4の下段に示す。
In the analysis, the carrier gas (helium) was supplied from the
尚、吸引ポンプ5を作動させる場合は、予めプレカラム31の一部を液体窒素に浸漬した後、吸引ポンプ5を作動させ、その後停止させて、プレカラム31を液体窒素から引き上げ、恒温槽3の温度を前記条件で昇温させた。
In addition, when the
図4から、試料投入前に吸引ポンプ5を作動させ、さらに試料投入時から10秒間吸引ポンプ5を作動させて、その後停止した場合には、吸引ポンプ5を全く作動させなかった場合に比較して絶対強度が1×106から1×107と10倍になっている上、ピーク面積もメチルステアレートで12.4倍、スチレントリマーで17.6倍に増加しており、優れた検出感度を得ることができることが明らかである。
From FIG. 4, when the
〔実施例3〕
本実施例では、まず、ポリエチレンを300μg、ナイロン6,6を2μg、ポリプロピレンを80μg含む試料を調製した。
[Example 3]
In this example, first, a sample containing 300 μg of polyethylene, 2 μg of
次に、図2に示す気相成分分析装置1を用い、試料カップ6に前記試料を収容し、600℃に加熱された加熱炉21に投入し、該試料を熱分解させて、気相成分混合物を生成させた。
Next, using the gas phase
本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.5μmの固定層を備える第1のステンレス製キャピラリーカラム、又は、内径0.25mm、長さ2m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの50:50(モル比)の共重合体からなる厚さ1.0μmの固定層を備える第2のステンレス製キャピラリーカラムを用いた以外は、実施例2と全く同一の気相成分分析装置1を用いた。
In this embodiment, in the gas
分析は、実施例2と全く同一条件で行い、試料投入前に吸引ポンプ5を作動させ、さらに試料投入時から10秒間吸引ポンプ5を作動させて、その後停止した。
The analysis was performed under exactly the same conditions as in Example 2, the
プレカラム31として、前記第1のステンレス製キャピラリーカラムを用いた場合の分析結果を図5の上段に、前記第2のステンレス製キャピラリーカラムを用いた場合の分析結果を図5の下段に示す。尚、本実施例の分析結果は、保持時間5.2~6.8分の範囲のパイログラムにおいて、質量イオンm/z84のみを選択したときの選択的イオンクロマトグラム(EIC)である。
The analysis results when the first stainless steel capillary column was used as the
前記試料の熱分解では、ポリエチレンからは炭素数8で二重結合1個のC8’と、炭素数8の飽和炭化水素C8が生成し、ナイロン6,6からはシクロペンタノンが生成し、ポリプロピレンからはプロピレンの3量体(プロピレントリマー)が生成する。ここで、図5の上段に示す第1のステンレス製キャピラリーカラムを用いた場合には、保持時間が5.9分のピークはC8’と、シクロペンタノンとの2成分が混合している。ポリマーの定性分析では、C8’と、シクロペンタノンとを用いてポリエチレンとナイロン6,6とのポリマー定性を行うため分離の改良が求められる。
In the thermal decomposition of the sample, polyethylene produced C8' having 8 carbon atoms and one double bond and saturated hydrocarbon C8 having 8 carbon atoms, cyclopentanone was produced from
そこで、プレカラム31を種々検討し、極性基濃度を上げた前記第2のステンレス製キャピラリーカラムを用いたところ、図5の下段に示すように、C8’と、シクロペンタノンとを完全に分離できることが明らかである。
Therefore, various studies were made on the
分離カラムを用いる気相成分分析方法では、30m以上の長さの高分解能の主分離カラム32を用いても、複数の化合物が分離せずに重なって検出される場合が多々ある。このような場合には、複数の成分の分離を改善するために、主分離カラム32に塗布されている液相の極性を変更することが必要になる。しかし、そのためには新たな主分離カラム32の準備をして分析検討を再度行うことが要求されるために、非常な労力とそれに伴う対価が必要になる。
In the gas-phase component analysis method using a separation column, there are many cases where a plurality of compounds are overlapped and detected without being separated even when a high-resolution
これに対して、本実施例の気相成分分析方法では、分析対象に応じてプレカラム31を変更するだけで分離を改善する効果が得られるので、主分離カラム32として新たな分離カラムの準備をするための労力とそれに伴う対価を大幅に低減することができる。
On the other hand, in the gas phase component analysis method of the present embodiment, the effect of improving separation can be obtained simply by changing the
1…気相成分分析装置、 2…加熱手段、 3…恒温槽、 4…検出手段、 5…吸引手段 31…第1のカラム、 32…第2のカラム、 33…接続手段、 35…選択的導入手段。
REFERENCE SIGNS
Claims (5)
一端が前記GC注入口に挿入されて前記熱分解炉の先端に対向し、前記加熱装置で生成した前記気相成分混合物が導入される第1のカラムと、
接続手段を介して前記第1のカラムに接続される分離カラムである第2のカラムと、
前記第1のカラムと前記第2のカラムと前記接続手段とを収容する恒温槽と、
前記第2のカラムを通過した気相成分を検出する検出手段と、を備える気相成分分析装置において、
前記接続手段に接続される吸引手段を備えることを特徴とする気相成分分析装置。 Equipped with a pyrolysis furnace, a heater arranged around the pyrolysis furnace, and a GC inlet into which the tip of the pyrolysis furnace is inserted, and housed in a sample cup put into the pyrolysis furnace a heating device for heating a solid sample as a sample with the heater to generate a gas phase component mixture;
a first column, one end of which is inserted into the GC injection port and faces the tip of the pyrolysis furnace, into which the gas phase component mixture produced by the heating device is introduced;
a second column, which is a separation column, connected to the first column via connecting means;
a constant temperature bath containing the first column, the second column, and the connection means;
A gas phase component analyzer comprising a detection means for detecting a gas phase component that has passed through the second column,
A gas-phase component analyzer, comprising suction means connected to the connection means.
前記加熱装置で生成した前記気相成分混合物の一部を選択的に前記第1のカラムに導入する一方、残部を外部に排出する選択的導入手段を前記GC注入口に備えることを特徴とする気相成分分析装置。 In the gas phase component analyzer according to claim 1,
The GC injection port is provided with selective introduction means for selectively introducing a part of the gas phase component mixture generated by the heating device into the first column and discharging the remainder to the outside. Gas phase component analyzer.
一端が前記GC注入口に挿入されて前記熱分解炉の先端に対向し、前記加熱装置で生成した前記気相成分混合物が導入される第1のカラムと、
接続手段を介して前記第1のカラムに接続される分離カラムである第2のカラムと、
前記第1のカラムと前記第2のカラムと前記接続手段とを収容する恒温槽と、
前記第2のカラムを通過した気相成分を検出する検出手段と、を備える気相成分分析装置において、
前記接続手段に接続される吸引手段を備える気相成分分析装置を用いる気相成分分析方法であって、
前記加熱装置で前記ヒータにより前記試料としての固体試料を加熱して前記気相成分混合物を生成させる際に、前記吸引手段を作動させた後に前記試料カップに収容された前記試料を前記熱分解炉に投入し、前記試料を投入した時からさらに所定時間にわたり前記吸引手段を作動させ、前記吸引手段を介して非分析対象成分を外部に放出する一方、前記第1のカラムの温度を前記非分析対象成分の沸点より高く分析対象成分の沸点より低い温度として、前記分析対象成分を選択的に前記第1のカラムに捕捉させる工程と、
前記所定時間後に前記吸引手段を停止させ、前記恒温槽の温度を前記分析対象成分の沸点以上の温度に上昇させ、前記分析対象成分を前記第2のカラムに導入する工程と、を備えることを特徴とする
気相成分分析方法。 Equipped with a pyrolysis furnace, a heater arranged around the pyrolysis furnace, and a GC inlet into which the tip of the pyrolysis furnace is inserted, and housed in a sample cup put into the pyrolysis furnace a heating device for heating the sample with the heater to generate a gas phase component mixture;
a first column, one end of which is inserted into the GC injection port and faces the tip of the pyrolysis furnace, into which the gas phase component mixture produced by the heating device is introduced;
a second column, which is a separation column, connected to the first column via connecting means;
a constant temperature bath containing the first column, the second column, and the connection means;
A gas phase component analyzer comprising a detection means for detecting a gas phase component that has passed through the second column,
A gas phase component analysis method using a gas phase component analysis device provided with suction means connected to the connection means,
When the solid sample as the sample is heated by the heater in the heating device to generate the gas phase component mixture, the sample contained in the sample cup is transferred to the pyrolysis furnace after the suction means is operated. , and the suction means is operated for a predetermined period of time from the time the sample is charged , and the non-analyte component is discharged outside through the suction means, while the temperature of the first column is reduced to the non-analytical a step of selectively trapping the analyte component in the first column at a temperature higher than the boiling point of the target component and lower than the boiling point of the analyte component;
A step of stopping the suction means after the predetermined time, raising the temperature of the constant temperature bath to a temperature equal to or higher than the boiling point of the component to be analyzed, and introducing the component to be analyzed into the second column. Gas phase component analysis method characterized.
前記所定時間は、前記試料の前記熱分解炉への投入時から1秒間~3分間の範囲の時間であることを特徴とする気相成分分析方法。 In the gas phase component analysis method according to claim 3,
The gas phase component analysis method, wherein the predetermined time is in the range of 1 second to 3 minutes after the sample is put into the pyrolysis furnace .
前記第1のカラムの温度を前記非分析対象成分の沸点より高く前記分析対象成分の沸点より低い温度とする歳に、前記第1のカラムを冷媒により冷却することを特徴とする気相成分分析方法。 In the gas phase component analysis method according to claim 3 or claim 4,
Gas phase component analysis, wherein the first column is cooled with a refrigerant when the temperature of the first column is set to a temperature higher than the boiling point of the non-analyte component and lower than the boiling point of the analyte component. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/167,383 US12013381B2 (en) | 2020-06-24 | 2021-02-04 | Gas phase component analysis device and gas phase component analysis method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020109044 | 2020-06-24 | ||
JP2020109044 | 2020-06-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022007928A JP2022007928A (en) | 2022-01-13 |
JP7142374B2 true JP7142374B2 (en) | 2022-09-27 |
Family
ID=80110041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020215423A Active JP7142374B2 (en) | 2020-06-24 | 2020-12-24 | Gas phase component analyzer and gas phase component analysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7142374B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001337078A (en) | 2000-05-30 | 2001-12-07 | Hitachi Ltd | Gas chromatography with automatic pretreating function |
WO2006077912A1 (en) | 2005-01-19 | 2006-07-27 | Saika Technological Institute Foundation | Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4926711Y1 (en) * | 1969-02-28 | 1974-07-19 | ||
JPS60173067U (en) * | 1984-04-23 | 1985-11-16 | 株式会社島津製作所 | Gas chromatograph column oven |
JPS60231161A (en) * | 1984-04-30 | 1985-11-16 | Shimadzu Corp | Gas chromatograph mass spectrometer |
US5498279A (en) * | 1994-05-13 | 1996-03-12 | Chromatofast | High speed gas chromatography system for analysis of polar organic compounds |
AUPO355996A0 (en) * | 1996-11-11 | 1996-12-05 | Technisearch Ltd | Apparatus and/or device for concentration |
-
2020
- 2020-12-24 JP JP2020215423A patent/JP7142374B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001337078A (en) | 2000-05-30 | 2001-12-07 | Hitachi Ltd | Gas chromatography with automatic pretreating function |
WO2006077912A1 (en) | 2005-01-19 | 2006-07-27 | Saika Technological Institute Foundation | Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2022007928A (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tienpont et al. | High capacity headspace sorptive extraction | |
US11162925B2 (en) | High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography | |
JP5705421B2 (en) | Open probe method and apparatus for sample introduction in mass spectrometry | |
JP2019514021A (en) | Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS) | |
JP7072134B2 (en) | Sample pre-concentration system and method for use in gas chromatography | |
JP4645408B2 (en) | Sample injector for gas chromatograph | |
WO2014127602A1 (en) | Gas chromatography/mass spectrometry large-volume sample introduction device system and analysis method thereof | |
Czerwiński et al. | Head-space solid phase microextraction for the GC-MS analysis of terpenoids in herb based formulations | |
US20180246071A1 (en) | Increasing the Sensitivity of Gas Chromatography and Gas Chromatography-Mass Spectrometry Analysis By Allowing Relatively Large Solvent Volume Injections While Reducing Sample Loss And System Contamination | |
US5472670A (en) | Gas chromatography sample injector and apparatus using same | |
EP3455870B1 (en) | System and method for desorbing and detecting an analyte sorbed on a solid phase microextraction device | |
US10648955B2 (en) | Online chemical derivatization using a cooled programmed temperature vaporization inlet | |
JP7142374B2 (en) | Gas phase component analyzer and gas phase component analysis method | |
Bailey | Injectors for capillary gas chromatography and their application to environmental analysis | |
Schomburg et al. | Quantitation in capillary gas chromatography with emphasis on the problems of sample introduction | |
US12013381B2 (en) | Gas phase component analysis device and gas phase component analysis method | |
JP2024096431A (en) | Polymer material analyzer | |
JP3367293B2 (en) | Gas chromatograph sample introduction method | |
US11946912B2 (en) | System and method of trace-level analysis of chemical compounds | |
Pedersen‐Bjergaard | Gas Chromatography (GC) | |
RU218361U1 (en) | DEVICE FOR SELECTION AND SUBMISSION OF SAMPLES OF LABORLY SUBSTANCES FOR CHEMICAL ANALYSIS | |
RU218361U9 (en) | DEVICE FOR SELECTION AND SUBMISSION OF SAMPLES OF LABORLY SUBSTANCES FOR CHEMICAL ANALYSIS | |
Buszewski et al. | Determination of volatile organic compounds: Enrichment and analysis | |
US10989697B2 (en) | Breath analyzer | |
Asfaw | NEW SAMPLING TECHNIQUES IN GAS CHROMATOGRAPHY APPLIED TO A PHARMACEUTICAL CONTEXT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7142374 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |