JP2022007928A - Device and method for analyzing gas phase component - Google Patents

Device and method for analyzing gas phase component Download PDF

Info

Publication number
JP2022007928A
JP2022007928A JP2020215423A JP2020215423A JP2022007928A JP 2022007928 A JP2022007928 A JP 2022007928A JP 2020215423 A JP2020215423 A JP 2020215423A JP 2020215423 A JP2020215423 A JP 2020215423A JP 2022007928 A JP2022007928 A JP 2022007928A
Authority
JP
Japan
Prior art keywords
column
gas phase
phase component
sample
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020215423A
Other languages
Japanese (ja)
Other versions
JP7142374B2 (en
Inventor
忠一 渡辺
Chuichi Watanabe
壱 渡辺
Ichi Watanabe
甲志 鄭
Jia Zhi Zheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Laboratories Ltd
Original Assignee
Frontier Laboratories Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Laboratories Ltd filed Critical Frontier Laboratories Ltd
Priority to US17/167,383 priority Critical patent/US20210405000A1/en
Publication of JP2022007928A publication Critical patent/JP2022007928A/en
Application granted granted Critical
Publication of JP7142374B2 publication Critical patent/JP7142374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a device and a method for analyzing a gas-phase component that can prevent degradation of a device due to unnecessary components and can obtain an excellent detection sensitivity.SOLUTION: A gas phase component analyzer 1 includes: heating means 2 for heating a sample and generating a gas-phase component mixture; a first column 31 in which the gas-phase component mixture is introduced; a second column 32 as a separation column connected to the first column 31 by connection means 33; a constant-temperature tank 3 for containing the first column 31, the second column 32, and the connection means 33; detection means 4 for detecting a gas-phase component which has passed through the second column 32; and suction means 5 connected to the connection means 33.SELECTED DRAWING: Figure 1

Description

本発明は、気相成分分析装置及び気相成分分析方法に関する。 The present invention relates to a gas phase component analyzer and a gas phase component analysis method.

従来、気相成分を分析する方法として、ガスクロマトグラフィーが知られている。前記ガスクロマトグラフィーに用いる気相成分分析装置(ガスクロマトグラフ)として、例えば、試料を加熱して気相成分混合物を生成する加熱手段と、該加熱手段に接続されて該加熱手段で生成した該気相成分混合物を個々の成分に分離する分離カラムと、該分離カラムを収容する恒温槽(オーブン)と、該分離カラムに接続されて該分離カラムで分離された成分を検出する検出器とを備えるものが知られている。 Conventionally, gas chromatography is known as a method for analyzing gas phase components. As the gas phase component analyzer (gas chromatograph) used for the gas chromatography, for example, a heating means for heating a sample to generate a gas phase component mixture and the gas generated by the heating means connected to the heating means. It includes a separation column that separates the phase component mixture into individual components, a constant temperature bath (orange) that houses the separation column, and a detector that is connected to the separation column and detects the components separated by the separation column. Things are known.

前記加熱手段では、試料を熱分解するか揮散させ、あるいは試料を加熱して該試料に含まれる成分を熱脱着させることにより前記気相成分混合物を生成させる。前記検出器には、質量分析検出器(MS)、水素炎イオン化検出装置(FID)、電子捕捉検出器(ECD)等が用いられる。 In the heating means, the vapor phase component mixture is produced by thermally decomposing or volatilizing the sample, or heating the sample to thermally desorb the components contained in the sample. As the detector, a mass spectrometric detector (MS), a hydrogen flame ionization detector (FID), an electron capture detector (ECD) and the like are used.

前記気相成分分析装置では、試料濃度が0.01質量%未満の希薄試料を分析する場合には、前述のようにして生成した気相成分混合物の90質量%以上を前記分離カラムに導入して分析を行う。ところが、このようにすると、前記気相成分混合物がカルボン酸を含む場合に用いられるTMAH(tetramethylanmoniumhydoxide)等の未反応のメチル化剤により前記分離カラムが劣化したり、HMDS(hexamethyldisilazane)等のシリル化剤により前記検出器に用いる水素炎イオン化検出装置(FID)の感度が変化したりするという問題がある。また、前記気相成分分析装置では、高感度検出を目的として、前記分離カラムに通常の10~50倍の前記気相成分混合物を注入すると、質量分析検出器(MS)を検出器に用いる場合には、多量の溶媒が質量分析検出器(MS)に流入することにより、高真空が保持できなくなり動作不良となるという問題がある。 In the gas phase component analyzer, when analyzing a dilute sample having a sample concentration of less than 0.01% by mass, 90% by mass or more of the gas phase component mixture produced as described above is introduced into the separation column. And analyze. However, in this way, the separation column may be deteriorated by an unreacted methylating agent such as TMAH (tetrammethylniumhydoxide) used when the gas phase component mixture contains a carboxylic acid, or silylation such as HMDS (hemexyldisilazane) may occur. There is a problem that the sensitivity of the hydrogen flame ionization detector (FID) used in the detector changes depending on the agent. Further, in the gas phase component analyzer, when the gas phase component mixture is injected into the separation column 10 to 50 times as much as usual for the purpose of high sensitivity detection, a mass spectrometric detector (MS) is used as the detector. However, there is a problem that a large amount of solvent flows into the mass spectrometer (MS), which makes it impossible to maintain a high vacuum and causes malfunction.

前述のような問題を解決するために、前記加熱手段に、スプリットベントを備え、前記気相成分混合物の一部を選択的に該分離カラムに導入する一方、残部を外部に排出するようにした気相成分分析装置が知られている(例えば、特許文献1参照)。 In order to solve the above-mentioned problems, the heating means is provided with a split vent, and a part of the gas phase component mixture is selectively introduced into the separation column, while the rest is discharged to the outside. A gas phase component analyzer is known (see, for example, Patent Document 1).

特許文献1記載の気相成分分析装置は、試料濃度が0.01質量%以上の試料を分析する場合に、前述のようにして生成した気相成分混合物の90~99%をスプリットベントから外部に放出し、該気相成分混合物の1~10%を前記分離カラムに導入して分析を行う。この結果、特許文献1記載の気相成分分析装置によれば、前記メチル化剤、シリル化剤、溶媒等の不要成分を外部に排出し、分析対象成分のみを前記分離カラムに導入することができる。 The gas phase component analyzer described in Patent Document 1 externally removes 90 to 99% of the gas phase component mixture produced as described above from the split vent when analyzing a sample having a sample concentration of 0.01% by mass or more. 1 to 10% of the gas phase component mixture is introduced into the separation column for analysis. As a result, according to the gas phase component analyzer described in Patent Document 1, unnecessary components such as the methylating agent, the silylating agent, and the solvent can be discharged to the outside, and only the analysis target component can be introduced into the separation column. can.

特開2018-66618号公報Japanese Unexamined Patent Publication No. 2018-66618

しかしながら、特許文献1記載の気相成分分析装置では、前記分離カラムに導入される気相成分混合物の量が少なくなると、検出感度が低下するという不都合がある。 However, the gas phase component analyzer described in Patent Document 1 has a disadvantage that the detection sensitivity is lowered when the amount of the gas phase component mixture introduced into the separation column is small.

本発明は、かかる不都合を解消して、不要な非分析対象成分による分離カラムや検出器の劣化を防止することができ、しかも優れた検出感度を得ることができる気相成分分析装置及び気相成分分析方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention eliminates such inconvenience, prevents deterioration of the separation column and detector due to unnecessary non-analytical target components, and can obtain excellent detection sensitivity. It is an object of the present invention to provide a component analysis method.

かかる目的を達成するために、本発明の気相成分分析装置は、試料を加熱して気相成分混合物を生成させる加熱手段と、該加熱手段で生成した該気相成分混合物が導入される第1のカラムと、接続手段を介して該第1のカラムに接続される分離カラムである第2のカラムと、該第1のカラムと該第2のカラムと該接続手段とを収容する恒温槽と、該第2のカラムを通過した気相成分を検出する検出手段とを備える気相成分分析装置において、該接続手段に接続される吸引手段を備えることを特徴とする。 In order to achieve such an object, in the gas phase component analyzer of the present invention, a heating means for heating a sample to produce a gas phase component mixture and a gas phase component mixture produced by the heating means are introduced. A constant temperature bath containing 1 column, a second column which is a separation column connected to the first column via a connecting means, the first column, the second column, and the connecting means. In the gas phase component analyzer including the detection means for detecting the gas phase component that has passed through the second column, the suction means connected to the connecting means is provided.

また、本発明の気相成分分析方法は、前記気相成分分析装置を用いる気相成分分析方法であって、該加熱手段で該試料を加熱して該気相成分混合物を生成させる際に、該吸引手段を作動させた後に該加熱手段に該試料を投入又は注入し、該試料を投入又は注入した時からさらに所定時間該吸引手段を作動させ、該吸引手段を介して非分析対象成分を外部に放出する一方、該第1のカラムの温度を該非分析対象成分の沸点より高く分析対象成分の沸点より低い温度として、該分析対象成分を選択的に該第1のカラムに捕捉させる工程と、該所定時間後に該吸引手段を停止させ、該恒温槽の温度を該分析対象成分の沸点以上の温度に上昇させ、該分析対象成分を該第2のカラムに導入する工程とを備えることを特徴とする。 Further, the gas phase component analysis method of the present invention is a gas phase component analysis method using the gas phase component analyzer, and when the sample is heated by the heating means to generate the gas phase component mixture, the gas phase component mixture is produced. After the suction means is operated, the sample is charged or injected into the heating means, the suction means is operated for a predetermined time from the time when the sample is charged or injected, and the non-analyzed component is subjected to the suction means. A step of selectively capturing the analysis target component in the first column by setting the temperature of the first column to be higher than the boiling point of the non-analysis target component and lower than the boiling point of the analysis target component while discharging to the outside. After a predetermined time, the suction means is stopped, the temperature of the constant temperature bath is raised to a temperature equal to or higher than the boiling point of the analysis target component, and the analysis target component is introduced into the second column. It is a feature.

本発明の気相成分分析装置及び気相成分分析方法では、まず、前記加熱手段で前記試料を加熱して、該試料を熱分解するか揮散させ、あるいは該試料から気相成分を熱脱着させ、前記気相成分混合物を生成させる。このとき、前記吸引手段を作動させた後に前記加熱手段に前記試料を投入又は注入し、該試料を投入又は注入した時からさらに該吸引手段を所定時間作動させると、前記気相成分混合物が吸引され、該気相成分混合物の全量が前記第1のカラムに導入される。前記気相成分混合物は高沸点で低揮発性の分析対象成分と溶媒等の低沸点で高揮発性の非分析対象成分とを含んでいるが、前記第1のカラムは非分析対象成分の沸点より高く分析対象成分の沸点より低い温度とされているので、該非分析対象成分は該第1のカラムに捕捉されることなくさらに前記吸引手段の方向に吸引される一方、該分析対象成分は選択的に該第1のカラムに捕捉される。 In the gas phase component analyzer and the gas phase component analysis method of the present invention, first, the sample is heated by the heating means to thermally decompose or volatilize the sample, or the gas phase component is thermally desorbed from the sample. , The gas phase component mixture is produced. At this time, when the sample is charged or injected into the heating means after the suction means is operated and the suction means is further operated for a predetermined time from the time when the sample is charged or injected, the gas phase component mixture is sucked. Then, the entire amount of the gas phase component mixture is introduced into the first column. The gas phase component mixture contains a high boiling point and low volatile analysis target component and a low boiling point and high volatile non-analysis target component such as a solvent, whereas the first column is the boiling point of the non-analysis target component. Since the temperature is higher and lower than the boiling point of the analysis target component, the non-analysis target component is further sucked in the direction of the suction means without being captured by the first column, while the analysis target component is selected. Is captured in the first column.

ここで、前記第1のカラムは前記接続手段を介して前記第2のカラムに接続されており、前記吸引手段も該接続手段に接続されている。しかし、該第2のカラムは流路抵抗として作用するので、前記非分析対象成分は前記第2のカラムに導入されることなく、前記吸引手段に吸引され、該吸引手段を介して外部に放出される。 Here, the first column is connected to the second column via the connecting means, and the suction means is also connected to the connecting means. However, since the second column acts as a flow path resistance, the non-analyzed component is sucked by the suction means without being introduced into the second column and released to the outside through the suction means. Will be done.

前記非分析対象成分が外部に放出されたならば、次に、前記所定時間後に前記吸引手段を停止させ、前記恒温槽の温度を前記分析対象成分の沸点以上の温度に上昇させる。このようにすると、前記第1のカラムに捕捉されていた前記分析対象成分が気化し、前記接続手段の方向に移動する。このとき、前記吸引手段は停止されており、該接続手段の該吸引手段に接続する方向は閉鎖された状態となっているので、気化した前記分析対象成分は前記第2のカラムに導入される。前記第2のカラムは分離カラムであるので、該第2のカラムに導入された前記分析対象成分は個々の気相成分に分離され、該第2のカラムを通過した個々の気相成分が前記検出手段で検出される。 When the non-analyzed component is released to the outside, the suction means is then stopped after the predetermined time, and the temperature of the constant temperature bath is raised to a temperature equal to or higher than the boiling point of the analysis target component. In this way, the analysis target component captured in the first column is vaporized and moves in the direction of the connecting means. At this time, since the suction means is stopped and the direction of the connecting means connected to the suction means is closed, the vaporized component to be analyzed is introduced into the second column. .. Since the second column is a separation column, the analysis target component introduced into the second column is separated into individual gas phase components, and the individual gas phase components that have passed through the second column are said. It is detected by the detection means.

上述のように、本発明の気相成分分析装置及び気相成分分析方法では、前記加熱手段で生成した前記気相成分混合物の全量が前記第1のカラムに導入されるが、溶媒等の非分析対象成分が外部に放出される一方、分析対象成分は該第1のカラムに捕捉され、濃縮された後、前記第2のカラムに導入される。従って、本発明の気相成分分析装置及び気相成分分析方法によれば、溶媒等の不要な非分析対象成分による分離カラムや検出器の劣化を防止することができ、しかも優れた検出感度を得ることができる。 As described above, in the gas phase component analyzer and the gas phase component analysis method of the present invention, the entire amount of the gas phase component mixture produced by the heating means is introduced into the first column, but the solvent and the like are not used. While the analysis target component is released to the outside, the analysis target component is captured in the first column, concentrated, and then introduced into the second column. Therefore, according to the gas phase component analyzer and the gas phase component analysis method of the present invention, deterioration of the separation column and the detector due to unnecessary non-analyzable components such as a solvent can be prevented, and excellent detection sensitivity can be obtained. Obtainable.

本発明の気相成分分析装置は、前記加熱手段で生成した前記気相成分混合物の一部を選択的に該第1の分離カラムに導入する一方、残部を外部に排出する選択的導入手段(バックフラッシュ装置等)を備えていてもよい。 The gas phase component analyzer of the present invention selectively introduces a part of the gas phase component mixture produced by the heating means into the first separation column, while discharging the rest to the outside (selective introduction means (). It may be equipped with a backflush device, etc.).

また、本発明の気相成分分析方法において、前記加熱手段に前記試料を投入又は注入した時からさらに前記吸入手段を作動させる時間としての前記所定時間は、試料を投入又は注入した時から1秒間~3分間の範囲の時間であることが好ましく、前記非分析対象成分を確実に外部に放出することができる。前記所定時間は試料を投入又は注入した時から1秒間未満であるときには、前記非分析対象成分を十分に外部に放出することができず、試料を投入又は注入した時から3分間を超えてもそれ以上の効果は得られない。 Further, in the gas phase component analysis method of the present invention, the predetermined time as the time for further operating the suction means from the time when the sample is charged or injected into the heating means is 1 second from the time when the sample is charged or injected. The time is preferably in the range of about 3 minutes, and the non-analyzed component can be reliably released to the outside. When the predetermined time is less than 1 second from the time when the sample is charged or injected, the non-analyzed component cannot be sufficiently released to the outside, and even if it exceeds 3 minutes from the time when the sample is charged or injected. No further effect can be obtained.

また、本発明の気相成分分析方法において、第1のカラムの温度を該非分析対象成分の沸点より高く該分析対象成分の沸点より低い温度とする際に、該第1のカラムを冷媒により冷却することが好ましく、該第1のカラムの温度を確実に該分析対象成分の沸点より低い温度とすることができる。 Further, in the gas phase component analysis method of the present invention, when the temperature of the first column is higher than the boiling point of the non-analyzed component and lower than the boiling point of the analysis target component, the first column is cooled by a refrigerant. The temperature of the first column can be surely set to a temperature lower than the boiling point of the component to be analyzed.

本発明の気相成分分析装置の一構成例を示す説明的断面図。Explanatory sectional view which shows one structural example of the gas phase component analyzer of this invention. 本発明の気相成分分析装置の他の構成例を示す説明的断面図。Explanatory sectional view which shows the other structural example of the gas phase component analyzer of this invention. 本発明の気相成分分析装置及び気相成分分析方法による一分析例を示す図。The figure which shows one analysis example by the gas phase component analysis apparatus and the gas phase component analysis method of this invention. 本発明の気相成分分析装置及び気相成分分析方法による他の分析例を示す図。The figure which shows the other analysis example by the gas phase component analysis apparatus and the gas phase component analysis method of this invention. 本発明の気相成分分析装置及び気相成分分析方法によるさらに他の分析例を示す図。The figure which shows the further analysis example by the gas phase component analysis apparatus and the gas phase component analysis method of this invention.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

図1に示すように、本実施形態の気相成分分析装置1は、ガスクロマトグラフであり、加熱装置2と、加熱装置2に接続された恒温槽3と、恒温槽3に接続された検出装置4とを備えている。 As shown in FIG. 1, the gas phase component analyzer 1 of the present embodiment is a gas chromatograph, and is a heating device 2, a constant temperature bath 3 connected to the heating device 2, and a detection device connected to the constant temperature bath 3. It is equipped with 4.

加熱装置2は、化学的に不活性な中空円筒状の石英管からなる熱分解炉21と、熱分解炉21の周囲に設けられたヒータ22と、熱分解炉21の先端が挿入されるGC注入口23とを備える。ヒータ22は図示しない温度制御装置により所定の条件で熱分解炉21の加熱を行うようになっている。熱分解炉21は、GC注入口23の上部に加熱されたパイプ等で接続されるか又は、着脱自在に装着されている。また、熱分解炉21は、前記石英管に代えて、ステンレス管の内面に石英薄膜を形成して不活性とした管からなるものであってもよい。 The heating device 2 includes a pyrolysis furnace 21 made of a chemically inert hollow cylindrical quartz tube, a heater 22 provided around the pyrolysis furnace 21, and a GC into which the tip of the pyrolysis furnace 21 is inserted. It is provided with an injection port 23. The heater 22 heats the pyrolysis furnace 21 under predetermined conditions by a temperature control device (not shown). The pyrolysis furnace 21 is connected to the upper part of the GC injection port 23 by a heated pipe or the like, or is detachably attached. Further, the pyrolysis furnace 21 may be made of a tube in which a quartz thin film is formed on the inner surface of the stainless tube to make it inert, instead of the quartz tube.

また、GC注入口23は図示しないヒータを備え、該ヒータはヒータ22と同様に図示しない温度制御装置により所定の条件でGC注入口23の加熱を行うようになっている。GC注入口23は、上部に熱分解炉21が接続又は装着されない場合は、上端に図示しないセプタムが装着される。 Further, the GC injection port 23 is provided with a heater (not shown), and the heater is adapted to heat the GC injection port 23 under predetermined conditions by a temperature control device (not shown) like the heater 22. If the pyrolysis furnace 21 is not connected or mounted on the upper end of the GC inlet 23, a septum (not shown) is mounted on the upper end.

加熱装置2は、熱分解炉21の上方に接続された試料導入部24を備え、試料導入部24には熱分解炉21にキャリアガスを導入するキャリアガス導入手段としてのキャリアガス導管25が接続されている。キャリアガス導管25の他端部は、流量制御装置26を介してキャリアガス源27に接続されている。また、キャリアガス導管25は、GC注入口23の上部に熱分解炉21が接続又は装着されない場合には、GC注入口23に接続されている。 The heating device 2 includes a sample introduction unit 24 connected above the pyrolysis furnace 21, and a carrier gas conduit 25 as a carrier gas introduction means for introducing carrier gas into the pyrolysis furnace 21 is connected to the sample introduction unit 24. Has been done. The other end of the carrier gas conduit 25 is connected to the carrier gas source 27 via the flow rate control device 26. Further, the carrier gas conduit 25 is connected to the GC inlet 23 when the pyrolysis furnace 21 is not connected or mounted on the upper part of the GC inlet 23.

この結果、キャリアガス源27から供給されるキャリアガスが流量制御装置26により所定の流量に調整されて熱分解炉21又はGC注入口23に導入される。 As a result, the carrier gas supplied from the carrier gas source 27 is adjusted to a predetermined flow rate by the flow rate control device 26 and introduced into the pyrolysis furnace 21 or the GC inlet 23.

恒温槽3には、第1のカラムとしてのプレカラム31と、分離カラムである第2のカラムとしての主分離カラム32と、プレカラム31と主分離カラム32とを接続する接続手段としての三方向管(T字管)33とが収容されている。プレカラム31は、一端がGC注入口23に挿入されて熱分解炉21の先端に対向する一方、他端が三方向管33を介して主分離カラム32に接続されている。主分離カラム32は、一端が三方向管33を介してプレカラム31に接続される一方、他端が検出装置4内に収容されている四重極質量分析検出器等の検出手段41に接続されている。 In the constant temperature bath 3, the pre-column 31 as the first column, the main separation column 32 as the second column which is the separation column, and the three-way tube as a connecting means for connecting the pre-column 31 and the main separation column 32. (T-shaped tube) 33 is housed. One end of the pre-column 31 is inserted into the GC injection port 23 and faces the tip of the pyrolysis furnace 21, while the other end is connected to the main separation column 32 via a three-way pipe 33. One end of the main separation column 32 is connected to the pre-column 31 via a three-way tube 33, while the other end is connected to a detection means 41 such as a quadrupole mass spectrometric detector housed in the detection device 4. ing.

三方向管33は、プレカラム31と主分離カラム32とを直線的に接続する一方、プレカラム31と主分離カラム32との接続方向に直交する方向で排気導管34に接続されており、排気導管34は恒温槽3の外部に設けられた真空ポンプ等の吸引ポンプ5に接続されている。 The three-way pipe 33 linearly connects the pre-column 31 and the main separation column 32, while being connected to the exhaust conduit 34 in a direction orthogonal to the connection direction between the pre-column 31 and the main separation column 32. Is connected to a suction pump 5 such as a vacuum pump provided outside the constant temperature bath 3.

プレカラム31としては、例えば、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラム又は、内径0.1~0.5mm程度、長さ0.5~19mで内面に各種ポリマーを塗布したキャピラリーカラム、もしくは、ポリマーを塗布せずに内面を化学的に不活性化したキャピラリーチューブを用いることができる。また、主分離カラム32としては、例えば、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラムを用いることができる。 The precolumn 31 is, for example, a fixed layer having an inner diameter of 0.25 mm, a length of 1 m, and a thickness of 0.25 μm composed of a 5:95 (molar ratio) copolymer of methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface. A stainless steel capillary column having an inner diameter of about 0.1 to 0.5 mm, a length of 0.5 to 19 m, and a capillary column coated with various polymers on the inner surface, or chemically inactivating the inner surface without applying the polymer. A polymerized tube can be used. The main separation column 32 has, for example, an inner diameter of 0.25 mm, a length of 30 m, and a thickness of 0. A stainless polymer column with a fixed layer of 25 μm can be used.

尚、プレカラム31は、GC注入口23と三方向管33とに対して着脱自在であり、分析対象に応じてプレカラム31を選択することができる。 The pre-column 31 is removable from the GC injection port 23 and the three-way tube 33, and the pre-column 31 can be selected according to the analysis target.

検出手段41としては、前記4重極質量分析検出器等の質量分析検出器(MS)、水素炎イオン化検出装置(FID)、電子捕捉検出器(ECD)等を用いることができる。 As the detection means 41, a mass spectrometric detector (MS) such as the quadrupole mass spectrometric detector, a hydrogen flame ionization detector (FID), an electron capture detector (ECD), or the like can be used.

次に、図1に示す気相成分分析装置1を用いる本実施形態の気相成分分析方法について説明する。 Next, the gas phase component analysis method of the present embodiment using the gas phase component analyzer 1 shown in FIG. 1 will be described.

本実施形態の気相成分分析方法では、まず、キャリアガス源27から流量制御装置26を介してヘリウム、窒素等のキャリアガスを5~150ml/分の流量で熱分解炉21に供給しながら、ヒータ22により熱分解炉21を所定の温度に加熱する。次に、吸引ポンプ5を作動させた後に、試料カップ6に収容された固体試料又は液体試料を加熱炉21に投入し、該固体試料を熱分解するか該液体試料を揮散させ、あるいは該固体試料から気相成分を熱脱着させることにより、気相成分混合物を生成させる。 In the gas phase component analysis method of the present embodiment, first, carrier gas such as helium and nitrogen is supplied from the carrier gas source 27 to the pyrolysis furnace 21 at a flow rate of 5 to 150 ml / min via the flow control device 26. The pyrolysis furnace 21 is heated to a predetermined temperature by the heater 22. Next, after the suction pump 5 is operated, the solid sample or the liquid sample contained in the sample cup 6 is put into the heating furnace 21, and the solid sample is thermally decomposed, the liquid sample is volatilized, or the solid is volatilized. By thermally desorbing the gas phase component from the sample, a gas phase component mixture is generated.

また、GC注入口23の上部に熱分解炉21が接続又は装着されない場合には、図示しないマイクロシリンジにより液体試料又は気体試料を前記セプタムからGC注入口23に注入して加熱することにより、該液体試料又は該気体試料を揮散させ、気相成分混合物を生成させることができる。 When the thermal decomposition furnace 21 is not connected or mounted on the upper part of the GC injection port 23, the liquid sample or gas sample is injected from the septum into the GC injection port 23 by a microsyring not shown (not shown) and heated. A liquid sample or the gas sample can be volatilized to produce a gas phase component mixture.

次に、吸引ポンプ5を、前記試料を投入又は注入した時からさらに所定時間、例えば、1秒間~3分間の範囲の時間作動させ、前記気相成分混合物の全量をプレカラム31に導入する。このとき、プレカラム31は恒温槽3により所定の温度に制御され、あるいは液体窒素、液体二酸化炭素、氷等の冷媒により冷却されて、前記気相成分混合物に含まれる非分析対象成分の沸点より高く分析対象成分の沸点より低い温度とされている。この結果、溶媒等の高揮発性の非分析対象成分はプレカラム31に捕捉されることなくさらに吸引ポンプ5の方向に吸引される一方、前記分析対象成分は選択的にプレカラム31に捕捉されて濃縮される。 Next, the suction pump 5 is further operated for a predetermined time from the time when the sample is charged or injected, for example, for a time in the range of 1 second to 3 minutes, and the entire amount of the gas phase component mixture is introduced into the pre-column 31. At this time, the pre-column 31 is controlled to a predetermined temperature by the constant temperature bath 3 or cooled by a refrigerant such as liquid nitrogen, liquid carbon dioxide, or ice, and is higher than the boiling point of the non-analyzable component contained in the gas phase component mixture. The temperature is lower than the boiling point of the component to be analyzed. As a result, the highly volatile non-analyzable component such as a solvent is not captured by the pre-column 31 but is further sucked in the direction of the suction pump 5, while the analysis target component is selectively captured by the pre-column 31 and concentrated. Will be done.

ここで、プレカラム31は三方向管(T字管)33を介して主分離カラム32に接続されており、吸引ポンプ5も排気導管34を介して三方向管33に接続されているが、主分離カラム32が流路抵抗として作用するため、前記非分析対象成分は実質的に主分離カラム32に導入されることなく、排気導管34を介して吸引手段ポンプ5に吸引され、外部に放出される。尚、主分離カラム32が質量分析検出器(MS)に接続されている場合、質量分析検出器の内部は真空になっているので、前記非分析対象成分がわずかに主分離カラム32に導入されるが、導入される該非分析対象成分は微量であるので、主分離カラム32の劣化や、質量分析検出器の動作不良を引き起こすことはない。 Here, the pre-column 31 is connected to the main separation column 32 via the three-way pipe (T-shaped pipe) 33, and the suction pump 5 is also connected to the three-way pipe 33 via the exhaust conduit 34. Since the separation column 32 acts as a flow path resistance, the non-analyzed component is sucked into the suction means pump 5 through the exhaust conduit 34 and discharged to the outside without being substantially introduced into the main separation column 32. To. When the main separation column 32 is connected to the mass spectrometric detector (MS), the inside of the mass spectrometric detector is in a vacuum, so that the non-analyzed component is slightly introduced into the main separation column 32. However, since the amount of the non-analyzed component introduced is very small, it does not cause deterioration of the main separation column 32 or malfunction of the mass spectrometric detector.

次に、前記所定時間後に吸引ポンプ5を停止させ、恒温槽3の温度を前記分析対象成分の沸点以上の温度に上昇させると、プレカラム31に捕捉されていた該分析対象成分が気化し、三方向管33方向に移動する。このとき、排気導管34では吸引ポンプ5が弁として作用し、吸引ポンプ5が停止されて閉弁された状態となっているので、気化した前記分析対象成分はキャリアガスの流量を制御することにより主分離カラム32に導入されて、個々の気相成分に分離され、検出手段41で検出される。 Next, when the suction pump 5 is stopped after the predetermined time and the temperature of the constant temperature bath 3 is raised to a temperature equal to or higher than the boiling point of the analysis target component, the analysis target component captured in the precolumn 31 is vaporized. It moves in the direction of the directional pipe 33. At this time, in the exhaust conduit 34, the suction pump 5 acts as a valve, and the suction pump 5 is stopped and the valve is closed. Therefore, the vaporized component to be analyzed controls the flow rate of the carrier gas. It is introduced into the main separation column 32, separated into individual gas phase components, and detected by the detecting means 41.

上述のように、気相成分分析装置1を用いる本実施形態の気相成分分析方法によれば、溶媒等の非分析対象成分が外部に放出される一方、分析対象成分はプレカラム31に捕捉され、濃縮された後、主分離カラム32に導入されるので、該非分析対象成分による主分離カラム32や検出手段41の劣化を防止することができ、しかも優れた検出感度を得ることができる。 As described above, according to the gas phase component analysis method of the present embodiment using the gas phase component analyzer 1, the non-analyzable component such as a solvent is released to the outside, while the analysis target component is captured by the pre-column 31. Since it is introduced into the main separation column 32 after being concentrated, deterioration of the main separation column 32 and the detection means 41 due to the non-analytical target component can be prevented, and excellent detection sensitivity can be obtained.

気相成分分析装置1は、図2に示すように、GC注入口23に、前記気相成分混合物を選択的にプレカラム31に導入する選択的導入手段としてのスプリットベント35を備えていてもよい。スプリットベント35は、熱分解炉21から導入され、又はGC注入口23で生成した前記気相成分混合物の一部をプレカラム31に導入する一方、残部を排気管36から外部に排出する。 As shown in FIG. 2, the gas phase component analyzer 1 may include a split vent 35 as a selective introduction means for selectively introducing the gas phase component mixture into the precolumn 31 at the GC inlet 23. .. The split vent 35 introduces a part of the gas phase component mixture introduced from the pyrolysis furnace 21 or generated at the GC inlet 23 into the precolumn 31, while discharging the rest to the outside from the exhaust pipe 36.

図2に示す気相成分分析装置1によれば、スプリットベント35を備えることにより、試料濃度が0.01質量%以上の試料を分析する場合に、熱分解炉21から導入され、又はGC注入口23で生成した前記気相成分混合物の90~99%を外部に放出し、該気相成分混合物の1~10%をプレカラム31から主分離カラム32に導入して分析を行うことができる。また、スプリットベント35を備える気相成分分析装置1は、本実施形態の気相成分分析方法に用いるときには、まず、スプリットベント35を5秒~5分間閉じ、吸入ポンプ5を作動させた後に、キャリアガス源27から流量制御装置26を介してヘリウム、窒素等のキャリアガスを5~150ml/分の流量で熱分解炉21に供給しながら、前記試料を加熱炉21又はGC注入口23に投入又は注入し、熱分解、揮散又は熱脱着させ、気相成分混合物を生成させる。吸引ポンプ5が作動することにより、スプリットベント35が実質的に作用せず、吸引ポンプ5が停止した後にはスプリットベント35が通常通り作用して、前述のように流量が制御されたキャリアガスがプレカラム31に導入されるので、図1に示す気相成分分析装置1と同様に作動することができる。 According to the gas phase component analyzer 1 shown in FIG. 2, by providing the split vent 35, when a sample having a sample concentration of 0.01% by mass or more is analyzed, it is introduced from the thermal decomposition furnace 21 or GC Note. 90 to 99% of the gas phase component mixture generated at the inlet 23 can be released to the outside, and 1 to 10% of the gas phase component mixture can be introduced from the pre-column 31 into the main separation column 32 for analysis. Further, when the gas phase component analyzer 1 provided with the split vent 35 is used in the gas phase component analysis method of the present embodiment, first, the split vent 35 is closed for 5 seconds to 5 minutes, the suction pump 5 is operated, and then the suction pump 5 is operated. The sample is charged into the heating furnace 21 or the GC inlet 23 while supplying the carrier gas such as helium and nitrogen from the carrier gas source 27 to the pyrolysis furnace 21 at a flow rate of 5 to 150 ml / min via the flow control device 26. Alternatively, it is injected and pyrolyzed, volatilized or thermally desorbed to produce a gas phase component mixture. By operating the suction pump 5, the split vent 35 does not substantially act, and after the suction pump 5 is stopped, the split vent 35 operates normally, and the carrier gas whose flow rate is controlled as described above is released. Since it is introduced into the pre-column 31, it can operate in the same manner as the gas phase component analyzer 1 shown in FIG.

次に、実施例を示す。 Next, an example will be shown.

〔実施例1〕
本実施例では、まず、炭素数9~22の炭化水素と、そのエステルを、それぞれ500ppmの濃度で含有するヘキサン溶液を調製し、試料とした。
[Example 1]
In this example, first, a hexane solution containing a hydrocarbon having 9 to 22 carbon atoms and an ester thereof at a concentration of 500 ppm was prepared and used as a sample.

次に、図2に示す気相成分分析装置1を用い、前記試料1μLをマイクロシリンジでGC注入口23に注入し、該試料を揮散させて、気相成分混合物を生成させた。 Next, using the gas phase component analyzer 1 shown in FIG. 2, 1 μL of the sample was injected into the GC inlet 23 with a microsyringe, and the sample was volatilized to generate a gas phase component mixture.

本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラムを用い、主分離カラム32として、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.25μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:UA5-30M-0.25F)を用いた。また、検出手段41として、四重極質量分析検出器(スキャン範囲:m/z 10~400)を用いた。 In this embodiment, in the gas phase component analyzer 1, the pre-column 31 is a copolymer having an inner diameter of 0.25 mm, a length of 1 m, and a methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface in a ratio of 5:95 (molar ratio). A stainless steel capillary column having a fixed layer having a thickness of 0.25 μm was used, and as the main separation column 32, an inner diameter of 0.25 mm, a length of 30 m, and 5:95 (5:95) of methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface. A stainless steel capillary column (manufactured by Frontier Lab Co., Ltd., trade name: UA5-30M-0.25F) having a fixed layer having a thickness of 0.25 μm made of a copolymer of (molar ratio) was used. Further, as the detection means 41, a quadrupole mass spectrometric detector (scan range: m / z 10 to 400) was used.

分析は、キャリアガス源26から流量制御装置25を介して1.0mL/分の流量のキャリアガスをGC注入口23に供給し、スプリットベント35のスプリット比1/10(導入される気相成分の1/10をプレカラム31に導入する)、GC注入口23の温度350℃、恒温槽3の温度を40℃に2分間保持した後、20℃/分の昇温速度で300℃まで加熱する条件で行った。吸引ポンプ5を全く作動させなかった場合の分析結果を図3の上段に、試料注入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合の分析結果を図3の下段に示す。 In the analysis, a carrier gas having a flow rate of 1.0 mL / min was supplied from the carrier gas source 26 to the GC inlet 23 via the flow control device 25, and the split ratio of the split vent 35 was 1/10 (gas phase component to be introduced). 1/10 of the above is introduced into the pre-column 31), the temperature of the GC injection port 23 is 350 ° C., and the temperature of the constant temperature bath 3 is maintained at 40 ° C. for 2 minutes, and then heated to 300 ° C. at a heating rate of 20 ° C./min. I went under the conditions. The analysis result when the suction pump 5 is not operated at all is shown in the upper part of FIG. 3, when the suction pump 5 is operated before the sample injection, the suction pump 5 is operated for 10 seconds after the sample injection, and then stopped. The analysis results are shown in the lower part of FIG.

図3から、吸引ポンプ5を全く作動させなかった場合には、保持時間1~5分の範囲に溶媒のピークが現れ、絶対強度が1×10となるのに対し、試料注入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合には、溶媒のピークが全く見られず、絶対強度が1×10と10倍になっている上、各炭化水素も明瞭に分離しており、優れた検出感度を得ることができることが明らかである。 From FIG. 3, when the suction pump 5 is not operated at all, a peak of the solvent appears in the holding time range of 1 to 5 minutes, and the absolute intensity becomes 1 × 107 , whereas suction is performed before sample injection. When the pump 5 is operated, the suction pump 5 is operated for 10 seconds after the sample is injected, and then stopped, no peak of the solvent is observed, and the absolute strength is 1 × 108 , which is 10 times higher. In addition, each hydrocarbon is clearly separated, and it is clear that excellent detection sensitivity can be obtained.

〔実施例2〕
本実施例では、まず、平均分子量300000のポリスチレンを0.5μg/μL、内部標準としてのメチルステアレートを0.05μg/μLの濃度でそれぞれ含むジクロロメタン溶液を調製し、試料とした。
[Example 2]
In this example, first, a dichloromethane solution containing polystyrene having an average molecular weight of 300,000 at a concentration of 0.5 μg / μL and methyl stearate as an internal standard at a concentration of 0.05 μg / μL was prepared and used as a sample.

次に、図2に示す気相成分分析装置1を用い、試料カップ6に前記試料5μLを採取し、室温(25℃)で溶媒を揮散させた後、600℃に加熱された加熱炉21に投入し、該試料を熱分解させて、気相成分混合物を生成させた。 Next, using the gas phase component analyzer 1 shown in FIG. 2, 5 μL of the sample was collected in a sample cup 6, the solvent was volatilized at room temperature (25 ° C.), and then the heating furnace 21 heated to 600 ° C. was used. The sample was charged and pyrolyzed to produce a gas phase component mixture.

本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ2m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ1.0μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:Ultra ALLOY 50)を用い、主分離カラム32として、内径0.25mm、長さ30m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.5μmの固定層を備えるステンレス製キャピラリーカラム(フロンティア・ラボ株式会社製、商品名:Ultra ALLOY+-5)を用いた。また、検出手段41として、四重極質量分析検出器(スキャン範囲:m/z 29~350)を用いた。 In this embodiment, in the gas phase component analyzer 1, the pre-column 31 is a copolymer having an inner diameter of 0.25 mm, a length of 2 m, and a methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface in a ratio of 5:95 (molar ratio). A stainless polymer column (manufactured by Frontier Lab Co., Ltd., trade name: Ultra ALLOY 50) having a fixing layer having a thickness of 1.0 μm was used, and the main separation column 32 had an inner diameter of 0.25 mm, a length of 30 m, and an inner surface. Stainless steel capillary column (manufactured by Frontier Lab Co., Ltd., trade name: Ultra ALLOY +) provided with a fixed layer having a thickness of 0.5 μm composed of a 5:95 (molar ratio) copolymer of methylphenylpolysiloxane and dimethylpolysiloxane. -5) was used. Further, as the detection means 41, a quadrupole mass spectrometric detector (scan range: m / z 29 to 350) was used.

分析は、キャリアガス源26から流量制御装置25を介して1.0mL/分の流量のキャリアガス(ヘリウム)を加熱炉21に供給し、スプリットベント35のスプリット比1/16、GC注入口23の温度300℃、恒温槽3の温度を40℃に2分間保持した後、20℃/分の昇温速度で280℃まで加熱し、280℃に6分間保持する条件で行った。吸引ポンプ5を全く作動させなかった場合の分析結果を図4の上段に、試料投入前に吸引ポンプ5を作動させ、さらに試料注入後10秒間吸引ポンプ5を作動させて、その後停止した場合の分析結果を図4の下段に示す。 In the analysis, the carrier gas (helium) having a flow rate of 1.0 mL / min was supplied from the carrier gas source 26 to the heating furnace 21 via the flow rate control device 25, the split ratio of the split vent 35 was 1/16, and the GC inlet 23. The temperature was 300 ° C. and the temperature of the constant temperature bath 3 was maintained at 40 ° C. for 2 minutes, then heated to 280 ° C. at a heating rate of 20 ° C./min, and kept at 280 ° C. for 6 minutes. The analysis result when the suction pump 5 is not operated at all is shown in the upper part of FIG. 4, when the suction pump 5 is operated before the sample is charged, the suction pump 5 is operated for 10 seconds after the sample is injected, and then the suction pump 5 is stopped. The analysis results are shown in the lower part of FIG.

尚、吸引ポンプ5を作動させる場合は、予めプレカラム31の一部を液体窒素に浸漬した後、吸引ポンプ5を作動させ、その後停止させて、プレカラム31を液体窒素から引き上げ、恒温槽3の温度を前記条件で昇温させた。 When operating the suction pump 5, a part of the pre-column 31 is immersed in liquid nitrogen in advance, then the suction pump 5 is operated and then stopped, the pre-column 31 is pulled up from the liquid nitrogen, and the temperature of the constant temperature bath 3 is reached. Was heated under the above conditions.

図4から、試料投入前に吸引ポンプ5を作動させ、さらに試料投入時から10秒間吸引ポンプ5を作動させて、その後停止した場合には、吸引ポンプ5を全く作動させなかった場合に比較して絶対強度が1×10から1×10と10倍になっている上、ピーク面積もメチルステアレートで12.4倍、スチレントリマーで17.6倍に増加しており、優れた検出感度を得ることができることが明らかである。 From FIG. 4, it is compared with the case where the suction pump 5 is operated before the sample is charged, the suction pump 5 is operated for 10 seconds from the time when the sample is charged, and then the suction pump 5 is stopped, and the suction pump 5 is not operated at all. The absolute intensity has increased 10 times from 1 × 10 6 to 1 × 10 7 , and the peak area has also increased 12.4 times with methyl steerate and 17.6 times with styrene trimmer, which is an excellent detection. It is clear that sensitivity can be obtained.

〔実施例3〕
本実施例では、まず、ポリエチレンを300μg、ナイロン6,6を2μg、ポリプロピレンを80μg含む試料を調製した。
[Example 3]
In this example, first, a sample containing 300 μg of polyethylene, 2 μg of nylons 6 and 6, and 80 μg of polypropylene was prepared.

次に、図2に示す気相成分分析装置1を用い、試料カップ6に前記試料を収容し、600℃に加熱された加熱炉21に投入し、該試料を熱分解させて、気相成分混合物を生成させた。 Next, using the gas phase component analyzer 1 shown in FIG. 2, the sample is placed in a sample cup 6 and placed in a heating furnace 21 heated to 600 ° C., and the sample is thermally decomposed to obtain a gas phase component. A mixture was produced.

本実施例では、気相成分分析装置1において、プレカラム31として、内径0.25mm、長さ1m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの5:95(モル比)の共重合体からなる厚さ0.5μmの固定層を備える第1のステンレス製キャピラリーカラム、又は、内径0.25mm、長さ2m、内面にメチルフェニルポリシロキサンと、ジメチルポリシロキサンとの50:50(モル比)の共重合体からなる厚さ1.0μmの固定層を備える第2のステンレス製キャピラリーカラムを用いた以外は、実施例2と全く同一の気相成分分析装置1を用いた。 In this embodiment, in the gas phase component analyzer 1, the pre-column 31 is a copolymer having an inner diameter of 0.25 mm, a length of 1 m, and a methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface in a ratio of 5:95 (molar ratio). A first stainless steel capillary column having a fixed layer having a thickness of 0.5 μm, or a 50:50 (molar ratio) of methylphenylpolysiloxane and dimethylpolysiloxane on the inner surface having an inner diameter of 0.25 mm and a length of 2 m. Exactly the same gas phase component analyzer 1 as in Example 2 was used except that a second stainless steel capillary column provided with a 1.0 μm-thick fixed layer made of the above-mentioned copolymer was used.

分析は、実施例2と全く同一条件で行い、試料投入前に吸引ポンプ5を作動させ、さらに試料投入時から10秒間吸引ポンプ5を作動させて、その後停止した。 The analysis was performed under exactly the same conditions as in Example 2, the suction pump 5 was operated before the sample was charged, the suction pump 5 was further operated for 10 seconds from the time of sample charging, and then stopped.

プレカラム31として、前記第1のステンレス製キャピラリーカラムを用いた場合の分析結果を図5の上段に、前記第2のステンレス製キャピラリーカラムを用いた場合の分析結果を図5の下段に示す。尚、本実施例の分析結果は、保持時間5.2~6.8分の範囲のパイログラムにおいて、質量イオンm/z84のみを選択したときの選択的イオンクロマトグラム(EIC)である。 The analysis result when the first stainless steel capillary column is used as the pre-column 31 is shown in the upper part of FIG. 5, and the analysis result when the second stainless steel capillary column is used is shown in the lower part of FIG. The analysis result of this example is a selective ion chromatogram (EIC) when only mass ion m / z 84 is selected in a pyrogram having a retention time in the range of 5.2 to 6.8 minutes.

前記試料の熱分解では、ポリエチレンからは炭素数8で二重結合1個のC8’と、炭素数8の飽和炭化水素C8が生成し、ナイロン6,6からはシクロペンタノンが生成し、ポリプロピレンからはプロピレンの3量体(プロピレントリマー)が生成する。ここで、図5の上段に示す第1のステンレス製キャピラリーカラムを用いた場合には、保持時間が5.9分のピークはC8’と、シクロペンタノンとの2成分が混合している。ポリマーの定性分析では、C8’と、シクロペンタノンとを用いてポリエチレンとナイロン6,6とのポリマー定性を行うため分離の改良が求められる。 In the thermal decomposition of the sample, C8'with 8 carbon atoms and one double bond and saturated hydrocarbon C8 with 8 carbon atoms are produced from polyethylene, cyclopentanone is produced from nylons 6 and 6, and polypropylene is produced. Propylene trimer (propylene trimmer) is produced from the product. Here, when the first stainless steel capillary column shown in the upper part of FIG. 5 is used, the peak with a retention time of 5.9 minutes is a mixture of two components, C8'and cyclopentanone. In the polymer qualitative analysis, improvement of separation is required to perform polymer qualitative analysis of polyethylene and nylon 6 and 6 using C8'and cyclopentanone.

そこで、プレカラム31を種々検討し、極性基濃度を上げた前記第2のステンレス製キャピラリーカラムを用いたところ、図5の下段に示すように、C8’と、シクロペンタノンとを完全に分離できることが明らかである。 Therefore, when the pre-column 31 was examined in various ways and the second stainless steel capillary column having an increased polar group concentration was used, C8'and cyclopentanone could be completely separated as shown in the lower part of FIG. it is obvious.

分離カラムを用いる気相成分分析方法では、30m以上の長さの高分解能の主分離カラム32を用いても、複数の化合物が分離せずに重なって検出される場合が多々ある。このような場合には、複数の成分の分離を改善するために、主分離カラム32に塗布されている液相の極性を変更することが必要になる。しかし、そのためには新たな主分離カラム32の準備をして分析検討を再度行うことが要求されるために、非常な労力とそれに伴う対価が必要になる。 In the gas phase component analysis method using a separation column, even if a high-resolution main separation column 32 having a length of 30 m or more is used, a plurality of compounds are often detected in an overlapping manner without being separated. In such a case, it is necessary to change the polarity of the liquid phase applied to the main separation column 32 in order to improve the separation of the plurality of components. However, for that purpose, it is required to prepare a new main separation column 32 and perform an analysis study again, which requires a great deal of labor and a corresponding consideration.

これに対して、本実施例の気相成分分析方法では、分析対象に応じてプレカラム31を変更するだけで分離を改善する効果が得られるので、主分離カラム32として新たな分離カラムの準備をするための労力とそれに伴う対価を大幅に低減することができる。 On the other hand, in the gas phase component analysis method of this example, the effect of improving the separation can be obtained only by changing the pre-column 31 according to the analysis target. Therefore, a new separation column is prepared as the main separation column 32. The effort required to do this and the associated costs can be significantly reduced.

1…気相成分分析装置、 2…加熱手段、 3…恒温槽、 4…検出手段、 5…吸引手段 31…第1のカラム、 32…第2のカラム、 33…接続手段、 35…選択的導入手段。 1 ... Gas phase component analyzer, 2 ... Heating means, 3 ... Constant temperature bath, 4 ... Detection means, 5 ... Suction means 31 ... First column, 32 ... Second column, 33 ... Connection means, 35 ... Selective Introductory means.

Claims (5)

試料を加熱して気相成分混合物を生成させる加熱手段と、
該加熱手段で生成した該気相成分混合物が導入される第1のカラムと、
接続手段を介して該第1のカラムに接続される分離カラムである第2のカラムと、
該第1のカラムと該第2のカラムと該接続手段とを収容する恒温槽と、
該第2のカラムを通過した気相成分を検出する検出手段とを備える気相成分分析装置において、
該接続手段に接続される吸引手段を備えることを特徴とする気相成分分析装置。
A heating means that heats the sample to produce a gas phase component mixture,
The first column into which the gas phase component mixture produced by the heating means is introduced, and
A second column, which is a separation column connected to the first column via a connecting means,
A constant temperature bath accommodating the first column, the second column, and the connecting means, and the like.
In a gas phase component analyzer provided with a detection means for detecting a gas phase component that has passed through the second column.
A gas phase component analyzer comprising a suction means connected to the connecting means.
請求項1記載の気相成分分析装置において、前記加熱手段で生成した前記気相成分混合物の一部を選択的に前記第1のカラムに導入する一方、残部を外部に排出する選択的導入手段を備えることを特徴とする気相成分分析装置。 In the gas phase component analyzer according to claim 1, a part of the gas phase component mixture produced by the heating means is selectively introduced into the first column, while the rest is discharged to the outside. A gas phase component analyzer characterized by being equipped with. 試料を加熱して気相成分混合物を生成させる加熱手段と、該加熱手段で生成した該気相成分混合物が導入される第1のカラムと、接続手段を介して該第1のカラムに接続される分離カラムである第2のカラムと、該第1のカラムと該第2のカラムと該接続手段とを収容する恒温槽と、該第2のカラムを通過した気相成分を検出する検出手段と、該接続手段に接続される吸引手段とを備える気相成分分析装置を用いる気相成分分析方法であって、
該加熱手段で該試料を加熱して該気相成分混合物を生成させる際に、該吸引手段を作動させた後に該加熱手段に該試料を投入又は注入し、該試料を投入又は注入した時からさらに所定時間該吸引手段を作動させ、該吸引手段を介して非分析対象成分を外部に放出する一方、該第1のカラムの温度を該非分析対象成分の沸点より高く分析対象成分の沸点より低い温度として、該分析対象成分を選択的に該第1のカラムに捕捉させる工程と、
該所定時間後に該吸引手段を停止させ、該恒温槽の温度を該分析対象成分の沸点以上の温度に上昇させ、該分析対象成分を該第2のカラムに導入する工程とを備えることを特徴とする気相成分分析方法。
It is connected to the first column via a heating means for heating a sample to generate a gas phase component mixture, a first column into which the gas phase component mixture produced by the heating means is introduced, and a connecting means. A second column, which is a separation column, a constant temperature bath accommodating the first column, the second column, and the connecting means, and a detecting means for detecting a gas phase component that has passed through the second column. A gas phase component analysis method using a gas phase component analyzer including a suction means connected to the connection means.
When the sample is heated by the heating means to generate the gas phase component mixture, the sample is charged or injected into the heating means after the suction means is operated, and the sample is charged or injected. Further, the suction means is operated for a predetermined time to release the non-analyzed component to the outside through the suction means, while the temperature of the first column is higher than the boiling point of the non-analyzing target component and lower than the boiling point of the analysis target component. The step of selectively capturing the analysis target component in the first column as the temperature, and
It is characterized by comprising a step of stopping the suction means after the predetermined time, raising the temperature of the constant temperature bath to a temperature equal to or higher than the boiling point of the analysis target component, and introducing the analysis target component into the second column. Gas phase component analysis method.
請求項3記載の気相成分分析方法において、前記所定時間は、前記試料注入時から1秒間~3分間の範囲の時間であることを特徴とする気相成分分析方法。 The gas phase component analysis method according to claim 3, wherein the predetermined time is a time in the range of 1 second to 3 minutes from the time of injecting the sample. 請求項3又は請求項4記載の気相成分分析方法において、第1のカラムの温度を前記非分析対象成分の沸点より高く前記分析対象成分の沸点より低い温度とする歳に、該第1のカラムを冷媒により冷却することを特徴とする気相成分分析方法。 In the gas phase component analysis method according to claim 3 or 4, the first column is at a temperature higher than the boiling point of the non-analyzed component and lower than the boiling point of the analysis target component. A gas phase component analysis method comprising cooling a column with a refrigerant.
JP2020215423A 2020-06-24 2020-12-24 Gas phase component analyzer and gas phase component analysis method Active JP7142374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/167,383 US20210405000A1 (en) 2020-06-24 2021-02-04 Gas phase component analysis device and gas phase component analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109044 2020-06-24
JP2020109044 2020-06-24

Publications (2)

Publication Number Publication Date
JP2022007928A true JP2022007928A (en) 2022-01-13
JP7142374B2 JP7142374B2 (en) 2022-09-27

Family

ID=80110041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020215423A Active JP7142374B2 (en) 2020-06-24 2020-12-24 Gas phase component analyzer and gas phase component analysis method

Country Status (1)

Country Link
JP (1) JP7142374B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926711Y1 (en) * 1969-02-28 1974-07-19
JPS60173067U (en) * 1984-04-23 1985-11-16 株式会社島津製作所 Gas chromatograph column oven
JPS60231161A (en) * 1984-04-30 1985-11-16 Shimadzu Corp Gas chromatograph mass spectrometer
US5498279A (en) * 1994-05-13 1996-03-12 Chromatofast High speed gas chromatography system for analysis of polar organic compounds
WO1998021574A1 (en) * 1996-11-11 1998-05-22 Royal Melbourne Institute Of Technology Apparatus and/or device for concentration
JP2001337078A (en) * 2000-05-30 2001-12-07 Hitachi Ltd Gas chromatography with automatic pretreating function
WO2006077912A1 (en) * 2005-01-19 2006-07-27 Saika Technological Institute Foundation Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926711Y1 (en) * 1969-02-28 1974-07-19
JPS60173067U (en) * 1984-04-23 1985-11-16 株式会社島津製作所 Gas chromatograph column oven
JPS60231161A (en) * 1984-04-30 1985-11-16 Shimadzu Corp Gas chromatograph mass spectrometer
US5498279A (en) * 1994-05-13 1996-03-12 Chromatofast High speed gas chromatography system for analysis of polar organic compounds
JPH08313510A (en) * 1994-05-13 1996-11-29 Chromatofast Inc High-speed gas chromatography device for analyzing polar organic component
WO1998021574A1 (en) * 1996-11-11 1998-05-22 Royal Melbourne Institute Of Technology Apparatus and/or device for concentration
JP2001337078A (en) * 2000-05-30 2001-12-07 Hitachi Ltd Gas chromatography with automatic pretreating function
WO2006077912A1 (en) * 2005-01-19 2006-07-27 Saika Technological Institute Foundation Method of analysis with gas chromatograph through large-amount injection thereinto and apparatus therefor

Also Published As

Publication number Publication date
JP7142374B2 (en) 2022-09-27

Similar Documents

Publication Publication Date Title
Mol et al. Large volume sample introduction using temperature programmable injectors: implications of liner diameter
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
US11733148B2 (en) Volatility-resolved chemical characterization of airborne particles
JP7072134B2 (en) Sample pre-concentration system and method for use in gas chromatography
JPH07253421A (en) Gas-chromatographic system
JP4645408B2 (en) Sample injector for gas chromatograph
US10393636B2 (en) System and method for desorbing and detecting an analyte sorbed on a solid phase microextraction device
US10514365B2 (en) Cooling-assisted inside needle capillary adsorption trap device for analyzing complex solid samples using nano-sorbent
WO2014127602A1 (en) Gas chromatography/mass spectrometry large-volume sample introduction device system and analysis method thereof
US20180246071A1 (en) Increasing the Sensitivity of Gas Chromatography and Gas Chromatography-Mass Spectrometry Analysis By Allowing Relatively Large Solvent Volume Injections While Reducing Sample Loss And System Contamination
JPH0933502A (en) Gas chromatograph
JP2007514149A (en) Sample preparation equipment
US6203597B1 (en) Method and apparatus for mass injection of sample
Ruiz-Jimenez et al. Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction Arrow and in-tube extraction
US8925369B2 (en) Device and method for preparing samples for gas chromatography
JP2022007928A (en) Device and method for analyzing gas phase component
CA3019256A1 (en) System and method for desorbing and detecting an analyte sorbed on a solid phase microextraction device
US20210405000A1 (en) Gas phase component analysis device and gas phase component analysis method
Schomburg et al. Quantitation in capillary gas chromatography with emphasis on the problems of sample introduction
JP3290893B2 (en) Gas phase component analyzer
Hirata et al. Solvent‐free sample introduction for supercritical fluid chromatography using polymer coated fibers
JP6551102B2 (en) Breath analyzer
JP2023077724A (en) Analysis method of high polymer material
JP3367293B2 (en) Gas chromatograph sample introduction method
JP2023074939A (en) Polymer material analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220906

R150 Certificate of patent or registration of utility model

Ref document number: 7142374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150