JPH05243744A - Multilayer ceramic board - Google Patents

Multilayer ceramic board

Info

Publication number
JPH05243744A
JPH05243744A JP4081648A JP8164892A JPH05243744A JP H05243744 A JPH05243744 A JP H05243744A JP 4081648 A JP4081648 A JP 4081648A JP 8164892 A JP8164892 A JP 8164892A JP H05243744 A JPH05243744 A JP H05243744A
Authority
JP
Japan
Prior art keywords
dielectric
multilayer ceramic
substrate
magnetic
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4081648A
Other languages
Japanese (ja)
Inventor
Harufumi Bandai
治文 萬代
Kimihide Sugo
公英 須郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4081648A priority Critical patent/JPH05243744A/en
Priority to US08/024,537 priority patent/US5384434A/en
Publication of JPH05243744A publication Critical patent/JPH05243744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a multilayer ceramic substrate in which restriction on a dielectric material and a magnetic material does not exist and besides the mutual diffusion of ingredients between materials does not occur, accordingly, which can have a high-performance and highly accurate capacitor and inductor. CONSTITUTION:This multilayer ceramic substrate is one being united by piling up two multilayer structure of dielectric substrates 20 and 30 baked, wherein capacitors 24 and 34 are made inside, and a single layer or multilayer structure of magnetic substrate 40 baked, wherein an inductor 44 is made inside, and electrically and mechanically junctioning them by means of bumps 26, 36, and 46 being one example of a conductive junction means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コンデンサおよびイ
ンダクタを内蔵した多層セラミック基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic substrate containing a capacitor and an inductor.

【0002】[0002]

【従来の技術】この種の多層セラミック基板の従来例を
図4に示す。この多層セラミック基板は、内部にコンデ
ンサ6が形成された誘電体2と、内部にインダクタ14
が形成された磁性体10とを、互いに積み重ねて一体化
したものである。4はコンデンサ6を形成する積層構造
の電極であり、12はインダクタ14を形成する螺旋構
造の導体である。抵抗を内蔵する必要がある場合には、
この例のように誘電体2内、または磁性体10内に、厚
膜抵抗16を設けていた。
2. Description of the Related Art A conventional example of this type of multilayer ceramic substrate is shown in FIG. The multilayer ceramic substrate includes a dielectric 2 having a capacitor 6 formed therein and an inductor 14 inside.
The magnetic body 10 in which is formed is stacked and integrated with each other. Reference numeral 4 is an electrode having a laminated structure that forms the capacitor 6, and 12 is a conductor having a spiral structure that forms the inductor 14. If you need to build a resistor,
As in this example, the thick film resistor 16 is provided in the dielectric 2 or the magnetic body 10.

【0003】誘電体2は例えばPb 系複合ペロブスカイ
ト系、BaTiO3 系等の誘電体セラミックスから成り、
磁性体10は例えばMn−Znフェライト系、Ni−Znフ
ェライト系等の磁性体材料から成り、厚膜抵抗16は例
えばルテニウム系、ホウ化ランタン系等の抵抗材料から
成る。
The dielectric 2 is made of, for example, a Pb-based composite perovskite-based or BaTiO 3 -based dielectric ceramic,
The magnetic substance 10 is made of a magnetic substance material such as Mn-Zn ferrite type or Ni-Zn ferrite type, and the thick film resistor 16 is made of a resistance material such as ruthenium type or lanthanum boride type.

【0004】このような従来の多層セラミック基板は、
複数枚の誘電体グリーンシート(その内の幾つかにはコ
ンデンサ6の電極4となる導電ペーストが塗布されてい
る)と、複数枚の磁性体グリーンシート(その内の幾つ
かにはインダクタ14の導体12となる導電ペーストが
塗布されている)とを互いに積み重ねて加圧加熱して、
一体焼成することで作製していた。
Such a conventional multilayer ceramic substrate is
A plurality of dielectric green sheets (some of which are coated with a conductive paste to serve as the electrode 4 of the capacitor 6) and a plurality of magnetic green sheets (some of which include the inductor 14). Conductive paste to be the conductor 12 is applied to each other) and pressurized and heated,
It was made by integrally firing.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
な従来の多層セラミック基板は、一体焼成を行うため、
異種材料の焼成時の収縮率を合わせると共に成分の相互
拡散を抑える必要があることから、誘電体2および磁性
体10に前述したような誘電体材料あるいは磁性体材料
をそのまま使用することはできず、これらに各種の添加
物を加えた材料を用いている。例えば、誘電体2がBa
TiO3 系の誘電体セラミックスから成り、磁性体10
がNi−Znフェライト系の磁性体材料から成る場合は、
前者にはガラス、後者にはCuOを添加物として用いて
いる。
However, since the conventional multilayer ceramic substrate as described above is integrally fired,
Since it is necessary to adjust the shrinkage rate of different materials during firing and suppress mutual diffusion of components, it is impossible to use the above-mentioned dielectric material or magnetic material as the dielectric 2 and the magnetic material 10 as they are. , A material in which various additives are added is used. For example, the dielectric 2 is Ba
The magnetic substance 10 is made of TiO 3 -based dielectric ceramics.
Is made of a Ni-Zn ferrite-based magnetic material,
Glass is used as an additive in the former and CuO is used as an additive in the latter.

【0006】しかし、このような添加物を加えた誘電体
2や磁性体10は、添加物の存在によって元の材料に比
べて誘電率、Q、透磁率等が劣るため、内蔵したコンデ
ンサ6やインダクタ14の特性が劣るという問題があ
る。
However, since the dielectric material 2 and the magnetic material 10 to which such an additive is added have inferior dielectric constant, Q, magnetic permeability, etc. due to the presence of the additive, the built-in capacitor 6 and the like. There is a problem that the characteristics of the inductor 14 are inferior.

【0007】また、一体焼成可能な材料は焼成条件に敏
感であるため、内蔵したコンデンサ6やインダクタ14
の特性の安定性に乏しく、そのため歩留りが悪いという
問題もある。
Further, since the material that can be integrally fired is sensitive to the firing conditions, the built-in capacitor 6 and inductor 14
However, there is also a problem that the yield is poor due to the poor stability of the characteristics of.

【0008】そこでこの発明は、誘電体材料および磁性
体材料に対する制約がなく、かつ材料間の成分の相互拡
散も起こらず、従って高性能かつ高精度のコンデンサお
よびインダクタを内蔵可能な多層セラミック基板を提供
することを主たる目的とする。
Therefore, the present invention provides a multilayer ceramic substrate which has no restrictions on the dielectric material and the magnetic material, and does not cause mutual diffusion of components between the materials. Therefore, a high performance and highly accurate capacitor and inductor can be built-in. The main purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明の多層セラミック基板は、内部にコンデン
サが形成された多層構造の焼成済の1以上の誘電体基板
と、内部にインダクタが形成された単層または多層構造
の焼成済の1以上の磁性体基板とを積み重ねて、導電接
合手段によって互いに電気的かつ機械的に接合して一体
化して成ることを特徴とする。
In order to achieve the above object, the multilayer ceramic substrate of the present invention comprises one or more fired dielectric substrates having a multilayer structure in which capacitors are formed, and an inductor formed therein. One or more fired magnetic substance substrates having a single-layer or multi-layer structure are stacked and electrically and mechanically joined to each other by a conductive joining means to be integrated.

【0010】[0010]

【作用】上記多層セラミック基板は、焼成済の基板同士
を積み重ねて導電接合した構造であるので、従来の一体
焼成構造のものと違って、誘電体材料および磁性体材料
に対する制約がなく、かつ材料間の成分の相互拡散も起
こらない。従って、高性能かつ高精度のコンデンサおよ
びインダクタを内蔵可能である。
Since the above-mentioned multilayer ceramic substrate has a structure in which baked substrates are stacked and conductively bonded to each other, unlike the conventional integrally baked structure, there is no restriction on the dielectric material and the magnetic material, and Mutual diffusion of the components between does not occur. Therefore, a high-performance and highly accurate capacitor and inductor can be incorporated.

【0011】[0011]

【実施例】図1は、この発明の一実施例に係る多層セラ
ミック基板を示す概略断面図である。この多層セラミッ
ク基板は、内部にコンデンサ24を含む幾つかのコンデ
ンサが形成された多層構造の焼成済の誘電体基板20
と、内部にインダクタ44を含む幾つかのインダクタが
形成された単層または多層構造の焼成済の磁性体基板4
0と、内部にコンデンサ34を含む幾つかのコンデンサ
が形成された多層構造の焼成済の誘電体基板30とを積
み重ねている。22、32はコンデンサ24、34をそ
れぞれ形成する積層構造の電極であり、42はインダク
タ44を形成する螺旋構造の導体である。
1 is a schematic sectional view showing a multilayer ceramic substrate according to an embodiment of the present invention. This multilayer ceramic substrate is a fired dielectric substrate 20 having a multilayer structure in which several capacitors including a capacitor 24 are formed.
And a fired magnetic substrate 4 of a single-layer or multi-layer structure in which several inductors including an inductor 44 are formed inside.
0 and a fired dielectric substrate 30 having a multilayer structure in which several capacitors including a capacitor 34 are formed are stacked. Reference numerals 22 and 32 are electrodes of a laminated structure forming capacitors 24 and 34, respectively, and 42 is a conductor of a spiral structure forming an inductor 44.

【0012】そして、この例では導電接合手段として、
誘電体基板20および30の片面に幾つかのバンプ26
および36を設けており、かつ磁性体基板40の両面の
前記バンプ26、36に対向する位置にバンプ46を設
けており、これらのバンプ26、36、46を用いて誘
電体基板20、30および磁性体基板40間を互いに電
気的かつ機械的に焼付接合して一体化している。このバ
ンプ26、36、46は、各基板20、30、40の内
部の電極と導電接続されていても良い。
And, in this example, as the conductive joining means,
Some bumps 26 are provided on one side of the dielectric substrates 20 and 30.
And 36 are provided, and bumps 46 are provided on both surfaces of the magnetic substrate 40 so as to face the bumps 26, 36. The bumps 26, 36, 46 are used to form the dielectric substrates 20, 30 and The magnetic material substrates 40 are baked and joined electrically and integrated with each other. The bumps 26, 36, 46 may be conductively connected to the electrodes inside the substrates 20, 30, 40.

【0013】抵抗をも内蔵させたい場合は、厚膜抵抗を
誘電体基板20、30、磁性体基板40のいずれかの内
側になる面に形成しておけば良い。この例では、磁性体
基板40の上面に厚膜抵抗58を形成している。
If it is desired to incorporate a resistor as well, a thick film resistor may be formed on the inner surface of any one of the dielectric substrates 20 and 30 and the magnetic substrate 40. In this example, the thick film resistor 58 is formed on the upper surface of the magnetic substrate 40.

【0014】上記誘電体基板20および30は例えばP
b系複合ペロブスカイト系、BaTiO3 系等の誘電体セ
ラミックスから成り、磁性体40は例えばMn−Znフェ
ライト系、Ni−Znフェライト系等の磁性体材料から成
り、厚膜抵抗58は例えばルテニウム系、ホウ化ランタ
ン系等の抵抗材料から成る。
The dielectric substrates 20 and 30 are made of, for example, P.
It is made of a dielectric ceramic such as b-type composite perovskite-type or BaTiO 3 -type, the magnetic body 40 is made of a magnetic material such as Mn-Zn ferrite-type or Ni-Zn ferrite-type, and the thick-film resistor 58 is, for example, ruthenium-type. It is made of a resistance material such as lanthanum boride.

【0015】このような多層セラミック基板の表面に
は、必要に応じて幾つかの電子部品が搭載される。この
例では、誘電体基板20の上面にICチップ54および
チップコンデンサ、チップ抵抗等のチップ部品56が搭
載されている。55はボンディングワイヤである。
On the surface of such a multilayer ceramic substrate, some electronic components are mounted as needed. In this example, an IC chip 54 and a chip component 56 such as a chip capacitor and a chip resistor are mounted on the upper surface of the dielectric substrate 20. 55 is a bonding wire.

【0016】なお、上記のようなバンプ26、36、4
6、ICチップ54、チップ部品56、厚膜抵抗58に
は、基板20、30、40の内部または表面で電極がつ
ながっているが、ここではその図示を省略している。
The bumps 26, 36, 4 as described above are used.
6, electrodes are connected to the IC chip 54, the chip component 56, and the thick film resistor 58 inside or on the surfaces of the substrates 20, 30, 40, but the illustration thereof is omitted here.

【0017】各基板20、30、40の間50、52に
は、低融点ガラス、接着剤等を詰めて、それで基板同士
の接合を強化したり、隙間を密閉するようにしても良
い。
Low-melting glass, adhesive, etc. may be filled in the spaces 50, 52 between the substrates 20, 30, 40 to strengthen the bonding between the substrates or seal the gap.

【0018】上記のような多層セラミック基板の作製方
法の一例を説明すると、次のとおりである。
An example of the method of manufacturing the above-mentioned multilayer ceramic substrate is as follows.

【0019】 複数枚の誘電体グリーンシート(その
内の幾つかにはコンデンサ24、34の電極22、32
となる導電ペーストが塗布されている)を積み重ねて加
圧加熱して焼成して、上記のような誘電体基板20およ
び30をそれぞれ作製する。そして必要に応じて、コン
デンサ24、34にトリミングを施す。図1中のAはト
リミング個所を模式的に示したものである。また、片面
にバンプ26、36をそれぞれ形成しておく。
A plurality of dielectric green sheets (some of which are electrodes 22, 32 of capacitors 24, 34)
(A conductive paste to be applied is laminated) and heated under pressure to be fired to produce the dielectric substrates 20 and 30 as described above, respectively. Then, the capacitors 24 and 34 are trimmed as necessary. A in FIG. 1 schematically shows the trimming portion. In addition, bumps 26 and 36 are formed on one surface respectively.

【0020】 複数枚の磁性体グリーンシート(その
内の幾つかにはインダクタ44の導体42となる導電ペ
ーストが塗布されている)を積み重ねて加圧加熱して焼
成して、上記のような磁性体基板40を作製する。そし
て必要に応じて、インダクタ44にトリミングを施す。
また、両面にバンプ46を形成しておく。但し、この磁
性体基板40は、インダクタ44の構造等によっては単
層構造であっても良い。前述したような厚膜抵抗58を
内蔵させる場合は、それをこの磁性体基板40の表面に
形成し、これにも必要に応じてトリミングを施してお
く。
A plurality of magnetic green sheets (some of which are coated with a conductive paste to be the conductor 42 of the inductor 44) are stacked, heated under pressure, and fired to obtain the above-mentioned magnetic properties. The body substrate 40 is manufactured. Then, the inductor 44 is trimmed as needed.
In addition, bumps 46 are formed on both surfaces. However, the magnetic substrate 40 may have a single-layer structure depending on the structure of the inductor 44 and the like. When the thick film resistor 58 as described above is incorporated, it is formed on the surface of the magnetic substrate 40, and this is also trimmed as necessary.

【0021】 そして、上記、により作製された
誘電体基板20、30および磁性体基板40を互いに積
み重ねて熱処理して、バンプ26、36、46同士を焼
付、接合する。これによって、図1に示したような多層
セラミック基板が得られる。
Then, the dielectric substrates 20 and 30 and the magnetic substrate 40 manufactured as described above are stacked on each other and heat-treated to burn and bond the bumps 26, 36 and 46 to each other. As a result, the multilayer ceramic substrate as shown in FIG. 1 is obtained.

【0022】上記多層セラミック基板は、焼成済の基板
20、30、40同士を積み重ねて導電接合した構造で
あるので、従来の一体焼成構造のものと違って、誘電体
基板20、30および磁性体基板40に用いる誘電体材
料および磁性体材料に対する制約がなく、かつ材料間の
成分の相互拡散も起こらない。厚膜抵抗58等の抵抗を
設ける場合は、その抵抗材料についても同様に制約がな
い。従って、高性能かつ高精度のコンデンサおよびイン
ダクタを、更に必要に応じて抵抗をも、内蔵可能であ
る。即ち、上記構造によれば、高密度、高精度かつ高性
能の多層セラミック基板が実現できる。また、一体焼成
の場合と違って歩留りが悪化することもない。
Since the above-mentioned multilayer ceramic substrate has a structure in which baked substrates 20, 30, 40 are stacked and conductively bonded to each other, differently from the conventional integrated firing structure, the dielectric substrates 20, 30 and the magnetic substrate are formed. There are no restrictions on the dielectric material and magnetic material used for the substrate 40, and mutual diffusion of components between materials does not occur. When a resistor such as the thick film resistor 58 is provided, there is no restriction on the resistor material as well. Therefore, a high-performance and high-precision capacitor and inductor, and optionally a resistor can be incorporated. That is, according to the above structure, a high-density, high-precision, and high-performance multilayer ceramic substrate can be realized. Further, unlike the case of integral firing, the yield does not deteriorate.

【0023】また、従来の多層セラミック基板では、誘
電体2と磁性体10の一体焼成後に、中の方にあるコン
デンサ、インダクタおよび抵抗にトリミングを施すこと
は困難であり、このこともコンデンサ、インダクタおよ
び抵抗の精度を高めることができない一因であったが、
本多層セラミック基板では、中の方になるコンデンサ、
インダクタおよび抵抗にも、全体を積み重ねて接合する
前にトリミングを施しておけるので、この点からも、コ
ンデンサ、インダクタおよび抵抗の精度を高めることが
できる。
Further, in the conventional multilayer ceramic substrate, it is difficult to trim the capacitors, inductors, and resistors in the inner part after the dielectric 2 and the magnetic body 10 are integrally fired, which is also a problem. It was one of the reasons why the accuracy of the resistance could not be increased,
In this multilayer ceramic substrate,
Since the inductor and the resistor can be trimmed before the whole is stacked and joined, the accuracy of the capacitor, the inductor and the resistor can be improved also from this point.

【0024】なお、上記のような誘電体基板20、30
および磁性体基板40を互いに電気的かつ機械的に接合
する導電接合手段としては、上記例のようなバンプ2
6、36、46の代わりに、ロウ付けや導電接着材を用
いても良く、更に端面電極や金属ピン等を用いても良
い。
The dielectric substrates 20, 30 as described above are used.
As the conductive bonding means for electrically and mechanically bonding the magnetic substrate 40 to each other, the bump 2 as in the above example is used.
Instead of 6, 36, 46, brazing or conductive adhesive may be used, and end face electrodes or metal pins may be used.

【0025】図2は端面電極を用いる例を簡単に示した
ものであり、例えば上記のような誘電体基板20、30
および磁性体基板40の端面に、それらを積み重ねて一
体化する前に、端面電極60、62の元になる電極ペー
ストをそれぞれ塗布しておき、そのようなものを積み重
ねてこの電極ペーストを焼結させることにより、端面電
極60、62が各基板20、30、40の内部あるいは
表面の電極と接合されると共に、端面電極60、62同
士が接合されて、全体が一体化する。
FIG. 2 shows a simple example of using end face electrodes. For example, the dielectric substrates 20 and 30 described above are used.
Further, before stacking and integrating them on the end face of the magnetic substrate 40, the electrode pastes which are the bases of the end face electrodes 60, 62 are applied respectively, and such are stacked and the electrode paste is sintered. By doing so, the end face electrodes 60, 62 are joined to the electrodes inside or on the surface of each substrate 20, 30, 40, and the end face electrodes 60, 62 are joined together, and the whole is integrated.

【0026】図3は金属ピンを用いる例を簡単に示した
ものであり、例えば上記のような誘電体基板20、30
および磁性体基板40の必要個所に、それらの内部ある
いは表面の電極につながるスルーホール64、66をそ
れぞれ設けておいてその内壁にも電極を形成しておき、
そこに金属ピン68を差し込むことにより、各基板2
0、30、40間が電気的かつ機械的に接合されて全体
が一体化する。
FIG. 3 shows a simple example of using metal pins. For example, the dielectric substrates 20 and 30 described above are used.
Further, through holes 64 and 66 connected to electrodes inside or on the surface of the magnetic substrate 40 are provided at necessary places, and electrodes are also formed on the inner walls thereof.
By inserting the metal pin 68 there, each substrate 2
The elements 0, 30, and 40 are electrically and mechanically joined to be integrated as a whole.

【0027】上記のようなロウ付け、導電接着材、端面
電極、金属ピンを用いる場合も、各基板20、30、4
0の間50、52に、図1の実施例のところで説明した
ように、低融点ガラスや樹脂等を詰めることを併用して
も良い。
Even when the above brazing, conductive adhesive, end face electrodes, and metal pins are used, each of the substrates 20, 30, 4,
Between 0 and 50, as described in the embodiment of FIG. 1, low melting point glass, resin or the like may be used together.

【0028】[0028]

【発明の効果】以上のようにこの発明の多層セラミック
基板は、焼成済の基板同士を積み重ねて導電接合した構
造であるので、従来の一体焼成構造のものと違って、誘
電体基板および磁性体基板に用いる誘電体材料および磁
性体材料に対する制約がなく、かつ材料間の成分の相互
拡散も起こらない。従って、高性能かつ高精度のコンデ
ンサおよびインダクタを内蔵可能である。しかも中の方
になるコンデンサおよびインダクタにも、全体を積み重
ねて接合する前にトリミングを施しておけるので、この
点からもコンデンサおよびインダクタの精度を高めるこ
とができる。従ってこの発明によれば、高密度、高精度
かつ高性能の多層セラミック基板を実現することができ
る。
As described above, since the multilayer ceramic substrate of the present invention has a structure in which fired substrates are stacked and conductively bonded to each other, unlike the conventional integrally fired structure, a dielectric substrate and a magnetic substance are used. There are no restrictions on the dielectric material and magnetic material used for the substrate, and mutual diffusion of components between materials does not occur. Therefore, a high-performance and highly accurate capacitor and inductor can be incorporated. In addition, the capacitors and inductors in the middle can be trimmed before the whole is stacked and joined, so that the accuracy of the capacitors and inductors can be improved also from this point. Therefore, according to the present invention, it is possible to realize a high-density, high-precision and high-performance multilayer ceramic substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例に係る多層セラミック基
板を示す概略断面図である。
FIG. 1 is a schematic sectional view showing a multilayer ceramic substrate according to an embodiment of the present invention.

【図2】 導電接合手段の他の例を簡単に示す概略断面
図である。
FIG. 2 is a schematic cross-sectional view briefly showing another example of the conductive joining means.

【図3】 導電接合手段の更に他の例を簡単に示す概略
断面図である。
FIG. 3 is a schematic cross-sectional view briefly showing still another example of the conductive joining means.

【図4】 従来の多層セラミック基板の一例を示す概略
断面図である。
FIG. 4 is a schematic sectional view showing an example of a conventional multilayer ceramic substrate.

【符号の説明】[Explanation of symbols]

20 誘電体基板 24 コンデンサ 26 バンプ 30 誘電体基板 34 コンデンサ 36 バンプ 40 磁性体基板 44 インダクタ 46 バンプ 20 Dielectric Substrate 24 Capacitor 26 Bump 30 Dielectric Substrate 34 Capacitor 36 Bump 40 Magnetic Substrate 44 Inductor 46 Bump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部にコンデンサが形成された多層構造
の焼成済の1以上の誘電体基板と、内部にインダクタが
形成された単層または多層構造の焼成済の1以上の磁性
体基板とを積み重ねて、導電接合手段によって互いに電
気的かつ機械的に接合して一体化して成ることを特徴と
する多層セラミック基板。
1. A multi-layered, fired dielectric substrate having a capacitor formed therein, and a single-layer or multi-layered, fired magnetic substrate having an inductor formed therein. A multi-layered ceramic substrate, which is formed by stacking and electrically and mechanically joining them to each other by a conductive joining means.
JP4081648A 1992-03-02 1992-03-02 Multilayer ceramic board Pending JPH05243744A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4081648A JPH05243744A (en) 1992-03-02 1992-03-02 Multilayer ceramic board
US08/024,537 US5384434A (en) 1992-03-02 1993-03-01 Multilayer ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081648A JPH05243744A (en) 1992-03-02 1992-03-02 Multilayer ceramic board

Publications (1)

Publication Number Publication Date
JPH05243744A true JPH05243744A (en) 1993-09-21

Family

ID=13752163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081648A Pending JPH05243744A (en) 1992-03-02 1992-03-02 Multilayer ceramic board

Country Status (1)

Country Link
JP (1) JPH05243744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221462A (en) * 1994-02-03 1995-08-18 Murata Mfg Co Ltd Composite circuit part
JP2007103466A (en) * 2005-09-30 2007-04-19 Toshiba Corp Multilayered printed circuit board and its manufacturing method, and electronic apparatus
CN106062903A (en) * 2014-03-04 2016-10-26 株式会社村田制作所 Inductor device, inductor array, multilayer substrate and method for manufacturing inductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221462A (en) * 1994-02-03 1995-08-18 Murata Mfg Co Ltd Composite circuit part
JP2007103466A (en) * 2005-09-30 2007-04-19 Toshiba Corp Multilayered printed circuit board and its manufacturing method, and electronic apparatus
CN106062903A (en) * 2014-03-04 2016-10-26 株式会社村田制作所 Inductor device, inductor array, multilayer substrate and method for manufacturing inductor device
JPWO2015133310A1 (en) * 2014-03-04 2017-04-06 株式会社村田製作所 Inductor device, inductor array and multilayer substrate, and method of manufacturing inductor device
CN106062903B (en) * 2014-03-04 2018-08-28 株式会社村田制作所 The manufacturing method of inductor arrangement, inductor array and multilager base plate and inductor arrangement
US10734150B2 (en) 2014-03-04 2020-08-04 Murata Manufacturing Co., Ltd. Inductor device, inductor array, and multilayered substrate, and method for manufacturing inductor device

Similar Documents

Publication Publication Date Title
US5384434A (en) Multilayer ceramic circuit board
US6504466B1 (en) Lamination-type coil component and method of producing the same
US11817263B2 (en) Electronic component, circuit board, and method of mounting electronic component on circuit board
US6871391B2 (en) Method of manufacturing laminated ceramic electronic component and laminated ceramic electronic component
US10811194B2 (en) Composite electronic component and resistor
US10141116B2 (en) Composite electronic component and resistor device
US10299383B2 (en) Composite electronic component and resistance element
WO2008050657A1 (en) Laminate capacitor
US10453617B2 (en) Composite electronic component and resistance element
US10186381B2 (en) Composite electronic component and resistance element
US6711029B2 (en) Low temperature co-fired ceramic with improved shrinkage control
JPH053134A (en) Manufacture of outer electrode of laminated ceramic capacitor
JPH05243744A (en) Multilayer ceramic board
JP3200954B2 (en) Composite electronic components
JPH05243745A (en) Multilayer ceramic board
JP3669404B2 (en) Manufacturing method of multilayer ceramic substrate
JP2946261B2 (en) Manufacturing method of laminated electronic components
JPH0714110B2 (en) Multilayer ceramic substrate
JPS6341205B2 (en)
JP2001144438A (en) Multilayer ceramic board and method of production
JP2700833B2 (en) Ceramic composite electronic component and method of manufacturing the same
JPH03263311A (en) Laminated compound parts and manufacture thereof
JPH08236409A (en) Laminated composite component and manufacture thereof
JP3305009B2 (en) Dielectric resonator and dielectric filter
JP2642754B2 (en) LC composite network component and method of manufacturing the same