JPH05243500A - Manufacture of high implantation resistor - Google Patents

Manufacture of high implantation resistor

Info

Publication number
JPH05243500A
JPH05243500A JP4073015A JP7301592A JPH05243500A JP H05243500 A JPH05243500 A JP H05243500A JP 4073015 A JP4073015 A JP 4073015A JP 7301592 A JP7301592 A JP 7301592A JP H05243500 A JPH05243500 A JP H05243500A
Authority
JP
Japan
Prior art keywords
implantation
layer
resistance
ions
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4073015A
Other languages
Japanese (ja)
Inventor
Toshio Hariki
稔夫 簗木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP4073015A priority Critical patent/JPH05243500A/en
Publication of JPH05243500A publication Critical patent/JPH05243500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a high implantation resistor of high precision, by forming a high implantation resistor layer in an N island by ion implantation, and forming thereon a shallow N-type diffusion layer having specified concentration by implanting N-type impurity ions. CONSTITUTION:A P-type high implantation layer 3 whose concentration is in the same order as the epitaxial concentration (10<14>-10<15>ions/cm<2>) is formed in an N island by ion implantation. A shallow N-type diffusion layer 4 whose concentration is in the order of 10<11>-10<12>ions/cm<2> is formed on the high resistance implantation layer 3 by implanting ions of N-type impurities like P and As. After an over-doped layer 5 and an N<+> diffusion layer are formed, the surface is covered with a protective film 1. Specified parts are opened and aluminum wiring 7 is formed. Influence upon electric charges in the protective film which is exerted by full power electrification and high temperature electrification is reduced by the effect of the N-type diffusion layer 4. Influence upon the high implantation resistor which is exerted by electric charges in the protective film is also reduced, and the resistance value scarcely changes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シート抵抗が3kΩ/
□以上の高インプラ抵抗の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention has a sheet resistance of 3 kΩ /
□ The manufacturing method of the above high implantation resistance.

【0002】[0002]

【従来の技術】通常、IC中の抵抗は、Nアイランドに
P型の拡散を行い、同一アイランドの中に多数本の抵抗
を形成する構成が採られる。そして、このP型の拡散に
は、通常、ベース拡散が用いられているが、近年、IC
では消費電力をできるだけ抑える設計が必要とされ、高
抵抗のインプラ抵抗が多用されるようになってきた。最
近では、エピタキシャル濃度と大差のない濃度のインプ
ラ抵抗も使用されるようになってきた。本発明は、濃度
がエピタキシャル濃度と大差のないシート抵抗が3kΩ
/□以上のインプラ抵抗に関する。
2. Description of the Related Art In general, resistors in an IC have a structure in which P type diffusion is performed on N islands to form a large number of resistors in the same island. Although base diffusion is usually used for this P-type diffusion, in recent years IC
Therefore, a design that minimizes power consumption is required, and high resistance implanter resistors have come to be used frequently. Recently, implanter resistors having a concentration not much different from the epitaxial concentration have been used. The present invention has a sheet resistance of 3 kΩ, which is not significantly different from the epitaxial concentration.
/ Regarding the resistance of the implanter above □.

【0003】[0003]

【発明が解決しようとする課題】エピタキシャル濃度
(通常1014〜1015イオン/cm2 )と大差のない濃
度に形成したインプラ抵抗は、さほど精度が要求されな
い抵抗では問題がないが、例えば、レギュレータの基準
電圧回路部に使用される抵抗ではその安定性が問題とな
る。すなわち、このようなインプラ抵抗では、フルパワ
ー通電、高温通電等によりその電位分布に応じて表面保
護膜中の電荷に再分布が起り、それにより抵抗値が無視
できない程度の経時変化を起す。図3は保護膜中の可動
イオンのBT(高温通電試験)による再分布の状態を模
式的に示す。図において1は酸化膜(保護膜)、2は酸
化膜1中の可動イオン、3はP型の高抵抗インプラ層、
5は抵抗コンタクトのオーバードープ層、6はアイラン
ド電位をとるN+ 拡散層、7はアルミ配線で、図3
(a)はBT前の状態を、図3(b)はBT後の状態を
示す。通常、抵抗アイランドはアイランドの最高電位に
あるため、保護膜1中の可動電荷2の再分布は、Nエピ
タキシャル部にマイナスイオンが、抵抗上部の最低電位
に近い方にプラスイオンが多く集まるように再分布す
る。この抵抗上部に集まるイオンの量によって下のイン
プラ抵抗が影響を受け、抵抗値が大きくなるように働
く。本発明は、フルパワー通電、高温通電による抵抗値
の変化の小さい高インプラ抵抗を得ることを目的とす
る。
The implantation resistance formed at a concentration not much different from the epitaxial concentration (usually 10 14 to 10 15 ions / cm 2 ) is not a problem for resistors that do not require so much precision, but for example, a regulator The stability of the resistor used in the reference voltage circuit section of 1 is a problem. That is, in such implanter resistance, redistribution of charges in the surface protective film occurs according to the potential distribution due to full-power energization, high-temperature energization, and the like, which causes a change in resistance value over time that cannot be ignored. FIG. 3 schematically shows the state of redistribution of mobile ions in the protective film by BT (high temperature current test). In the figure, 1 is an oxide film (protective film), 2 is mobile ions in the oxide film 1, 3 is a P-type high resistance implantation layer,
Reference numeral 5 is a resistance contact overdoped layer, 6 is an N + diffusion layer that takes an island potential, and 7 is an aluminum wiring.
3A shows the state before BT, and FIG. 3B shows the state after BT. Since the resistance island is normally at the highest potential of the island, the redistribution of the mobile charge 2 in the protective film 1 is such that many negative ions are gathered in the N epitaxial portion and many positive ions are gathered near the lowest potential above the resistor. Redistribute. The implantation resistance of the lower layer is affected by the amount of ions collected on the upper side of the resistance, and the resistance value increases. It is an object of the present invention to obtain a high implantation resistance with a small change in resistance value due to full power energization and high temperature energization.

【0004】[0004]

【課題を解決するための手段】本発明の製造方法は、N
アイランドにイオン注入によりP型の高インプラ抵抗層
を形成し、該高インプラ抵抗層の上部にP又はAs等の
N型不純物のイオン注入により濃度が1011〜1012
オン/cm2 オーダーの浅いN型の拡散層を形成するこ
とを特徴とする。
The manufacturing method of the present invention is
A P-type high implantation resistance layer is formed on the island by ion implantation, and an N-type impurity such as P or As is ion-implanted on the upper portion of the high implantation resistance layer to have a shallow concentration of 10 11 to 10 12 ions / cm 2 order. It is characterized in that an N type diffusion layer is formed.

【0005】[0005]

【作用】上記の方法によると、高インプラ抵抗の上部に
形成されたN型の拡散層によって、フルパワー通電、高
温通電時の高インプラ抵抗の電荷が保護膜中の電荷に及
ぼす影響が軽減され、電荷の集中が緩和されるととも
に、保護膜中の電荷が高インプラ抵抗に及ぼす影響も軽
減され、抵抗値の変化は無視できる程度に小さくなる。
According to the above method, the N-type diffusion layer formed on the upper portion of the high implantation resistance reduces the influence of the high implantation resistance charges at the time of full power conduction and high temperature conduction on the charges in the protective film. The concentration of electric charges is alleviated, and the influence of electric charges in the protective film on the high implantation resistance is also reduced, so that the change in resistance value becomes negligible.

【0006】[0006]

【実施例】図1は本発明の製造方法による高インプラ抵
抗の構造を模式的に示す。図において図3の符号と同一
の符号は同一又は相当する部分を示し、4は高抵抗イン
プラ層3の上部にリンP又はヒ素As等のN型不純物の
イオン注入により形成した濃度が1011〜1012イオン
/cm2 オーダーの浅いN型の拡散層である。保護膜中
の可動イオンは、7×1010イオン/cm2 である。N
アイランドにイオン注入により濃度がエピタキシャル濃
度(1014〜1015イオン/cm2 )と同じオーダーの
P型の高抵抗インプラ層3を形成し、次に、リンP又は
ヒ素As等のN型不純物のイオン注入により高抵抗イン
プラ層3の上部に濃度が1011〜1012イオン/cm2
オーダーの浅いN型の拡散層4を形成する。その後、従
来と同じように、抵抗コンタクトのオーバードープ層5
及びアイランド電位をとるN+拡散層を形成し、表面を
保護膜1で覆い、保護膜1の所定の部分を開口し、アル
ミ配線7を行う。
EXAMPLE FIG. 1 schematically shows the structure of high implantation resistance according to the manufacturing method of the present invention. In the figure, the same reference numerals as those in FIG. 3 indicate the same or corresponding portions, and 4 indicates the concentration formed by ion implantation of N-type impurities such as phosphorus P or arsenic As on the high resistance implantation layer 3 of 10 11 to It is a shallow N-type diffusion layer of the order of 10 12 ions / cm 2 . The number of mobile ions in the protective film is 7 × 10 10 ions / cm 2 . N
A P-type high-resistance implantation layer 3 having a concentration of the same order as the epitaxial concentration (10 14 to 10 15 ions / cm 2 ) is formed on the island by ion implantation, and then N-type impurities such as phosphorus P or arsenic As are added. The concentration of 10 11 to 10 12 ions / cm 2 is applied to the upper portion of the high resistance implantation layer 3 by ion implantation.
An N-type diffusion layer 4 having a shallow order is formed. After that, as in the conventional case, the overdoped layer 5 of the resistance contact is formed.
Then, an N + diffusion layer having an island potential is formed, the surface is covered with the protective film 1, a predetermined portion of the protective film 1 is opened, and an aluminum wiring 7 is formed.

【0007】高抵抗インプラ層3と保護膜1の界面部分
に形成されたN型の拡散層4によって、フルパワー通
電、高温通電が保護膜中の電荷に及ぼす影響が軽減さ
れ、保護膜中の電荷の集中が緩和され、また、保護膜中
の電荷が高インプラ抵抗に及ぼす影響も軽減され、抵抗
値が殆んど変化しなくなる。図2はレギュレータの基準
電圧回路部に本発明による高インプラ抵抗を使用した場
合のN型拡散層の濃度とBT前後の出力電圧変動率の関
係を示す。N型拡散層4のない場合−1.14%のドリ
フトがあったものが、濃度が3×1012イオン/cm2
で0.02%、濃度が4×1012イオン/cm2 で0.
36%のドリフト量となり、N型拡散層4の濃度を適当
値にすれば、抵抗値の変動を差し支えない範囲内に抑え
られることがわかる。
The N-type diffusion layer 4 formed at the interface between the high resistance implantation layer 3 and the protective film 1 reduces the influence of full-power energization and high-temperature energization on the charges in the protective film, and The concentration of charges is relieved, and the influence of the charges in the protective film on the high implantation resistance is also reduced, so that the resistance value hardly changes. FIG. 2 shows the relationship between the concentration of the N-type diffusion layer and the output voltage fluctuation rate before and after BT when the high implantation resistance according to the present invention is used in the reference voltage circuit section of the regulator. In the case where the N-type diffusion layer 4 was not provided, the drift was 1.14%, but the concentration was 3 × 10 12 ions / cm 2.
At 0.02%, and at a concentration of 4 × 10 12 ions / cm 2 at 0.1.
The amount of drift is 36%, and it can be seen that if the concentration of the N-type diffusion layer 4 is set to an appropriate value, it can be suppressed within the range in which the fluctuation of the resistance value does not interfere.

【0008】[0008]

【発明の効果】以上説明したとおり、本発明によれば、
高インプラ抵抗のフルパワー通電、高温通電による抵抗
値の変化を無視できる程度に抑えることができ、高精度
の高インプラ抵抗を容易に得ることがてきるという効果
がある。
As described above, according to the present invention,
There is an effect that it is possible to suppress the change in the resistance value due to the high power conduction of the high implantation resistance and the high temperature conduction to a negligible degree, and it is possible to easily obtain the high precision implantation resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法による高インプラ抵抗の構造
を模式的に示す説明図である。
FIG. 1 is an explanatory view schematically showing the structure of high implantation resistance according to the manufacturing method of the present invention.

【図2】レギュレータの基準電圧回路部に本発明による
高インプラ抵抗を使用した場合のN型拡散層の濃度とB
T前後の出力電圧変動率の関係を示すグラフ図である。
FIG. 2 shows the concentration and B of the N-type diffusion layer when the high implantation resistance according to the present invention is used in the reference voltage circuit section of the regulator.
It is a graph which shows the relationship of the output voltage fluctuation rate before and behind T.

【図3】従来の高インプラ抵抗の保護膜中の可動イオン
のBTによる再分布の状態を模式的に示す説明図であ
る。
FIG. 3 is an explanatory view schematically showing a state of redistribution of mobile ions by BT in a conventional protective film having a high implantation resistance.

【符号の説明】[Explanation of symbols]

1 酸化膜 2 可動イオン 3 P型の高抵抗インプラ層 4 N型の拡散層 5 抵抗コンタクトのオーバードープ層 6 アイランド電位をとるN+ 拡散層 7 アルミ配線1 Oxide Film 2 Mobile Ion 3 P-type High Resistance Implant Layer 4 N-type Diffusion Layer 5 Resistive Contact Overdoping Layer 6 Island-potential N + Diffusion Layer 7 Aluminum Wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のエピタキシャル層又は基板
にイオン注入によりシート抵抗が3kΩ/□以上の第1
導電型と反対の第2の導電型の高インプラ抵抗層を形成
し、該高インプラ抵抗層上部にイオン注入により濃度が
1011〜1012イオン/cm2 オーダーの浅い第1導電
型の拡散層を形成することを特徴とする高インプラ抵抗
の製造方法。
1. A first conductive type epitaxial layer or substrate having a sheet resistance of 3 kΩ / □ or more by ion implantation.
A second conductivity type high implantation resistance layer opposite to the conductivity type is formed, and a shallow first conductivity type diffusion layer having a concentration of 10 11 to 10 12 ions / cm 2 order is formed by ion implantation on the high implantation resistance layer. A method for manufacturing a high implantation resistance, which comprises:
JP4073015A 1992-02-26 1992-02-26 Manufacture of high implantation resistor Pending JPH05243500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073015A JPH05243500A (en) 1992-02-26 1992-02-26 Manufacture of high implantation resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073015A JPH05243500A (en) 1992-02-26 1992-02-26 Manufacture of high implantation resistor

Publications (1)

Publication Number Publication Date
JPH05243500A true JPH05243500A (en) 1993-09-21

Family

ID=13506094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073015A Pending JPH05243500A (en) 1992-02-26 1992-02-26 Manufacture of high implantation resistor

Country Status (1)

Country Link
JP (1) JPH05243500A (en)

Similar Documents

Publication Publication Date Title
US4001869A (en) Mos-capacitor for integrated circuits
CA1211561A (en) Programmable read-only memory structure and method of fabricating such structure
US4263518A (en) Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body
US3796929A (en) Junction isolated integrated circuit resistor with crystal damage near isolation junction
JPH0116017B2 (en)
EP0338516A2 (en) Power MOSFET having a current sensing element of high accuracy
JPS6057668A (en) Semiconductor device
JPS6322070B2 (en)
US4837177A (en) Method of making bipolar semiconductor device having a conductive recombination layer
US4829344A (en) Electronic semiconductor device for protecting integrated circuits against electrostatic discharges
JPH0332234B2 (en)
GB2061003A (en) Zener diode
JPH06163867A (en) Color-selective integrated photodiode and apparatus provided with amplifier connected to its laterstage
US5032534A (en) Process for manufacturing a regulation and protection diode
EP0317915B1 (en) Method of manufacturing semiconductor device with overvoltage self-protection
JPS62104155A (en) Electronic device
JPH0324788B2 (en)
GB2149205A (en) Integrated circuit reference diode and fabrication method therefor
JPH05243500A (en) Manufacture of high implantation resistor
JPS63192274A (en) Improved schottky barrier diode for alpha-beam resistantstatic random access memory
JP2514095B2 (en) Photo triac
US4892839A (en) Method of manufacturing a semiconductor device with polysilicon resistors and field plate
JPH02186675A (en) High breakdown strength planar type semiconductor element and manufacture thereof
JPS6174361A (en) Buried resistance semiconductor device
JPH07111311A (en) Semiconductor device and manufacture thereof