JPH05243097A - Solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor

Info

Publication number
JPH05243097A
JPH05243097A JP4045634A JP4563492A JPH05243097A JP H05243097 A JPH05243097 A JP H05243097A JP 4045634 A JP4045634 A JP 4045634A JP 4563492 A JP4563492 A JP 4563492A JP H05243097 A JPH05243097 A JP H05243097A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
capacitor element
resin
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4045634A
Other languages
Japanese (ja)
Other versions
JP3438900B2 (en
Inventor
Katsunori Minatomi
勝則 水富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04563492A priority Critical patent/JP3438900B2/en
Publication of JPH05243097A publication Critical patent/JPH05243097A/en
Application granted granted Critical
Publication of JP3438900B2 publication Critical patent/JP3438900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a manufacturing method for a solid-state electrolytic capacitor having a minimum change in leakage current and excellent heat resistance even against thermal stress. CONSTITUTION:This solid-state electrolytic capacitor comprises a capacitor element 6 composed of an anode foil 1 and a cathode foil 2 wound around a separator 3, TCNQ salt 8 which is saturated into the capacitor element 6 and then cooled and solidified, and fluorine contained resin which is penetrated into the capacitor device. The introduction of fluorine contained resin into the capacitor device and its surface minimizes the thermal stress of TCNQ salt and improves its leakage current characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質として、TC
NQ塩を用いた固体電解コンデンサに関するものであ
る。
The present invention relates to a solid electrolyte, TC
The present invention relates to a solid electrolytic capacitor using NQ salt.

【0002】[0002]

【従来の技術】電解質としてTCNQ塩を用いた有機半
導体固体電解コンデンサに関しては、本願出願人が既に
種々提案している。すなわち、特開昭58−19141
4号(H01G 9/02)等に開示されているN位を
アルキル基で置換したイソキノリンとのTCNQ塩を用
いた固体電解コンデンサは、特に優れた高周波特性を持
っているため、スイッチング電源用などに広く採用され
ているが、近年、機器の小型化の必要性から、この種の
コンデンサも表面実装用部品(チップ部品)としての対
応を迫られている。
The applicant of the present application has already proposed various organic semiconductor solid electrolytic capacitors using TCNQ salt as an electrolyte. That is, JP-A-58-19141
No. 4 (H01G 9/02) and the like, a solid electrolytic capacitor using a TCNQ salt with isoquinoline in which the N-position is substituted with an alkyl group has particularly excellent high-frequency characteristics, and therefore is used for switching power supplies, etc. However, in recent years, due to the need for downsizing of devices, this type of capacitor is also required to be used as a surface mounting component (chip component).

【0003】しかしながら、上述の従来技術によるコン
デンサにおいては、表面実装用部品として必須の、半田
付け時の熱ストレス(通常230℃)には耐えられず、
著しい漏れ電流増大等の特性劣化を招くという欠点があ
った。
However, the above-mentioned conventional capacitor cannot withstand the thermal stress (usually 230 ° C.) at the time of soldering, which is indispensable for surface mounting parts,
There is a drawback in that the characteristics such as a remarkable increase in leakage current are brought about.

【0004】この欠点を改善するために、本願出願人
は、150℃以上の温度で電圧処理(エージング)を行
うことを提案している。すなわち、特開平2−2788
07号公報(H01G 9/04)に記載されているよ
うに、コンデンサを、150℃以上の所定の温度に加熱
した円筒状穴あき熱板に収納し、定格電圧を印加しなが
らエージングを行うものであり、これによって、漏れ電
流による特性劣化を防ぐものである。
In order to remedy this drawback, the applicant of the present application proposes to carry out a voltage treatment (aging) at a temperature of 150 ° C. or higher. That is, JP-A-2-2788
No. 07 (H01G 9/04), a capacitor is housed in a cylindrical perforated hot plate heated to a predetermined temperature of 150 ° C. or higher, and is subjected to aging while applying a rated voltage. This prevents the characteristic deterioration due to the leakage current.

【0005】[0005]

【発明が解決しようとする課題】上述の従来技術によれ
ば漏れ電流による特性劣化をある程度防ぐ事は可能であ
るが、リフローによって半田付けを行った場合、完全に
漏れ電流の増大を防止することができない。従って、本
発明はリフロー半田付け後の漏れ電流の増大を確実に防
止するものである。
According to the above-mentioned conventional technique, it is possible to prevent the characteristic deterioration due to the leakage current to some extent, but it is possible to completely prevent the leakage current from increasing when the soldering is performed by the reflow. I can't. Therefore, the present invention reliably prevents an increase in leakage current after reflow soldering.

【0006】[0006]

【課題を解決するための手段】本発明では、上述の従来
技術の欠点を改善するためのものであり、陽極箔と陰極
箔とをセパレータを介して巻回したコンデンサ素子と、
該コンデンサ素子に含浸後冷却固化されたTCNQ塩
と、該コンデンサ素子内部に浸透させたフッ素樹脂とか
らなることを特徴とするものである。また、フッ素樹脂
をさらに熱硬化樹脂、好ましくは粉体樹脂で被覆するも
のである。
The present invention is to improve the above-mentioned drawbacks of the prior art, and includes a capacitor element in which an anode foil and a cathode foil are wound with a separator interposed therebetween,
It is characterized in that the capacitor element is composed of a TCNQ salt which is cooled and solidified after impregnation and a fluororesin permeated into the inside of the capacitor element. Further, the fluororesin is further coated with a thermosetting resin, preferably a powder resin.

【0007】[0007]

【作用】フッ素樹脂は摩擦係数が小さく、耐熱性、耐薬
品性に優れ、しかも吸水性、透湿性が極めて小さく、化
学的に不活性な物質である。本発明はこのフッ素樹脂の
特性を利用するものである。すなわち、フッ素樹脂をコ
ンデンサ素子内部および表面に導入することにより、T
CNQ塩に対する熱ストレスが低減するのである。
FUNCTION Fluorine resin is a chemically inert substance having a small friction coefficient, excellent heat resistance and chemical resistance, extremely low water absorption and moisture permeability. The present invention utilizes the characteristics of this fluororesin. That is, by introducing fluororesin inside and on the surface of the capacitor element, T
The heat stress on the CNQ salt is reduced.

【0008】また、外装にエポキシ樹脂などの熱硬化性
樹脂を用いると、フッ素樹脂が外装樹脂をはじく性質を
有することから、TCNQ塩に対する外装樹脂の化学
的、機械的な悪影響が緩和される。
Further, when a thermosetting resin such as an epoxy resin is used for the outer package, the fluororesin has a property of repelling the outer package resin, so that the chemical and mechanical adverse effects of the outer package resin on the TCNQ salt are alleviated.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。図1は本
発明に使用するコンデンサ素子を示す。まず、高純度
(99.99%以上)のアルミニウム箔を化学的処理に
より粗面化し、実効表面積を増加させるためのいわゆる
エッチング処理を行う。次に電解液中にて、電気化学的
にアルミニウム箔表面に酸化被膜(酸化アルミニウムの
薄膜)を形成する(化成処理)。次にエッチング処理、
化成処理を行ったアルミニウム箔を陽極箔1とし、対向
陰極箔2との間にセパレータ3としてマニラ紙をはさ
み、図1に示すように円筒状に巻き取る。このように、
アルミニウム箔に酸化被膜を形成した陽極箔1と陰極箔
2との両電極箔間にセパレータ3を巻回して、コンデン
サ素子6が形成される。なお、4、5はリード線であ
る。
EXAMPLES Examples of the present invention will be described below. FIG. 1 shows a capacitor element used in the present invention. First, a so-called etching treatment for increasing the effective surface area is performed by roughening a high-purity (99.99% or more) aluminum foil by a chemical treatment. Next, an oxide film (a thin film of aluminum oxide) is electrochemically formed on the surface of the aluminum foil in the electrolytic solution (chemical conversion treatment). Next, etching process,
The aluminum foil which has been subjected to the chemical conversion treatment is used as the anode foil 1, sandwiched between the counter cathode foil 2 and the manila paper as the separator 3 and wound into a cylindrical shape as shown in FIG. in this way,
The separator element 3 is wound between both electrode foils of the anode foil 1 and the cathode foil 2, which are formed by forming an oxide film on the aluminum foil, to form the capacitor element 6. In addition, 4 and 5 are lead wires.

【0010】次に、コンデンサ素子6に熱処理を施し、
セパレータ3を構成するマニラ紙を炭化することによっ
て、繊維の細径化による密度の低下を図る。なお、セパ
レータとして、マニラ紙をあらかじめ所定の温度と時間
(例えば240℃、40分)で熱処理を施して炭化した
ものや、カーボン不織布を用い、陽極箔と陰極箔との間
にはさんで巻回してもよい。
Next, the capacitor element 6 is heat treated,
By carbonizing the manila paper forming the separator 3, the density is reduced due to the thinning of the fibers. As the separator, manila paper which has been carbonized by heat treatment at a predetermined temperature and time (for example, 240 ° C., 40 minutes) or a carbon nonwoven fabric is used, and is wound between the anode foil and the cathode foil. You can turn it.

【0011】次に、図2に示すように、金属(アルミ)
ケース7内で TCNQ塩、例えば、N,N−ペンタメ
チレンルチジニウム2・TCNQ4とN−フェネチルルチ
ジニウム・TCNQ2の等量混合物を300℃で加熱融解
させ、その中に予熱した化成・炭化処理済みのコンデン
サ素子6を挿入し、融解したTCNQ塩をコンデンサ素
子6に含浸させ急冷する。
Next, as shown in FIG. 2, metal (aluminum)
In case 7, a TCNQ salt, for example, an equivalent mixture of N, N-pentamethylene rutidinium 2 · TCNQ 4 and N-phenethyl rutidinium · TCNQ 2 was heated and melted at 300 ° C., and preheated to the formation reaction. Insert the carbonized capacitor element 6, impregnate the molten TCNQ salt into the capacitor element 6, and quench.

【0012】その後、TCNQ塩に対し化学的影響の少
ない、パーフロロカーボン、n−ブチルアセテート、
1,1,1−トリクロロエタン等を溶媒とするフッ素樹
脂をコンデンサ素子6内に導入し、図3に示すように、
溶媒を揮発させることによりフッ素樹脂被膜9を形成
し、さらにエポキシ樹脂等の外装材10にて外装する。
そして、最後に電圧処理(エージング)を行い目的とす
るコンデンサを完成させる。なお、フッ素樹脂として
は、0.3ミクロン以下の微粒子を用いることにより、
コンデンサ素子6の内部深くに導入することが可能とな
り効果的である。
Thereafter, perfluorocarbon, n-butylacetate, which has little chemical influence on the TCNQ salt,
A fluororesin having 1,1,1-trichloroethane or the like as a solvent is introduced into the capacitor element 6, and as shown in FIG.
A fluororesin coating film 9 is formed by volatilizing the solvent, and then an exterior material 10 such as an epoxy resin is applied to the exterior.
Finally, voltage processing (aging) is performed to complete the target capacitor. By using fine particles of 0.3 μm or less as the fluororesin,
This is effective because it can be introduced deep inside the capacitor element 6.

【0013】図4は第2の実施例であり、外装樹脂を2
層構造としたものであり、11は変性アクリル樹脂ある
いはウレタン樹脂等の熱硬化性樹脂である。
FIG. 4 shows a second embodiment, in which the exterior resin is 2
It has a layered structure, and 11 is a thermosetting resin such as a modified acrylic resin or urethane resin.

【0014】さらに図5は第3の実施例であり、12は
ポリエステル粉体塗料である。
Further, FIG. 5 shows a third embodiment, and 12 is a polyester powder paint.

【0015】表1は本発明による固体電解コンデンサ
と、従来技術による固体電解コンデンサ、すなわちフッ
素樹脂を使用せずに製造した固体電解コンデンサの、半
田付け時の熱を想定したリフロー試験(160°Cで2
分および230°Cで30秒のリフロー炉)前後の漏れ
電流値を測定した結果である。
Table 1 shows a reflow test (160 ° C.) of a solid electrolytic capacitor according to the present invention and a conventional solid electrolytic capacitor, that is, a solid electrolytic capacitor manufactured without using a fluororesin, assuming heat at the time of soldering. In 2
It is the result of measuring the leakage current value before and after the reflow furnace for 30 minutes at 230 ° C.).

【0016】[0016]

【表1】 [Table 1]

【0017】表1においてA〜Eは本発明による固体電
解コンデンサであり、F、Gは従来技術による固体電解
コンデンサである。A〜Eの本発明による固体電解コン
デンサは半田付け後の漏れ電流特性において良好な結果
が得られている。
In Table 1, A to E are solid electrolytic capacitors according to the present invention, and F and G are solid electrolytic capacitors according to the prior art. The solid electrolytic capacitors of A to E according to the present invention have good results in leakage current characteristics after soldering.

【0018】[0018]

【発明の効果】以上のように本発明によれば、陽極箔と
陰極箔とをセパレータを介して巻回したコンデンサ素子
と、該コンデンサ素子に含浸後冷却固化されたTCNQ
塩と、該コンデンサ素子内部に浸透させたフッ素樹脂と
よりなるものであり、半田付け後においても、極めて漏
れ電流特性の優れた固体電解コンデンサが実現できる。
As described above, according to the present invention, a capacitor element in which an anode foil and a cathode foil are wound with a separator interposed therebetween, and a TCNQ which is cooled and solidified after impregnation of the capacitor element.
A solid electrolytic capacitor, which is composed of salt and fluororesin infiltrated into the inside of the capacitor element, has excellent leakage current characteristics even after soldering.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いるコンデンサ素子を示す斜視図で
ある。
FIG. 1 is a perspective view showing a capacitor element used in the present invention.

【図2】本発明の固体電解コンデンサの断面図である。FIG. 2 is a sectional view of the solid electrolytic capacitor of the present invention.

【図3】本発明の固体電解コンデンサを示す図である。FIG. 3 is a diagram showing a solid electrolytic capacitor of the present invention.

【図4】本発明の固体電解コンデンサの第2の実施例を
示す図である。
FIG. 4 is a diagram showing a second embodiment of the solid electrolytic capacitor of the present invention.

【図5】本発明の固体電解コンデンサの第3の実施例を
示す図である。
FIG. 5 is a diagram showing a third embodiment of the solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1 陽極箔 2 陰極箔 3 セパレータ 4、5 リード線 6 コンデンサ素子 7 アルミケース 8 TCNQ塩 9 フッ素樹脂被膜 10 エポキシ樹脂 11 熱硬化性樹脂 12 ポリエステル粉体塗料 1 Anode foil 2 Cathode foil 3 Separator 4, 5 Lead wire 6 Capacitor element 7 Aluminum case 8 TCNQ salt 9 Fluororesin coating 10 Epoxy resin 11 Thermosetting resin 12 Polyester powder coating

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極箔と陰極箔とをセパレータを介して
巻回したコンデンサ素子と、該コンデンサ素子に含浸後
冷却固化されたTCNQ塩と、該コンデンサ素子内部に
浸透させたフッ素樹脂とからなることを特徴とする固体
電解コンデンサ。
1. A capacitor element in which an anode foil and a cathode foil are wound via a separator, a TCNQ salt which is cooled and solidified after impregnating the capacitor element, and a fluororesin impregnated into the inside of the capacitor element. A solid electrolytic capacitor characterized in that.
【請求項2】 請求項1記載の固体電解コンデンサにお
いて、コンデンサ素子を熱硬化性樹脂で被覆したことを
特徴とする固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the capacitor element is coated with a thermosetting resin.
【請求項3】 熱硬化性樹脂は異種の樹脂による2層構
造であることを特徴とする請求項2記載の固体電解コン
デンサ。
3. The solid electrolytic capacitor according to claim 2, wherein the thermosetting resin has a two-layer structure of different resins.
【請求項4】 異種の樹脂は粉体樹脂と二液混合硬化型
もしくは潜在硬化剤を含む一液硬化型エポキシ樹脂であ
る請求項3記載の固体電解コンデンサ。
4. The solid electrolytic capacitor according to claim 3, wherein the different type of resin is a one-component curing type epoxy resin containing a powder resin and a two-component mixing curing type or a latent curing agent.
【請求項5】 粉体樹脂は揮発性分散剤を含まないポリ
エステル系粉体塗料である請求項4記載の固体電解コン
デンサ。
5. The solid electrolytic capacitor according to claim 4, wherein the powder resin is a polyester-based powder coating material containing no volatile dispersant.
JP04563492A 1992-03-03 1992-03-03 Solid electrolytic capacitors Expired - Fee Related JP3438900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04563492A JP3438900B2 (en) 1992-03-03 1992-03-03 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04563492A JP3438900B2 (en) 1992-03-03 1992-03-03 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH05243097A true JPH05243097A (en) 1993-09-21
JP3438900B2 JP3438900B2 (en) 2003-08-18

Family

ID=12724797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04563492A Expired - Fee Related JP3438900B2 (en) 1992-03-03 1992-03-03 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3438900B2 (en)

Also Published As

Publication number Publication date
JP3438900B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
JP3881480B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4850127B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH01225112A (en) Method of manufacture of aluminum electrolytic capacitor and capacitor with unified anode obtained by the method
JPH0158856B2 (en)
JP3438900B2 (en) Solid electrolytic capacitors
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
JP3550232B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
JPH11135377A (en) Solid electrolytic capacitor and its manufacture
JP2714281B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2002270468A (en) Capacitor manufacturing method and capacitor
JP3326196B2 (en) Method for manufacturing solid electrolytic capacitor
JP3123772B2 (en) Organic semiconductor solid electrolytic capacitors
JP3158448B2 (en) Method for manufacturing solid electrolytic capacitor
KR0154126B1 (en) Solid electrolyte capacitor and manufacturing method therefor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH06163323A (en) Manufacture of organic semiconductor solid state electrolytic capacitor
KR970006432B1 (en) Solid electrolytic capacitor
JP2755767B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JP3182232B2 (en) Organic semiconductor solid electrolytic capacitors
JP3162738B2 (en) Solid electrolytic capacitors
JP2869145B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06151257A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPS6112367B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees