JPH05242899A - Direct internal reforming system molten carbonate type fuel cell - Google Patents

Direct internal reforming system molten carbonate type fuel cell

Info

Publication number
JPH05242899A
JPH05242899A JP4044024A JP4402492A JPH05242899A JP H05242899 A JPH05242899 A JP H05242899A JP 4044024 A JP4044024 A JP 4044024A JP 4402492 A JP4402492 A JP 4402492A JP H05242899 A JPH05242899 A JP H05242899A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
gas
anode
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4044024A
Other languages
Japanese (ja)
Inventor
Shunsuke Taniguchi
俊輔 谷口
Kimihiko Okudo
公彦 尾久土
Naoya Nakanishi
直哉 中西
Masato Nishioka
正人 西岡
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4044024A priority Critical patent/JPH05242899A/en
Publication of JPH05242899A publication Critical patent/JPH05242899A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a direct internal reforming system molten carbonate type fuel cell which can suppress the deterioration of a reforming catalyst and prolong the lifetime. CONSTITUTION:The anode side spacers 11, 11 are fixed on both sides of the top surface of a gas separation plate 6 along the flow direction of raw material gas in a direct internal reforming system molten carbonate type fuel cell arranging a reforming catalyst 9 inside the cell. This anode side spacer 11 consists of an electrolyte absorption part 11a consisting of a porous sintered body of plate-shaped Al2O3 as an electrolyte absorbing agent, and a stainless steel part 11b for preventing the electrolyte from entering from the manifold side provided on both ends of an electrolyte absorption part 11a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直接内部改質方式溶融
炭酸塩型燃料電池に関するものであり、特にガス分離板
のシール部に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct internal reforming molten carbonate fuel cell, and more particularly to a seal portion of a gas separation plate.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、酸化ニッケル
を主成分とするカソード、ニッケルを主成分とするアノ
ード、およびリチウムアルミネートと電解質(炭酸リチ
ウム、炭酸カリウム)とからなる電解質板を用いて構成
したセルと、ガス流路板と、ガス分離板とを積層させて
作製される。
2. Description of the Related Art A molten carbonate fuel cell uses a cathode containing nickel oxide as a main component, an anode containing nickel as a main component, and an electrolyte plate composed of lithium aluminate and an electrolyte (lithium carbonate, potassium carbonate). It is manufactured by stacking a cell configured as above, a gas flow path plate, and a gas separation plate.

【0003】直接内部改質方式溶融炭酸塩型燃料電池に
おいては、アノード側の前記ガス流路板内に改質触媒を
設置し、フィードされてくるメタン等のガスを水素ガス
に改質し、燃料ガスとして使用する。従来、この改質触
媒はアノード側ガス流路板である、アノード側コルゲー
ト板内に直接配置されている。
In the direct internal reforming molten carbonate fuel cell, a reforming catalyst is installed in the gas passage plate on the anode side to reform the fed gas such as methane to hydrogen gas, Used as fuel gas. Conventionally, this reforming catalyst is directly arranged in the anode side corrugated plate, which is the anode side gas flow plate.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記直接内
部改質方式溶融炭酸塩型燃料電池では、アノードやその
周辺部材をつたって浸み出してくる液体状の電解質、も
しくは蒸気となって飛散してくる気体状の電解質が、改
質触媒に付着し触媒活性を低下させるということがあ
る。
By the way, in the above-mentioned direct internal reforming molten carbonate fuel cell, a liquid electrolyte leached through the anode and its peripheral members or vaporized and scattered. The incoming gaseous electrolyte may adhere to the reforming catalyst and reduce the catalytic activity.

【0005】特に、液体状の電解質は、気体状の電解質
に比べて、浸み出してくる量が多く触媒活性を低下させ
易い。その中でもウェットシール部から浸み出してきた
電解質は、スペーサーの表面をつたってコルゲート面に
落下し、更にアノード側コルゲートをつたい中央部へと
浸透していき、ついには改質触媒に電解質が直接付着
し、触媒活性が著しく低下する要因となっている。
In particular, the liquid electrolyte has a larger amount of leaching than the gas electrolyte, so that the catalytic activity is easily lowered. Among them, the electrolyte leaching from the wet seal part falls on the surface of the spacer and falls on the corrugated surface, further permeates into the central part where the anode side corrugate is formed, and finally the electrolyte is present in the reforming catalyst. They are directly attached and cause a significant decrease in catalytic activity.

【0006】このような改質触媒の触媒活性の低下が、
直接内部改質方式溶融炭酸塩型燃料電池において、電池
特性と寿命特性の劣化を引き起こすという問題を有して
いた。本発明は、前記問題点に鑑み、改質触媒の劣化を
抑制し、電池の長寿命化を図ることのできる直接内部改
質方式溶融炭酸塩型燃料電池を提供することを目的とす
る。
[0006] Such reduction in catalytic activity of the reforming catalyst causes
The direct internal reforming molten carbonate fuel cell has a problem of causing deterioration of cell characteristics and life characteristics. In view of the above problems, it is an object of the present invention to provide a direct internal reforming molten carbonate fuel cell capable of suppressing the deterioration of the reforming catalyst and extending the life of the cell.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、電解質を保持した電解質板の両
面にアノードとカソードとを配したセルと、改質触媒を
保持すると共にこの改質触媒により改質されたアノード
ガスを前記アノードに供給するアノードガス供給手段
と、前記アノードガスのシールを行なうシール部を有す
るガス分離板とを複数積層させた電池において、ガス改
質触媒を電池内部に配置する直接内部改質方式溶融炭酸
塩型燃料電池において、前記ガス分離板のシール部に
は、前記電解質が前記改質触媒へ浸透するのを防止する
ための電解質吸収部材が設けられていることを特徴とす
る。
In order to achieve the above-mentioned object, the invention of claim 1 holds a cell in which an anode and a cathode are arranged on both surfaces of an electrolyte plate holding an electrolyte, and a reforming catalyst. In a battery in which a plurality of anode gas supply means for supplying the anode gas reformed by the reforming catalyst to the anode and a gas separation plate having a sealing portion for sealing the anode gas are stacked, a gas reforming catalyst In a direct internal reforming molten carbonate fuel cell in which the electrolyte is placed inside the cell, an electrolyte absorbing member for preventing the electrolyte from penetrating into the reforming catalyst is provided in the seal portion of the gas separation plate. It is characterized by being.

【0008】[0008]

【作用】電解質が浸み出した場合でも、ガス分離板のア
ノード側のシール部には電解質吸収部材が設けられてい
るので、浸み出してきた電解質は改質触媒に到達する前
に電解質吸収部材に吸収される。これにより、改質触媒
への電解質の付着が防止され、触媒活性が維持される。
[Function] Even when the electrolyte leaches out, the electrolyte absorbing member is provided in the seal part on the anode side of the gas separation plate, so the leached electrolyte is absorbed before reaching the reforming catalyst. It is absorbed by the member. This prevents the electrolyte from adhering to the reforming catalyst and maintains the catalytic activity.

【0009】[0009]

【実施例】【Example】

〔実施例〕本発明の一実施例について以下に説明を行な
う。図1、2は本実施例の直接内部改質方式溶融炭酸塩
型燃料電池を示す図である。前記直接内部改質方式溶融
炭酸塩型燃料電池は、リチウムアルミネート粉末と有機
バインダーとを用いたスラリーをテープキャスト法によ
り作製した電解質板1を有しており、この電解質板1の
一方の面にはニッケル合金多孔性焼結板からなるアノー
ド2が設けられ、電解質板1の他方の面にはリチウム化
酸化ニッケル多孔性焼結板からなるカソード3が設けら
れている。前記カソード3の他面側には、ステンレス製
の集電板4と、波板状を成し酸化剤ガス通路を構成する
カソード側コルゲート5と、ガス分離板6とが順に積層
されている。
[Embodiment] An embodiment of the present invention will be described below. 1 and 2 are views showing a direct internal reforming molten carbonate fuel cell of this embodiment. The direct internal reforming molten carbonate fuel cell has an electrolyte plate 1 made by a tape casting method of a slurry using lithium aluminate powder and an organic binder, and one surface of the electrolyte plate 1 Is provided with an anode 2 made of a nickel alloy porous sintered plate, and a cathode 3 made of a lithium nickel oxide porous sintered plate is provided on the other surface of the electrolyte plate 1. On the other surface side of the cathode 3, a stainless steel collector plate 4, a corrugate 5 on the cathode side, which has a corrugated plate shape and constitutes an oxidant gas passage, and a gas separation plate 6 are sequentially stacked.

【0010】一方、前記アノード2の他面側には、ニッ
ケル製の集電板7と、波板状を成し前記カソード側コル
ゲート5と垂直方向に燃料ガス通路を構成するアノード
側コルゲート8と、ガス分離板6とが順に積層されてい
る。更にアノード側コルゲート8には、改質触媒9とし
て、ペレット状Ni系市販触媒が充填保持されている。
On the other hand, on the other surface side of the anode 2, a current collector plate 7 made of nickel, and an anode side corrugate 8 having a corrugated plate shape and forming a fuel gas passage in a direction perpendicular to the cathode side corrugate 5 are provided. , And the gas separation plate 6 are sequentially stacked. Further, the anode-side corrugate 8 is filled and held with a pelletized Ni-based commercial catalyst as the reforming catalyst 9.

【0011】そして、前記電解質板1、アノード2、カ
ソード3、両集電板4、7、両コルゲート5、8、およ
びガス分離板6、6により単セル10が構成され、この
単セル10を多数積層し、上下端板(図示せず)で積層
方向に締め付けることにより電池スタックが構成される
ことになる。ここで、図3に示すように前記ガス分離板
6の上面の両側部には、原料ガスの流れ方向に沿って、
アノード側スペーサー11、11が固定される。前記ア
ノード側スペーサー11は、電解質吸収剤である板状の
Al2 3 の多孔質焼結体からなる電解質吸収部11a
と、電解質吸収部11aの両端のマニホールド側から電
解質が入らないようにするためのステンレス部11bと
からなる。一方、ガス分離板6の下面の両側部には、酸
化剤ガスの流れ方向(前記原料ガスの流れ方向と垂直方
向)に沿って、ステンレス製のカソード側スペーサー1
2、12が固定されている。前記両スペーサー11、1
2の外側面と上面或いは下面とは、前記ステンレス鋼板
を折り曲げることにより形成したウェットシール部1
3、14により覆われている。これにより、前記ガス分
離板6は、アノード2とカソード3とを分離するセパレ
ータ部15と、ウェットシール部13、14を前記電解
質板1に押圧することにより形成されるウェットシール
面16、17を有することになる。
A unit cell 10 is constituted by the electrolyte plate 1, the anode 2, the cathode 3, both current collector plates 4 and 7, corrugates 5 and 8, and gas separation plates 6 and 6, and this unit cell 10 is formed. A battery stack is formed by stacking a large number of plates and tightening them in the stacking direction with upper and lower end plates (not shown). Here, as shown in FIG. 3, on both sides of the upper surface of the gas separation plate 6, along the flow direction of the source gas,
The anode side spacers 11, 11 are fixed. The anode side spacer 11 is an electrolyte absorbing portion 11a made of a plate-shaped porous sintered body of Al 2 O 3 which is an electrolyte absorbing agent.
And a stainless steel portion 11b for preventing the electrolyte from entering from both ends of the electrolyte absorbing portion 11a on the manifold side. On the other hand, on both sides of the lower surface of the gas separation plate 6, the cathode side spacer 1 made of stainless steel is provided along the flow direction of the oxidant gas (perpendicular to the flow direction of the source gas).
2 and 12 are fixed. Both spacers 11, 1
The outer side surface and the upper surface or the lower surface of 2 are wet seal parts 1 formed by bending the stainless steel plate.
It is covered by 3, 14. As a result, the gas separation plate 6 has the separator portion 15 for separating the anode 2 and the cathode 3 and the wet seal surfaces 16 and 17 formed by pressing the wet seal portions 13 and 14 against the electrolyte plate 1. Will have.

【0012】また、原料ガス吸入部Aには原料ガス供給
マニホールドが、燃料ガス排出部Bには燃料ガス排出マ
ニホールドが、酸化剤ガス吸入部Cには酸化剤ガス供給
マニホールドが、酸化剤ガス排出部Dには酸化剤ガス排
出マニホールドが、それぞれ連結されている(図示せ
ず)。そして、前記原料ガス供給マニホールドから各ア
ノード2の背面側に供給された原料ガスは、前記改質触
媒9により燃料ガスに改質された後、アノード2に供給
され電池反応を生じる。
Further, the source gas supply section A has a source gas supply manifold, the fuel gas discharge section B has a fuel gas discharge manifold, the oxidant gas suction section C has an oxidant gas supply manifold, and the oxidant gas discharge section. Oxidant gas discharge manifolds are connected to the parts D (not shown). The raw material gas supplied from the raw material gas supply manifold to the back side of each anode 2 is reformed into a fuel gas by the reforming catalyst 9 and then supplied to the anode 2 to cause a cell reaction.

【0013】前記のように構成された250cm2 サイ
ズの単セルを4枚積層し、電池スタックを作製した。以
下、この電池スタックを(A)電池スタックと称する。 〔比較例〕前記アノード側スペーサー11の代わりに、
全体がステンレス製のスペーサーを用いた以外は、前記
実施例1と同様に電池スタックを作製した。
A battery stack was prepared by laminating four 250 cm 2 size single cells configured as described above. Hereinafter, this battery stack is referred to as (A) battery stack. [Comparative Example] Instead of the anode side spacer 11,
A battery stack was produced in the same manner as in Example 1 except that a spacer made entirely of stainless steel was used.

【0014】以下、この電池スタックを(X)電池スタ
ックと称する。 〔実験〕本発明の(A)電池スタックと、比較例の
(X)電池スタックとを用いて、電池特性とその寿命を
測定したので、その結果を図4に示す。測定条件として
は、昇温を行い、温度が650℃となった時点でメタン
ガス量と水蒸気の比が3.0に成るように調整した原料
ガスをアノード側に流入させ、改質触媒にて改質し、発
電をおこなった。このとき発電は、電流密度は150m
A/cm2 下で行い、電池特性が安定した後特性測定を
おこなった。
Hereinafter, this battery stack is referred to as (X) battery stack. [Experiment] The battery characteristics and the life thereof were measured using the battery stack (A) of the present invention and the battery stack (X) of the comparative example. The results are shown in FIG. As the measurement conditions, the temperature was raised, and when the temperature reached 650 ° C, the raw material gas adjusted so that the ratio of the amount of methane gas to water vapor became 3.0 was made to flow into the anode side, and the reforming catalyst modified it. Quality and power was generated. At this time, power generation has a current density of 150 m.
The measurement was performed under A / cm 2 , and the characteristics were measured after the battery characteristics became stable.

【0015】図4から明らかなように、本発明の(A)
電池スタックと、比較例の(X)電池スタックとは、電
池特性については略同等であるが、比較例の(X)電池
スタックでは2000時間を超えると電池特性が著しく
低下するのに対して、本発明の(A)電池スタックで
は、3000時間を超えても安定な特性が得られること
がわかった。 〔その他の実施例〕また、前記実施例では示していない
が、アノード側のスペーサーとして、図5に示すように
スペーサー21に溝22を掘り、その溝22に電解質吸
収剤23を充填したものを用いても、前記実施例と同様
の効果を奏すことを実験により確認している。
As is apparent from FIG. 4, (A) of the present invention
The battery characteristics of the battery stack and the (X) battery stack of the comparative example are substantially the same, but the battery characteristics of the (X) battery stack of the comparative example significantly deteriorate after 2000 hours. It was found that the (A) battery stack of the present invention can obtain stable characteristics even after 3000 hours. [Other Embodiments] Although not shown in the above embodiments, as the spacer on the anode side, as shown in FIG. 5, a groove 22 is formed in the spacer 21 and the groove 22 is filled with the electrolyte absorbent 23. It has been confirmed by an experiment that the same effect as that of the above-mentioned embodiment can be obtained even if it is used.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、ガ
ス分離板のシール部に設けた電解質吸収部材が浸み出し
てくる電解質を改質触媒に到達する前に吸収することに
より、改質触媒への電解質の付着を防止し、触媒活性を
維持することができる。この結果、燃料電池の長寿命化
を図ることができるといった効果を奏する。
As described above, according to the present invention, the electrolyte absorbing member provided in the seal portion of the gas separation plate absorbs the leaching electrolyte before reaching the reforming catalyst. It is possible to prevent the electrolyte from adhering to the high quality catalyst and maintain the catalytic activity. As a result, there is an effect that the life of the fuel cell can be extended.

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【0018】[0018]

【図1】電池の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a battery.

【0019】[0019]

【図2】電池スタックの要部分解斜視図である。FIG. 2 is an exploded perspective view of a main part of a battery stack.

【0020】[0020]

【図3】本発明によるスペーサーを組み込んだガス分離
板の概略図である。
FIG. 3 is a schematic view of a gas separation plate incorporating a spacer according to the present invention.

【0021】[0021]

【図4】電池の寿命特性を示す図である。FIG. 4 is a diagram showing battery life characteristics.

【0022】[0022]

【図5】アノード側スペーサーの詳細図である。FIG. 5 is a detailed view of an anode side spacer.

【0023】[0023]

【符号の説明】[Explanation of symbols]

1 電解質板 2 アノード 3 カソード 6 ガス分離板 8 アノード側コルゲート板 9 改質触媒 11a 電解質吸収部 11b ステンレス部 13 ウェットシール部 1 Electrolyte Plate 2 Anode 3 Cathode 6 Gas Separation Plate 8 Anode-side Corrugated Plate 9 Reforming Catalyst 11a Electrolyte Absorption Part 11b Stainless Part 13 Wet Seal Part

フロントページの続き (72)発明者 西岡 正人 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 齋藤 俊彦 守口市京阪本通2丁目18番地 三洋電機株 式会社内Front page continuation (72) Inventor Masato Nishioka 2-18 Keiyo Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質を保持した電解質板の両面にアノ
ードとカソードとを配したセルと、改質触媒を保持する
と共にこの改質触媒により改質されたアノードガスを前
記アノードに供給するアノードガス供給手段と、前記ア
ノードガスのシールを行なうシール部を有するガス分離
板とを複数積層させた電池において、ガス改質触媒を電
池内部に配置する直接内部改質方式溶融炭酸塩型燃料電
池において、 前記ガス分離板のシール部には、前記電解質が前記改質
触媒へ浸透するのを防止するための電解質吸収部材が設
けられていることを特徴とする直接内部改質方式溶融炭
酸塩型燃料電池。
1. A cell in which an anode and a cathode are arranged on both sides of an electrolyte plate holding an electrolyte, and an anode gas which holds a reforming catalyst and supplies the anode gas reformed by the reforming catalyst to the anode. In a battery in which a plurality of supply means and a gas separation plate having a seal portion for sealing the anode gas are stacked, a direct internal reforming molten carbonate fuel cell in which a gas reforming catalyst is arranged inside the cell, The seal portion of the gas separation plate is provided with an electrolyte absorbing member for preventing the electrolyte from penetrating into the reforming catalyst. A direct internal reforming molten carbonate fuel cell. ..
JP4044024A 1992-02-28 1992-02-28 Direct internal reforming system molten carbonate type fuel cell Pending JPH05242899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4044024A JPH05242899A (en) 1992-02-28 1992-02-28 Direct internal reforming system molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4044024A JPH05242899A (en) 1992-02-28 1992-02-28 Direct internal reforming system molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPH05242899A true JPH05242899A (en) 1993-09-21

Family

ID=12680093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4044024A Pending JPH05242899A (en) 1992-02-28 1992-02-28 Direct internal reforming system molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPH05242899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731329B1 (en) * 2006-02-10 2007-06-21 두산중공업 주식회사 Separate plate having fuel reforming chamber for mcfc and manufacturing method thereof
KR100768574B1 (en) * 2006-12-29 2007-10-19 두산중공업 주식회사 Separator for molten carbonate fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731329B1 (en) * 2006-02-10 2007-06-21 두산중공업 주식회사 Separate plate having fuel reforming chamber for mcfc and manufacturing method thereof
JP2007214135A (en) * 2006-02-10 2007-08-23 Doosan Heavy Industries & Construction Co Ltd Separator for molten carbonate type fuel cell provided with fuel reforming chamber and its manufacturing method
KR100768574B1 (en) * 2006-12-29 2007-10-19 두산중공업 주식회사 Separator for molten carbonate fuel cell
US8753784B2 (en) 2006-12-29 2014-06-17 Doosan Heavy Industries & Construction Co., Ltd. Separator for molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
JPH07109770B2 (en) Fuel cell and fuel cell stack
US7985505B2 (en) Fuel cell apparatus and associated method
US9209445B2 (en) Nickel-metal hydride/hydrogen hybrid battery using alkali ion conducting separator
CA2923380C (en) Fuel cell and fuel cell stack with suppressed poisoning
US8153328B2 (en) Carbon fuel cells with carbon corrosion suppression
USH16H (en) Fuel cell electrode and method of preparation
CA2663278A1 (en) Fuel cell assembly
US20040197636A1 (en) Solid oxide fuel cell stack with floating cells
US6544676B2 (en) Internal reforming molten carbonate fuel cell with membrane for intercepting carbonate vapor
JPH0736334B2 (en) Molten carbonate fuel cell electrode
JPH0793146B2 (en) Molten carbonate fuel cell stack
JPH05242899A (en) Direct internal reforming system molten carbonate type fuel cell
JP2005310793A (en) Membrane-electrode assembly for fuel cell, and fuel cell system including the same
JP3280819B2 (en) Internal reforming molten carbonate fuel cell
JPH10321245A (en) Molten carbonate type fuel cell
JP3831600B2 (en) Non-membrane type fuel cell module
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JPH07201347A (en) Fused carbonate fuel cell
JPH039589B2 (en)
JPH05174858A (en) Manifold fastening structure for fusion carbonate type fuel cell
JPH0355763A (en) Gas fuel battery and electrode for use in the same
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
JP2007188849A (en) Fuel cell and stack structure
JPH081804B2 (en) Internal reforming molten carbonate fuel cell
JP2744189B2 (en) Bipolar type metal-hydrogen secondary battery