JPH0736334B2 - Molten carbonate fuel cell electrode - Google Patents

Molten carbonate fuel cell electrode

Info

Publication number
JPH0736334B2
JPH0736334B2 JP59146319A JP14631984A JPH0736334B2 JP H0736334 B2 JPH0736334 B2 JP H0736334B2 JP 59146319 A JP59146319 A JP 59146319A JP 14631984 A JP14631984 A JP 14631984A JP H0736334 B2 JPH0736334 B2 JP H0736334B2
Authority
JP
Japan
Prior art keywords
electrode
plate
gas flow
fuel cell
electron conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59146319A
Other languages
Japanese (ja)
Other versions
JPS6124158A (en
Inventor
洋司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59146319A priority Critical patent/JPH0736334B2/en
Publication of JPS6124158A publication Critical patent/JPS6124158A/en
Publication of JPH0736334B2 publication Critical patent/JPH0736334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,溶融炭酸塩形燃料電池の電極に関し,特に
その変形による電池特性の低下の改善に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an electrode of a molten carbonate fuel cell, and more particularly to improvement of deterioration of cell characteristics due to its modification.

[従来の技術] 第5図に2つの電池が直列に積み重ねられた従来のこの
種の燃料電池の構成を示す。図において(1)は燃料側
の端板であり,材質としてステンレスが使用されるが燃
料ガスが接触する面にはニッケルが被覆されている。
(2a),(2b)は燃料側のガス流路板であり,ガス流路
を確保する働きと,電流を流す集電板としての働きを兼
ねている。材質としては,溶融塩と反応ガスに対する耐
食性からニッケル基の合金が選ばれている。そしてガス
の電極への拡散が円滑に行われるよう波型にプレス成型
されたものが用いられる。(3a),(3b)は,燃料側電
極であり例えばニッケル系合金粉末を還元雰囲気,及び
真空雰囲気において焼結して得られる電子伝導性の多孔
質体である。(4a),(4b)は電解質層と呼ばれるもの
であり,例えばアルミン酸リチウムの多孔質板に炭酸リ
チウムや炭酸ナトリウムといった電解質を含浸したもの
である。さらに(5a),(5b)は酸化剤側電極であり,
燃料側電極(3a),(3b)と同様な電子伝導性の多孔質
体から成っている。この酸化剤電極(5a),(5b)に
は,例えば原料としてニッケル粉末を用いる場合と,酸
化ニッケル粉末を用いる場合があるが,電池の動作状態
においては,いずれの場合も,酸化ニッケルにリチウム
イオンが侵入した状態の多孔質体となる。(6a),(6
b)は酸化剤側のガス流路板であり,燃料側のガス流路
板(2a),(2b)と同様な形状をしたステンレス製の波
型板より成っている。(7)は隣接する電池間で燃料ガ
スと酸化剤ガスが混合することを防ぐ働きをするセパレ
ータ板であり,燃料ガスに接する側にニッケルが被覆さ
れたステンレス板から成っている。(8)は酸化剤側の
端板で燃料側の端板(1)と同様の形状でステンレスに
て構成されている。
[Prior Art] FIG. 5 shows a configuration of a conventional fuel cell of this type in which two cells are stacked in series. In the figure, (1) is an end plate on the fuel side, which is made of stainless steel and whose surface in contact with fuel gas is coated with nickel.
(2a) and (2b) are gas flow passage plates on the fuel side, which have both the function of securing the gas flow passage and the function of a current collector plate for passing current. As the material, a nickel-based alloy is selected because of its corrosion resistance to molten salt and reaction gas. Then, a corrugated press-molded product is used so that the gas can be smoothly diffused to the electrodes. (3a) and (3b) are fuel-side electrodes, which are, for example, electron-conductive porous bodies obtained by sintering nickel-based alloy powder in a reducing atmosphere and a vacuum atmosphere. (4a) and (4b) are called electrolyte layers, and are, for example, a porous plate of lithium aluminate impregnated with an electrolyte such as lithium carbonate or sodium carbonate. Furthermore, (5a) and (5b) are oxidizer side electrodes,
It is composed of a porous body with electronic conductivity similar to the fuel side electrodes (3a) and (3b). For the oxidizer electrodes (5a) and (5b), for example, nickel powder may be used as a raw material or nickel oxide powder may be used. It becomes a porous body in which ions have entered. (6a), (6
b) is a gas flow path plate on the oxidizer side, which is made of a stainless corrugated plate having the same shape as the gas flow path plates (2a) and (2b) on the fuel side. (7) is a separator plate that functions to prevent mixing of fuel gas and oxidant gas between adjacent cells, and is made of a stainless plate coated with nickel on the side in contact with the fuel gas. (8) is an oxidizer side end plate, and is made of stainless steel in the same shape as the fuel side end plate (1).

次にこの種の溶融炭酸塩形燃料電池の動作について説明
する。燃料電池は,水素などの燃料ガスと空気などの酸
化剤ガスが反応する際に放出する化学エネルギーを,電
気化学的な反応を起こさせることによって直接電気エネ
ルギーに変換して電力を得る装置である。
Next, the operation of this type of molten carbonate fuel cell will be described. A fuel cell is a device that directly converts the chemical energy released when a fuel gas such as hydrogen reacts with an oxidant gas such as air into electrochemical energy to generate electric power by causing an electrochemical reaction. .

この電気化学反応を効率良く行わせるために,一般的に
多孔質な電極が使用される。また電解質として,溶融状
態の炭酸リチウムや炭酸カリウムなどの炭酸塩の混合物
が使用され,電解質中の炭酸イオン(CO3 2-)が電荷移
動に寄与する。
In order to efficiently carry out this electrochemical reaction, a porous electrode is generally used. A mixture of carbonates such as molten lithium carbonate and potassium carbonate is used as the electrolyte, and the carbonate ion (CO 3 2− ) in the electrolyte contributes to the charge transfer.

燃料側電極及び酸化剤側電極における反応は,下式
(1),(2)のようになっている。
The reactions at the fuel side electrode and the oxidant side electrode are as shown in the following equations (1) and (2).

燃料側電極 H2+CO3 2-→H2O+CO2+2e (1) 酸化剤側電極 CO2+1/202+2e→CO3 2- (2) 上記の反応の進行を,第5図に基づいて説明する。燃料
側電極(3a)および(3b)においては,それぞれ燃料側
のガス流路(2a)及び(2b)を流れる燃料ガス中の水素
と電解質層(4a)及び(4b)に含まれる炭酸イオンがそ
れぞれの単電池において式(1)のように反応し,水と
二酸化炭素と電子が生成する。
Fuel side electrode H 2 + CO 3 2- → H 2 O + CO 2 + 2e (1) Oxidant side electrode CO 2 +1/20 2 + 2e → CO 3 2- (2) Based on Fig. 5, the progress of the above reaction explain. At the fuel side electrodes (3a) and (3b), hydrogen contained in the fuel gas flowing through the fuel side gas flow channels (2a) and (2b) and carbonate ions contained in the electrolyte layers (4a) and (4b), respectively. Each unit cell reacts as shown in formula (1) to produce water, carbon dioxide, and electrons.

第5図において,上方の単電池の燃料側電極(3a)で生
じた電子は,燃料側のガス流路板(2a),燃料側の端板
(1)を通って外部負荷に送られた後,酸化剤側の端板
(8),酸化剤側のガス流路板(6b)を通って下方の単
電池の酸化剤側電極(5b)に至る。また,下方の単電池
の燃料側電極(3b)で生じた電子は燃料側のガス流路板
(2b),セパレータ板(7),酸化剤側のガス流路(6
b)を通って酸化剤側電極(5a)に至る。酸化剤側電極
(5a)及び(5b)においては,この流れ込んだ電子と酸
化剤ガス中に含まれる二酸化炭素と酸素が反応し,式
(2)のように炭酸イオンが生じ電解質層(4a)及び
(4b)中に溶解することによって電池反応が進行する。
In FIG. 5, electrons generated at the fuel side electrode (3a) of the upper unit cell were sent to the external load through the fuel side gas flow path plate (2a) and the fuel side end plate (1). After that, it passes through the oxidant side end plate (8) and the oxidant side gas flow path plate (6b) to reach the oxidant side electrode (5b) of the unit cell below. Also, the electrons generated at the fuel side electrode (3b) of the lower unit cell are fuel side gas flow channel plate (2b), separator plate (7), oxidant side gas flow channel (6).
It goes through b) to the oxidant side electrode (5a). At the oxidant side electrodes (5a) and (5b), the electrons that have flowed in and the carbon dioxide and oxygen contained in the oxidant gas react to generate carbonate ions as in formula (2), and the electrolyte layer (4a) And the cell reaction proceeds by being dissolved in (4b).

[発明が解決しようとする問題点] 従来の溶融炭酸塩形燃料電池の電極は,以上のように構
成されており,高温(600〜700℃)および高圧(約5kg/
cm2)の電池運転条件のもとで徐々に圧縮され,多孔質
体の構造が変化し,電池特性が劣化するという問題点が
あった。
[Problems to be Solved by the Invention] The electrodes of a conventional molten carbonate fuel cell are configured as described above, and have a high temperature (600 to 700 ° C) and a high pressure (about 5 kg /
There was a problem in that the structure was gradually compressed under a battery operating condition of cm 2 ), the structure of the porous body changed, and the battery characteristics deteriorated.

この発明はこのような問題点を解消するためになされた
もので,上記の電池運転条件のもとでも電極を構成する
多孔質体の構造が圧縮されて変化するのを防止して電池
特性の劣化を防ぐことのできる溶融炭酸塩形燃料電池の
電極を得ることを目的とするものである。
The present invention has been made to solve such a problem, and prevents the structure of the porous body that constitutes the electrode from being compressed and changed even under the above-described battery operating conditions, thereby improving the battery characteristics. The purpose is to obtain an electrode for a molten carbonate fuel cell that can prevent deterioration.

[問題点を解決するための手段] この発明に係る溶融炭酸塩形燃料電池の電極は,セパレ
ータ板と電解質層間に空間を形成し,かつその積層方向
を複数片で保持する電子伝導性補強板,空間のうちのセ
パレータ板側の部分にガス流路となるように構成したガ
ス流路部,空間のうちの電解質層側の部分に形成された
電極材となる電子伝導性多孔質体を充填した電極部を備
え,ガス流路部から電解質層へガス透過可能としたこと
を特徴とするものである。
[Means for Solving Problems] An electrode of a molten carbonate fuel cell according to the present invention has an electron conductive reinforcing plate that forms a space between a separator plate and an electrolyte layer and holds the stacking direction with a plurality of pieces. , A gas flow path portion configured to be a gas flow path in a portion of the space on the side of the separator plate, and an electron conductive porous body serving as an electrode material formed in a portion of the space on the side of the electrolyte layer It is characterized in that it is provided with the above electrode part and gas can permeate from the gas flow path part to the electrolyte layer.

[問題点を解決するための手段の作用] この発明における電子伝導性補強板は,電解質層側の空
間に電極の働きをする電子伝導性多孔質体が形成される
と共に,電極に機械的強度を持たせる骨格となり,電池
運転時の電極の変形を防止する。さらに電子伝導性補強
板は,ガス流路となるガス流路部を有するため,電極と
ガス流路板が一体化され,この間の接触抵抗の上昇を低
減する。
[Operation of Means for Solving Problems] In the electron conductive reinforcing plate according to the present invention, the electron conductive porous body serving as an electrode is formed in the space on the electrolyte layer side, and the electrode has mechanical strength. It has a skeleton to prevent deformation of the electrodes during battery operation. Further, since the electron conductive reinforcing plate has a gas flow path portion that serves as a gas flow path, the electrode and the gas flow path plate are integrated, and an increase in contact resistance between them is reduced.

[実施例] 以下,この発明の一実施例を第5図の上方の単電池にお
ける燃料側に適用した場合について説明する。第1図及
び第2図はそれぞれこの発明の一実施例による溶融炭酸
塩形燃料電池の電極を示す断面図及び傾斜図である。図
において,(9)は,例えば従来のガス流路板に用いら
れているものと同様の金属の波状型押し板より成る電子
伝導性補強板である。この電子伝導性補強板(9)は,
セパレータ板(7)と電解質層(4a)間に空間を形成
し,その積層方向を複数片で保持しており,この空間に
はセパレータ板(7)側にガス流路となるガス流路部
(10),電解質層(4a)側に電極部(11)を備えてい
る。さらに,電極部(11)にはガス流路部(10)から電
解質層(4a)へガス透過可能な,例えばインコネル社の
287ニッケル粉末の焼結体などの電子伝導性多孔質体(1
3)が形成される。燃料側における電子伝導性補強板
(9)は,例えば商品名インコネル600などのニッケル
を成分に含む材料で構成されている。また,電子伝導性
補強板(9)の形状としては,例えば山の高さが3〜5m
m,山の間隔が4〜6mm程度で形成している。このような
波状型押し板による電子伝導性補強板(9)による電極
の製造法の一例を次に述べる。
[Embodiment] Hereinafter, a case where one embodiment of the present invention is applied to the fuel side in the upper unit cell in FIG. 5 will be described. 1 and 2 are a cross-sectional view and an oblique view showing an electrode of a molten carbonate fuel cell according to an embodiment of the present invention, respectively. In the figure, (9) is an electron conductive reinforcing plate composed of, for example, a corrugated metal stamping plate made of metal similar to that used in a conventional gas passage plate. This electronic conductive reinforcing plate (9) is
A space is formed between the separator plate (7) and the electrolyte layer (4a), and the stacking direction is held by a plurality of pieces. In this space, a gas flow path portion that becomes a gas flow path on the side of the separator plate (7). (10), the electrode part (11) is provided on the electrolyte layer (4a) side. Further, the electrode part (11) is permeable to gas from the gas flow path part (10) to the electrolyte layer (4a).
287 Electronically conductive porous materials such as sintered nickel powder (1
3) is formed. The electron conductive reinforcing plate (9) on the fuel side is made of a material containing nickel as a component, such as Inconel 600 under the trade name. The shape of the electronic conductive reinforcing plate (9) is, for example, 3-5 m in height of the mountain.
The distance between m and the crest is 4 to 6 mm. An example of a method of manufacturing an electrode using the electron conductive reinforcing plate (9) with such a corrugated stamping plate will be described below.

上記波状型押し板(9)をカーボン板上に載せ,ニッケ
ル粉末(インコネル社の287粉末)をほぼ均等に波状型
押し板(9)上から散布する。そして,自動ふるい装置
により,10〜30分間振動を与えることにより,均一な厚
みのニッケル粉末層を形成する。次に,カーボン板に載
せた状態のままで,900℃の水素雰囲気下で30分間,仮焼
結を行う。仮焼結終了後カーボン板からコージライト板
へ電極を載せかえ1000℃の水素雰囲気下で30分間,本焼
結を行う。以上のようなプロセスでもって,ガス流路部
(10)とニッケルの多孔質体(13)が形成された電極部
(11)を有する溶融炭酸塩形燃料電池の電極を得る。
The corrugated embossing plate (9) is placed on a carbon plate, and nickel powder (287 powder of Inconel Co., Ltd.) is sprayed almost evenly from the corrugated embossing plate (9). Then, by applying vibration for 10 to 30 minutes by an automatic sieving device, a nickel powder layer having a uniform thickness is formed. Next, pre-sintering is carried out for 30 minutes in a hydrogen atmosphere at 900 ° C while still mounted on the carbon plate. After the calcination, the carbon plate is replaced with the electrode on the cordierite plate, and main sintering is performed for 30 minutes in a hydrogen atmosphere at 1000 ° C. Through the above-described process, an electrode for a molten carbonate fuel cell having a gas flow path section (10) and an electrode section (11) in which a nickel porous body (13) is formed is obtained.

以上のように構成された電極とガス流路板とが一体とな
った電池部材の実施例の作用動作について説明する。電
子伝導性補強板(9)のガス流路部(10)を反応ガスが
流れ,すみやかに電極部(11)の電子伝導性多孔質体
(13)にそのガスが拡散し反応を起こす。650℃におい
て電池の運転中にかかる数kg/cm2の面圧では,電子伝導
性補強板(9)はほとんどクリープを起こさず,電極の
形状,寸法を保持する。またもともと,電子伝導性多孔
質体(13)と,ガス流路を兼ねる電子伝導性補強板
(9)とは互いに焼結した構造を持っているので電極と
ガス流路板との接触抵抗の増大という問題は生じない。
The operation and operation of the embodiment of the battery member in which the electrode and the gas flow path plate configured as described above are integrated will be described. The reaction gas flows through the gas flow passage portion (10) of the electron conductive reinforcing plate (9), and the gas diffuses into the electron conductive porous body (13) of the electrode portion (11) to cause a reaction. At a surface pressure of several kg / cm 2 applied during operation of the battery at 650 ° C., the electron conductive reinforcing plate (9) hardly creeps and retains the shape and size of the electrode. Originally, the electron conductive porous body (13) and the electron conductive reinforcing plate (9) that also serves as a gas flow channel have a mutually sintered structure, so that the contact resistance between the electrode and the gas flow channel plate is reduced. The problem of growth does not occur.

上記実施例では燃料側電極に適用した例について述べた
が,酸化剤側電極にも同様に適用できる。この場合の電
子伝導性補強板(9)は例えばステンレススチール(SU
S316L)などが耐食性の面から適当であり,また,リチ
ウムを添加した酸化ニッケルなどのセラミックスでもよ
い。一方,燃料側電極においては,コバルト系の材料で
もよい。
In the above embodiment, the example applied to the fuel side electrode has been described, but the same can be applied to the oxidant side electrode. The electron conductive reinforcing plate (9) in this case is made of, for example, stainless steel (SU
S316L) is suitable from the viewpoint of corrosion resistance, and lithium-added ceramics such as nickel oxide may be used. On the other hand, the fuel-side electrode may be made of a cobalt-based material.

また上記実施例では電子伝導性補強板(9)として,金
属の波状型押し板を用いた場合について説明したが,第
3図に示すごとく金属の箱型の構造を持つものを電子伝
導性補強板(9)として用いても良く,第4図に示すよ
うに,エキスパンドメタルを電子伝導性補強板(9)と
して使用しても,上記実施例と同様の効果を持つ。
Further, in the above-mentioned embodiment, the case where the corrugated metal stamping plate is used as the electron conductive reinforcing plate (9) has been described. However, as shown in FIG. It may be used as the plate (9), and as shown in FIG. 4, even if expanded metal is used as the electron conductive reinforcing plate (9), the same effect as in the above-mentioned embodiment is obtained.

さらに,電子伝導性補強板(9)の電子伝導性多孔質
(13)形成側の表面に多孔質体保持用に金属メッシュを
設けてもよい。
Furthermore, a metal mesh for holding the porous body may be provided on the surface of the electron conductive reinforcing plate (9) on the side where the electron conductive porous material (13) is formed.

[発明の効果] 以上のように,この発明によれば,セパレータ板と電解
質層間に空間を形成し,かつその積層方向を複数片で保
持する電子伝導性補強板,空間のうちのセパレータ板側
の部分にガス流路となるように構成したガス流路部,空
間のうちの電解質層側の部分に形成された電極材となる
電子伝導性多孔質体を充填した電極部を備え,ガス流路
部から電解質層へガス透過可能としたことを特徴とする
ことにより,ガス流路と電極とを一体化し,ガス流路板
と電極との接触抵抗の上昇を低減し,電極の変形を防止
できる溶融炭酸塩形燃料電池の電極が得られるという効
果がある。
[Effects of the Invention] As described above, according to the present invention, an electron conductive reinforcing plate that forms a space between a separator plate and an electrolyte layer and holds the stacking direction with a plurality of pieces, and the separator plate side of the space A gas flow path part configured to be a gas flow path, and an electrode part filled with an electron conductive porous body serving as an electrode material formed in a part on the electrolyte layer side of the space Gas can permeate from the channel to the electrolyte layer to integrate the gas channel with the electrode, reduce the increase in contact resistance between the gas channel plate and the electrode, and prevent electrode deformation There is an effect that an electrode of a molten carbonate fuel cell that can be obtained can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はそれぞれこの発明の一実施例による
溶融炭酸塩形燃料電池の電極を示す断面図及び傾斜図,
第3図,第4図はそれぞれこの発明の他の実施例を示す
傾斜図,第5図は従来の溶融炭酸塩形燃料電池を示す傾
斜図である。 (9)……電子伝導性補強板,(10)……ガス流路部,
(11)……電極部,(13)……電子伝導性多孔質体。 なお,図中,同一符号は同一,又は相当部分を示す。
1 and 2 are a cross-sectional view and an oblique view showing an electrode of a molten carbonate fuel cell according to an embodiment of the present invention, respectively.
3 and 4 are tilted views showing another embodiment of the present invention, and FIG. 5 is a tilted view showing a conventional molten carbonate fuel cell. (9) …… Electron conductive reinforcing plate, (10) …… Gas flow path,
(11) …… Electrode part, (13) …… Electron conductive porous material. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】セパレータ板と電解質層間に空間を形成
し,かつその積層方向を複数片で保持する電子伝導性補
強板,上記空間のうちの上記セパレータ板側の部分にガ
ス流路となるように構成したガス流路部,上記空間のう
ちの上記電解質層側の部分に形成された電極材となる電
子伝導性多孔質体を充填した電極部を備え,上記ガス流
路部から上記電解質層へガス透過可能としたことを特徴
とする溶融炭酸塩形燃料電池の電極。
1. An electron conductive reinforcing plate which forms a space between a separator plate and an electrolyte layer, and holds the stacking direction by a plurality of pieces, and a gas flow path is formed in a part of the space on the separator plate side. And an electrode part filled with an electron-conducting porous body serving as an electrode material, which is formed in a portion of the space on the electrolyte layer side. An electrode for a molten carbonate fuel cell, which is characterized by allowing gas to pass therethrough.
【請求項2】電子伝導性補強板は,金属型押し板で構成
された特許請求の範囲第1項記載の溶融炭酸塩形燃料電
池の電極。
2. The electrode for a molten carbonate fuel cell according to claim 1, wherein the electron conductive reinforcing plate is composed of a metal stamping plate.
JP59146319A 1984-07-13 1984-07-13 Molten carbonate fuel cell electrode Expired - Lifetime JPH0736334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59146319A JPH0736334B2 (en) 1984-07-13 1984-07-13 Molten carbonate fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59146319A JPH0736334B2 (en) 1984-07-13 1984-07-13 Molten carbonate fuel cell electrode

Publications (2)

Publication Number Publication Date
JPS6124158A JPS6124158A (en) 1986-02-01
JPH0736334B2 true JPH0736334B2 (en) 1995-04-19

Family

ID=15404976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59146319A Expired - Lifetime JPH0736334B2 (en) 1984-07-13 1984-07-13 Molten carbonate fuel cell electrode

Country Status (1)

Country Link
JP (1) JPH0736334B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0432381A1 (en) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Arrangement of elements for the conduction of current between ceramic high temperature fuel cells
US6383677B1 (en) * 1999-10-07 2002-05-07 Allen Engineering Company, Inc. Fuel cell current collector
US6777126B1 (en) 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
US6602626B1 (en) 2000-02-16 2003-08-05 Gencell Corporation Fuel cell with internal thermally integrated autothermal reformer
CA2374293C (en) 2000-03-17 2007-05-29 Allen Engineering Company, Inc. Fuel cell stack assembly
US6772617B1 (en) 2003-01-24 2004-08-10 Gencell Corporation Method and apparatus for in-situ leveling of progressively formed sheet metal
JP4888682B2 (en) * 2005-04-27 2012-02-29 日産自動車株式会社 Electrode for solid oxide fuel cell and method for producing the same
JP5228699B2 (en) * 2008-08-22 2013-07-03 トヨタ自動車株式会社 Fuel cell
JP2015060749A (en) * 2013-09-19 2015-03-30 三菱マテリアル株式会社 Porous body
DE102016223781A1 (en) * 2016-11-30 2018-05-30 Robert Bosch Gmbh Fuel cell with improved robustness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131664A (en) * 1982-01-29 1983-08-05 Hitachi Ltd Fuel cell
USH16H (en) * 1984-03-02 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Fuel cell electrode and method of preparation

Also Published As

Publication number Publication date
JPS6124158A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
US7435492B2 (en) Hybrid fuel cell
JPS5821783B2 (en) 2 Jiden Kikagakudenchi
JPH0736334B2 (en) Molten carbonate fuel cell electrode
US3300343A (en) Fuel cell including electrodes having two dissimilar surfaces
EP0301647B1 (en) Electrochemical cell
JPS60746B2 (en) gas electrode
CN111244520A (en) Fuel cell stack and method for manufacturing the same
US3791896A (en) Bi-functional gas electrode
US5989740A (en) Molten carbonate fuel cell
US5641328A (en) Fuel cell cathodes
US20210091387A1 (en) Cathode, metal-air battery including the cathode, and method of manufacturing the cathode
US4891280A (en) Cathode for molten carbonate fuel cell
US4461812A (en) Lightweight storage battery
KR100318207B1 (en) A method for impregnating a electrolyte for molten carbonate fuel cell
JPH077668B2 (en) Molten carbonate fuel cell electrode
US4939111A (en) Cathode for molten carbonate fuel cell
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell
JPH039589B2 (en)
JP6573719B2 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
JPS6124150A (en) Electrode of fused carbonate type fuel cell
JPS61267269A (en) Fuel passage plate for molten carbonate type fuel cell
JPH0346951B2 (en)
JPS6124165A (en) Electrolyte supporter of fused carbonate type fuel cell
JPS6124152A (en) Production of fused carbonate type fuel electrode
JPS61267268A (en) Fluid passage plate for molten carbonate type fuel cell