JPH05242730A - Dielectric porcelain composition and laminated ceramic capacitor using it - Google Patents

Dielectric porcelain composition and laminated ceramic capacitor using it

Info

Publication number
JPH05242730A
JPH05242730A JP4079375A JP7937592A JPH05242730A JP H05242730 A JPH05242730 A JP H05242730A JP 4079375 A JP4079375 A JP 4079375A JP 7937592 A JP7937592 A JP 7937592A JP H05242730 A JPH05242730 A JP H05242730A
Authority
JP
Japan
Prior art keywords
dielectric
main component
ceramic capacitor
oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4079375A
Other languages
Japanese (ja)
Other versions
JP3318952B2 (en
Inventor
Harunobu Sano
野 晴 信 佐
Yukio Hamachi
地 幸 生 浜
Yukio Sakabe
部 行 雄 坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP07937592A priority Critical patent/JP3318952B2/en
Publication of JPH05242730A publication Critical patent/JPH05242730A/en
Application granted granted Critical
Publication of JP3318952B2 publication Critical patent/JP3318952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dielectric porcelain composition which provides a high dielectric constant without becoming a semiconductor even when baked in a reducing atmosphere and notwithstanding the crystal particle diameter being small. CONSTITUTION:This is a dielectric ceramic composition which contains a glass oxide of 0.05 to 5.0 parts by weight including a main component of BaO-SrO- Li2O-SiO2 in proportion to the following main component of 100 parts by weight: When each oxide of Mn and Ni is represented by MnO2 and NiO for a sub- component, at least one kind of the respective oxides of Mn and Ni is added to contain 0.02 to 2.0mol in proportion to 100mol of the main component which satisfies the following general formula: (Ba1-x-y-zSrxReyMgz)m (Ti1-oCoo)O3 where (x), (y), (z), (o) and (m) are to be 0.05<=x<=0.35, 0.0005<=y <=0.03, 0.0005<=z<=0.05, 0.0005<=o<=0.03, 1.00<=m<=1.04.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は誘電体磁器組成物とそ
れを用いた積層セラミックコンデンサに関し、特にたと
えばNiあるいはNi合金からなる内部電極を含む積層
セラミックコンデンサに用いられる誘電体磁器組成物と
それを用いた積層セラミックコンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition and a laminated ceramic capacitor using the same, and more particularly to a dielectric ceramic composition used for a laminated ceramic capacitor including internal electrodes made of Ni or Ni alloy and the same. Relates to a monolithic ceramic capacitor.

【0002】[0002]

【従来の技術】一般的に積層セラミックコンデンサの製
造工程では、まず、その表面に内部電極となる電極材料
を塗布したシート状の誘電体材料が準備される。誘電体
材料としては、たとえばBaTiO3 を主成分とする材
料などが用いられる。この電極材料を塗布したシート状
の誘電体材料を積層して熱圧着し、一体化したものを自
然雰囲気中において1250〜1350℃で焼成するこ
とで、内部電極を有する誘電体磁器が得られる。そし
て、この誘電体磁器の端面に、内部電極と導通する外部
電極を焼き付けて、積層セラミックコンデンサが得られ
る。また、近年のエレクトロニクスの発展に伴い電子部
品の小型化が急速に進行し、積層セラミックコンデンサ
も小型化の傾向が顕著になってきた。
2. Description of the Related Art Generally, in a manufacturing process of a monolithic ceramic capacitor, first, a sheet-shaped dielectric material having an electrode material applied to its surface is prepared. As the dielectric material, for example, a material containing BaTiO 3 as a main component is used. Sheet-shaped dielectric materials coated with this electrode material are laminated, thermocompression-bonded, and integrated to be fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric ceramic having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is printed on the end surface of this dielectric porcelain to obtain a monolithic ceramic capacitor. Also, with the recent development of electronics, miniaturization of electronic parts has rapidly progressed, and the trend toward miniaturization of monolithic ceramic capacitors has become remarkable.

【0003】[0003]

【発明が解決しようとする課題】このような積層セラミ
ックコンデンサに用いられる内部電極の材料としては、
次のような条件を満たす必要がある。
The materials for the internal electrodes used in such a monolithic ceramic capacitor are as follows:
The following conditions must be met.

【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。
(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain must have a melting point equal to or higher than the firing temperature.

【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。
(B) It should not be oxidized even in an oxidizing high temperature atmosphere and should not react with the dielectric.

【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。
Noble metals such as platinum, gold, palladium or alloys thereof have been used as electrode materials which satisfy such conditions.

【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。
However, while these electrode materials have excellent characteristics, they are expensive. Therefore, the ratio of the electrode material cost to the monolithic ceramic capacitor is 30 to 7
It was as high as 0%, which was the biggest factor in raising the manufacturing cost.

【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成する必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。
N having a high melting point other than noble metal
Although there are base metals such as i, Fe, Co, W, and Mo, these base metals are easily oxidized in a high-temperature oxidizing atmosphere and do not serve as electrodes. Therefore, in order to use these base metals as the internal electrodes of the monolithic ceramic capacitor, it is necessary to fire them together with the dielectric ceramic in a neutral or reducing atmosphere. However, the conventional dielectric ceramic material has a drawback that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.

【0009】また、積層セラミックコンデンサを小型化
する方法としては、一般的に大きな誘電率を有する材料
を用いるか、誘電体層を薄膜化することが知られてい
る。しかし、大きな誘電率を有する材料は結晶粒が大き
く、10μm以下のような薄膜になると、1つの層中に
存在する結晶粒の数が減少し、信頼性が低下してしま
う。
As a method of miniaturizing the monolithic ceramic capacitor, it is generally known to use a material having a large dielectric constant or to thin the dielectric layer. However, a material having a large dielectric constant has a large number of crystal grains, and in the case of a thin film having a thickness of 10 μm or less, the number of crystal grains present in one layer is reduced and reliability is deteriorated.

【0010】一方、特開昭58−135507号公報、
特開昭58−223669号公報、特開昭59−861
03号公報に示されるように、チタン酸バリウム固溶体
に酸化セリウムあるいは酸化ネオジウムを添加した、結
晶粒径の小さい誘電体磁器が知られている。このように
結晶粒径を小さくすることによって、1つの層中に存在
する結晶粒の数を増やすことができ、信頼性の低下を防
ぐことができる。
On the other hand, JP-A-58-135507 discloses
JP-A-58-223669 and JP-A-59-861
As disclosed in Japanese Patent Laid-Open No. 03-2003, there is known a dielectric ceramic having a small crystal grain size, which is obtained by adding cerium oxide or neodymium oxide to a barium titanate solid solution. By reducing the crystal grain size in this way, the number of crystal grains present in one layer can be increased, and a decrease in reliability can be prevented.

【0011】しかしながら、この希土類酸化物を添加し
た材料では、還元雰囲気中で焼成すると還元されてしま
い、内部電極としてNiなどの卑金属を使用した積層セ
ラミックコンデンサを製造することは不可能であった。
However, this material containing a rare earth oxide is reduced by firing in a reducing atmosphere, and it is impossible to manufacture a monolithic ceramic capacitor using a base metal such as Ni as an internal electrode.

【0012】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られる誘
電体磁器組成物および低コストで信頼性の高い小型大容
量の積層セラミックコンデンサを提供することである。
Therefore, a main object of the present invention is to obtain a dielectric ceramic composition which does not become a semiconductor even when fired in a reducing atmosphere and has a large dielectric constant despite its small crystal grain size. It is an object of the present invention to provide a small-sized and large-capacity monolithic ceramic capacitor with low cost and high reliability.

【0013】[0013]

【課題を解決するための手段】第1の発明は、Ba,S
r,Mg,Ti,CoおよびRe(ReはTb,Dy,
HoおよびErの中から選ばれる少なくとも1種類)の
各酸化物からなり、次の一般式、 (Ba1-x-y-z Srx
Rey Mgz ) m ( Ti1-o Coo ) O3 で表され、
x,y,z,oおよびmが、0.05≦x≦0.35、
0.0005≦y≦0.03、0.0005≦z≦0.
05、0.0005≦o≦0.03、1.00≦m≦
1.04の関係を満足する主成分100モルに対して、
副成分として、MnおよびNiの各酸化物をMnO2
よびNiOと表したとき、MnおよびNiの各酸化物の
少なくとも一種類を0.02〜2.0モル添加含有し、
前記主成分を100重量部として、BaO−SrO−L
2 O−SiO2 を主成分とする酸化物ガラスを0.0
5重量部〜5.0重量部含む、誘電体磁器組成物であ
る。
[Means for Solving the Problems] The first invention is Ba, S
r, Mg, Ti, Co and Re (Re is Tb, Dy,
At least one kind selected from Ho and Er) and has the following general formula: (Ba 1-xyz Sr x
Re y Mg z ) m (Ti 1-o Co o ) O 3 ,
x, y, z, o and m are 0.05 ≦ x ≦ 0.35,
0.0005 ≦ y ≦ 0.03, 0.0005 ≦ z ≦ 0.
05, 0.0005 ≦ o ≦ 0.03, 1.00 ≦ m ≦
For 100 moles of the main component satisfying the relationship of 1.04,
When each oxide of Mn and Ni is expressed as MnO 2 and NiO as an accessory component, 0.02 to 2.0 mol of at least one oxide of each oxide of Mn and Ni is added and contained.
BaO-SrO-L containing 100 parts by weight of the main component
Oxide glass containing i 2 O-SiO 2 as the main component is 0.0
A dielectric ceramic composition containing 5 to 5.0 parts by weight.

【0014】第2の発明は、前記誘電体磁器組成物から
なる誘電体層と、NiおよびNi合金のうちの1種類か
らなる内部電極とを含む、積層セラミックコンデンサで
ある。
A second invention is a multilayer ceramic capacitor including a dielectric layer made of the above dielectric ceramic composition and an internal electrode made of one kind of Ni and a Ni alloy.

【0015】[0015]

【作用】Ba,Sr,Mg,Ti,CoおよびRe(R
eはTb,Dy,HoおよびErの中から選ばれる少な
くとも1種類の希土類元素)の各酸化物の組成比を調整
し、Mn,Niの各酸化物およびBaO−SrO−Li
2 O−SiO2 を主成分とする酸化物ガラスを添加する
ことによって、還元雰囲気中においても、その特性を劣
化させることなく、焼成することができる。さらに、T
2 3 ,Dy23 ,Ho2 3 ,Er2 3 の希土
類酸化物およびCo酸化物は、誘電体の粒成長を抑制す
る効果がある。そして、結晶粒径が小さいことから、1
つの誘電体層中に存在する結晶粒の数を増やすことがで
きるため、誘電体層の厚みを薄くしても信頼性の低下を
防ぐことができる。
Function: Ba, Sr, Mg, Ti, Co and Re (R
e is the composition ratio of each oxide of at least one kind of rare earth element selected from Tb, Dy, Ho and Er, and each oxide of Mn and Ni and BaO—SrO—Li are adjusted.
By adding an oxide glass containing 2 O-SiO 2 as a main component, it is possible to perform firing even in a reducing atmosphere without deteriorating its characteristics. Furthermore, T
The rare earth oxides and Co oxides of b 2 O 3 , Dy 2 O 3 , Ho 2 O 3 and Er 2 O 3 have the effect of suppressing grain growth of the dielectric. Since the crystal grain size is small, 1
Since it is possible to increase the number of crystal grains existing in one dielectric layer, it is possible to prevent deterioration of reliability even if the thickness of the dielectric layer is reduced.

【0016】[0016]

【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない誘電体磁器組成物
を得ることができる。したがって、この誘電体磁器組成
物を用いて積層セラミックコンデンサを製造すれば、電
極材料として卑金属を用いることができ、1270℃以
下と比較的低温で焼成可能であるため、積層セラミック
コンデンサのコストダウンを図ることができる。
According to the present invention, it is possible to obtain a dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not become a semiconductor. Therefore, if a monolithic ceramic capacitor is manufactured using this dielectric ceramic composition, a base metal can be used as an electrode material, and firing can be performed at a relatively low temperature of 1270 ° C. or lower, which reduces the cost of the monolithic ceramic capacitor. Can be planned.

【0017】また、この誘電体磁器組成物を用いた積層
セラミックコンデンサでは、誘電率が10000以上あ
り、しかもこのように高誘電率であるにもかかわらず、
結晶粒が3μm以下と小さい。したがって、誘電体層を
薄膜化しても、従来の積層セラミックコンデンサのよう
に層中に存在する結晶粒の量が少なくならない。このた
め、信頼性が高く、しかも小型で大容量の積層セラミッ
クコンデンサを得ることができる。
Further, the laminated ceramic capacitor using this dielectric ceramic composition has a dielectric constant of 10,000 or more, and has a high dielectric constant as described above.
The crystal grains are as small as 3 μm or less. Therefore, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. Therefore, it is possible to obtain a highly reliable, small-sized, large-capacity monolithic ceramic capacitor.

【0018】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the embodiments below.

【0019】[0019]

【実施例】まず、原料として、純度99.8%以上のB
aCO3 ,SrCO3 ,MgCO3 ,Tb2 3 ,Dy
2 3 ,Ho2 3 ,Er2 3 ,TiO2 ,CoO,
MnO2 ,NiOを準備した。これらの原料を (Ba
1-x-y-z Srx Rey Mgz) m ( Ti1-o Coo ) O
3 の組成式で表され、x,y,z,o,mが表1に示す
割合となるように配合して、配合原料を得た。ここで、
ReはTb,Dy,Ho,Erから選ばれる少なくとも
1種類である。この配合原料をボールミルで湿式混合
し、粉砕したのち乾燥し、空気中において1100℃で
2時間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機
によって粉砕し、粒径が1μm以下の粉砕物を得た。こ
の粉砕物に、予め準備した粒径1μm以下のBaO−S
rO−Li2 O−SiO2 を主成分とする酸化物ガラス
を秤量し、ポリビニルブチラール系バインダおよびエタ
ノールなどの有機溶剤を加えて、ボールミルによって湿
式混合し、セラミックスラリを調整した。そののち、セ
ラミックスラリをドクターブレード法によってシート成
形し、厚み26μmの矩形のグリーンシートを得た。
EXAMPLE First, as a raw material, B having a purity of 99.8% or more was used.
aCO 3, SrCO 3, MgCO 3 , Tb 2 O 3, Dy
2 O 3 , Ho 2 O 3 , Er 2 O 3 , TiO 2 , CoO,
MnO 2 and NiO were prepared. These raw materials (Ba
1-xyz Sr x Re y Mg z) m (Ti 1-o Co o) O
It was represented by the compositional formula of 3 and was blended so that x, y, z, o, and m were in the ratios shown in Table 1 to obtain a blended raw material. here,
Re is at least one selected from Tb, Dy, Ho and Er. The blended raw materials were wet mixed in a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. The calcined product was crushed by a dry crusher to obtain a crushed product having a particle size of 1 μm or less. BaO-S having a particle size of 1 μm or less prepared in advance was added to this pulverized product.
The rO-Li 2 O-SiO 2 were weighed oxide glass mainly, by adding an organic solvent such as polyvinyl butyral binder and ethanol were wet mixed by a ball mill to prepare a ceramic slurry. After that, the ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular green sheet having a thickness of 26 μm.

【0020】[0020]

【表1】 [Table 1]

【0021】次に、このセラミックグリーンシート上
に、Niを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。導電ペー
スト層が形成されたセラミックグリーンシートを、導電
ペーストの引き出されている側が互い違いとなるように
複数枚積層し、積層体を得た。得られた積層体をN2
囲気中において350℃の温度に加熱し、バインダを燃
焼させたのち、酸素分圧が10-9〜10-12 MPaのH
2 −N2 −空気ガスからなる還元性雰囲気中において表
2に示す温度で2時間焼成し、セラミック焼結体を得
た。得られたセラミック焼結体の表面を、走査型電子顕
微鏡で倍率1500倍で観察し、グレインサイズを測定
した。そして、その結果を表2に示した。
Next, a conductive paste containing Ni as a main component was printed on the ceramic green sheet to form a conductive paste layer for forming internal electrodes. A plurality of ceramic green sheets having a conductive paste layer formed thereon were laminated so that the sides from which the conductive paste was drawn out were staggered to obtain a laminate. The obtained laminated body was heated to a temperature of 350 ° C. in a N 2 atmosphere to burn the binder, and then the H 2 having an oxygen partial pressure of 10 −9 to 10 −12 MPa.
It was fired at a temperature shown in Table 2 for 2 hours in a reducing atmosphere composed of 2- N 2 -air gas to obtain a ceramic sintered body. The surface of the obtained ceramic sintered body was observed with a scanning electron microscope at a magnification of 1500 times to measure the grain size. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】焼成後、得られた焼結体の両端面にAgペ
ーストを塗布し、N2 雰囲気中において600℃の温度
で焼き付け、内部電極と電気的に接続された外部電極を
形成した。このようにして得られた積層セラミックコン
デンサの外形寸法は、幅1.6mm,長さ3.2mm,
厚さ1.2mmであり、内部電極間に介在する誘電体セ
ラミック層の厚みは16μmである。また、有効誘電体
セラミック層の総数は19であり、一層当たりの対向電
極の面積は2.1mm2 である。
After firing, Ag paste was applied to both end faces of the obtained sintered body and baked at a temperature of 600 ° C. in an N 2 atmosphere to form external electrodes electrically connected to the internal electrodes. The outer dimensions of the monolithic ceramic capacitor thus obtained are 1.6 mm in width, 3.2 mm in length,
The thickness is 1.2 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 16 μm. The total number of effective dielectric ceramic layers is 19, and the area of the counter electrode per layer is 2.1 mm 2 .

【0024】静電容量(C)および誘電損失(tan
δ)は、自動ブリッジ式測定器を用いて、周波数1kH
z,1Vrms ,温度25℃にて測定し、静電容量から誘
電率(ε)を算出した。次に、絶縁抵抗(R)を測定す
るために、絶縁抵抗計を用い、25Vの直流電圧を2分
間印加して、25℃,85℃での絶縁抵抗(R)を測定
し、静電容量(C)と絶縁抵抗(R)との積、すなわち
CR積を求めた。また、温度変化に対する静電容量の変
化率を測定した。なお、温度変化に対する静電容量の変
化率については、20℃での静電容量を基準とした−2
5℃と85℃での変化率(ΔC/C20)および−25℃
から85℃の範囲内で絶対値としてその変化率が最大で
ある値(|ΔC/C20max )を示した。そして、これ
らの結果を表2に示した。
Capacitance (C) and dielectric loss (tan)
δ) is a frequency of 1 kHz using an automatic bridge type measuring instrument
The measurement was performed at z, 1 V rms and a temperature of 25 ° C., and the dielectric constant (ε) was calculated from the capacitance. Next, in order to measure the insulation resistance (R), a DC voltage of 25 V is applied for 2 minutes using an insulation resistance meter to measure the insulation resistance (R) at 25 ° C. and 85 ° C. The product of (C) and insulation resistance (R), that is, the CR product was obtained. In addition, the rate of change of capacitance with respect to temperature change was measured. Note that the rate of change in capacitance with respect to temperature change was based on the capacitance at 20 ° C.
Change rate (ΔC / C 20 ) at 5 ° C and 85 ° C and -25 ° C
The value (| ΔC / C 20 | max ) at which the rate of change is the maximum as an absolute value is shown in the range from to 85 ° C. The results are shown in Table 2.

【0025】次に、各組成の限定理由について説明す
る。
Next, the reasons for limiting each composition will be described.

【0026】(Ba1-x-y-z Srx Rey Mgz ) m (
Ti1-o Coo ) O3 において、試料番号1のように、
Sr量xが0.05未満の場合、誘電率εが10000
未満と低くなり、誘電損失tanδが5.0%を超えて
好ましくない。また、試料番号17のように、Sr量x
が0.35を超えると、磁器の焼結性が悪くなり、誘電
損失tanδが5.0%を超え、CR積が25℃で10
00MΩ・μF未満、85℃で100MΩ・μF未満と
なり、絶縁抵抗の低下が生じ好ましくない。
(Ba 1-xyz Sr x Re y Mg z ) m (
In Ti 1-o Co o ) O 3 , like sample number 1,
When the Sr amount x is less than 0.05, the dielectric constant ε is 10,000
The dielectric loss tan δ exceeds 5.0%, which is not preferable. In addition, as in Sample No. 17, the Sr amount x
When the value exceeds 0.35, the sinterability of the porcelain deteriorates, the dielectric loss tan δ exceeds 5.0%, and the CR product is 10 at 25 ° C.
It is less than 00 MΩ · μF and less than 100 MΩ · μF at 85 ° C., which is not preferable because the insulation resistance decreases.

【0027】さらに、試料番号2のように、Re量yが
0.0005未満であれば、誘電損失tanδが5.0
%を超え、さらに結晶粒径が3μmより大きくなるた
め、誘電体層を薄膜化できず好ましくない。一方、試料
番号18のように、Re量yが0.03を超えると、還
元性雰囲気で焼成したときに磁器が還元され、半導体化
して絶縁抵抗が大幅に低下し好ましくない。
Further, when the Re amount y is less than 0.0005 as in the sample No. 2, the dielectric loss tan δ is 5.0.
%, And the crystal grain size becomes larger than 3 μm, the dielectric layer cannot be thinned, which is not preferable. On the other hand, when the Re amount y exceeds 0.03 as in Sample No. 18, the porcelain is reduced when it is fired in a reducing atmosphere to become a semiconductor, and the insulation resistance is significantly reduced, which is not preferable.

【0028】また、試料番号3のように、Mg量zが
0.0005未満であれば、25℃,85℃でのCR積
が低下し好ましくない。一方、試料番号19のように、
Mg量zが0.05を超えると、誘電率εが10000
未満に低下するだけでなく、絶縁性も低下し好ましくな
い。
If the Mg content z is less than 0.0005 as in sample No. 3, the CR product at 25 ° C. and 85 ° C. decreases, which is not preferable. On the other hand, like sample number 19,
When the amount z of Mg exceeds 0.05, the dielectric constant ε is 10,000.
It is not preferable because the insulating property is lowered as well as it is decreased to less than 1.

【0029】試料番号4のように、Co量oが0.00
05未満の場合、誘電損失tanδが5.0%を超え、
さらに結晶粒径が3μmより大きくなるため、誘電体層
を薄膜化できず好ましくない。一方、試料番号20のよ
うに、Co量oが0.03を超えると、誘電損失tan
δが5.0%を超えて大きくなり、CR積が25℃で1
000MΩ・μF未満、85℃で100MΩ・μF未満
となり、絶縁抵抗の低下が生じ好ましくない。
As in Sample No. 4, the Co amount o is 0.00
If it is less than 05, the dielectric loss tan δ exceeds 5.0%,
Further, since the crystal grain size is larger than 3 μm, the dielectric layer cannot be thinned, which is not preferable. On the other hand, when the Co amount o exceeds 0.03 as in Sample No. 20, the dielectric loss tan
δ becomes larger than 5.0% and CR product becomes 1 at 25 ℃
It is less than 000 MΩ · μF and less than 100 MΩ · μF at 85 ° C., which is not preferable because the insulation resistance decreases.

【0030】試料番号5のように、 (Ba1-x-y-z Sr
x Rey Mgz ) m ( Ti1-o Coo ) O3 のモル比m
が1.000未満では、還元性雰囲気中で焼成したとき
に磁器が還元され、半導体化して絶縁抵抗が低下してし
まい好ましくない。一方、試料番号21のように、モル
比mが1.04を超えると、焼結性が極端に悪くなり好
ましくない。
As shown in Sample No. 5, (Ba 1-xyz Sr
x Re y Mg z) m ( Ti 1-o Co o) the molar ratio of O 3 m
Is less than 1.000, the porcelain is reduced when fired in a reducing atmosphere to become a semiconductor, and the insulation resistance is reduced, which is not preferable. On the other hand, when the molar ratio m exceeds 1.04 as in Sample No. 21, the sinterability is extremely deteriorated, which is not preferable.

【0031】さらに、試料番号6のように、MnO2
NiOの添加量が0.02モル未満の場合、85℃での
CR積が低くなり、高温中における長時間使用の信頼性
が低下し好ましくない。一方、試料番号22のように、
MnO2 ,NiOの量が2.0モルを超えると、誘電損
失tanδが5.0%を超えて大きくなり、同時に絶縁
抵抗も低下し好ましくない。
Further, as shown in Sample No. 6, MnO 2 ,
If the amount of NiO added is less than 0.02 mol, the CR product at 85 ° C. will be low, and the reliability of long-term use at high temperatures will be unfavorable. On the other hand, like sample number 22,
When the amounts of MnO 2 and NiO exceed 2.0 mol, the dielectric loss tan δ exceeds 5.0% and increases, and at the same time, the insulation resistance decreases, which is not preferable.

【0032】また、試料番号7のように、BaO−Sr
O−Li2 O−SiO2 を主成分とする酸化物ガラスの
添加量が0.05重量部未満の場合、焼結性が悪くな
り、誘電損失tanδが5.0%を超えて好ましくな
い。一方、試料番号23のように、BaO−SrO−L
2 O−SiO2 を主成分とする酸化物ガラスの添加量
が5.0重量部を超えると、誘電率が10000未満に
低下するとともに、結晶粒径が3μmより大きくなり好
ましくない。
Further, as in sample No. 7, BaO--Sr
When the amount of oxide glass for the O-Li 2 O-SiO 2 as the main component is less than 0.05 part by weight, the sintering property is deteriorated, the dielectric loss tanδ undesirably exceed 5.0%. On the other hand, like sample number 23, BaO-SrO-L
If the amount of the oxide glass containing i 2 O—SiO 2 as the main component exceeds 5.0 parts by weight, the dielectric constant decreases to less than 10,000 and the crystal grain size becomes larger than 3 μm, which is not preferable.

【0033】それに対して、この発明の誘電体磁器組成
物を用いた積層セラミックコンデンサは、誘電率が10
000以上と高く、誘電損失tanδが5.0%以下
で、温度に対する静電容量の変化率が、−25℃〜85
℃の範囲でJIS規格に規定するF特性規格を満足する
誘電体磁器を得ることができる。しかも、この積層セラ
ミックコンデンサでは、25℃,85℃における絶縁抵
抗が、CR積で表したときに、それぞれ1000MΩ・
μF以上,100MΩ・μF以上と高い値を示す。さら
に、この発明の誘電体磁器組成物は、焼成温度も127
0℃以下と比較的低温で焼結可能であり、粒径について
も3μm以下と小さい。
On the other hand, the multilayer ceramic capacitor using the dielectric ceramic composition of the present invention has a dielectric constant of 10
000 or more, the dielectric loss tan δ is 5.0% or less, and the rate of change in capacitance with temperature is -25 ° C to 85 ° C.
It is possible to obtain a dielectric porcelain satisfying the F characteristic standard defined in JIS standard in the range of ° C. Moreover, in this multilayer ceramic capacitor, the insulation resistance at 25 ° C. and 85 ° C. is 1000 MΩ ·
High values of μF or more and 100 MΩ · μF or more. Further, the dielectric ceramic composition of the present invention has a firing temperature of 127
It can be sintered at a relatively low temperature of 0 ° C. or less, and has a small particle size of 3 μm or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ba,Sr,Mg,Ti,CoおよびR
e(ReはTb,Dy,HoおよびErの中から選ばれ
る少なくとも1種類の希土類元素)の各酸化物からな
り、次の一般式 (Ba1-x-y-z Srx Rey Mgz ) m ( Ti1-o Coo ) O3 で表され、x,y,z,oおよびmが、 0.05≦x≦0.35 0.0005≦y≦0.03 0.0005≦z≦0.05 0.0005≦o≦0.03 1.00≦m≦1.04 の関係を満足する主成分100モルに対して、副成分と
して、MnおよびNiの各酸化物をMnO2 およびNi
Oと表したとき、MnおよびNiの各酸化物の少なくと
も一種類を0.02〜2.0モル添加含有し、前記主成
分を100重量部として、BaO−SrO−Li2 O−
SiO2 を主成分とする酸化物ガラスを0.05重量部
〜5.0重量部含む、誘電体磁器組成物。
1. Ba, Sr, Mg, Ti, Co and R
e (Re is Tb, Dy, at least one rare earth element selected from among Ho and Er) consists respective oxides of the following general formula (Ba 1-xyz Sr x Re y Mg z) m (Ti 1 -o Co o ) O 3 , and x, y, z, o and m are 0.05 ≦ x ≦ 0.35 0.0005 ≦ y ≦ 0.03 0.0005 ≦ z ≦ 0.05 0 0.0005 ≤ o ≤ 0.03 1.00 ≤ m ≤ 1.04 With respect to 100 mol of the main component, Mn and Ni oxides are added as MnO 2 and Ni as auxiliary components.
When expressed as O, 0.02 to 2.0 mol of at least one kind of each oxide of Mn and Ni is added and contained, and the main component is 100 parts by weight, and BaO—SrO—Li 2 O—
A dielectric ceramic composition containing 0.05 to 5.0 parts by weight of oxide glass containing SiO 2 as a main component.
【請求項2】 請求項1の誘電体磁器組成物からなる誘
電体層と、NiおよびNi合金のうちの1種類からなる
内部電極とを含む、積層セラミックコンデンサ。
2. A laminated ceramic capacitor comprising a dielectric layer made of the dielectric ceramic composition of claim 1 and an internal electrode made of one of Ni and a Ni alloy.
JP07937592A 1992-02-28 1992-02-28 Dielectric ceramic composition and multilayer ceramic capacitor using the same Expired - Fee Related JP3318952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07937592A JP3318952B2 (en) 1992-02-28 1992-02-28 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07937592A JP3318952B2 (en) 1992-02-28 1992-02-28 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Publications (2)

Publication Number Publication Date
JPH05242730A true JPH05242730A (en) 1993-09-21
JP3318952B2 JP3318952B2 (en) 2002-08-26

Family

ID=13688128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07937592A Expired - Fee Related JP3318952B2 (en) 1992-02-28 1992-02-28 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3318952B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060144B2 (en) * 2001-11-14 2006-06-13 Taiyo Yuden Co., Ltd. Ceramic capacitor and method for the manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060144B2 (en) * 2001-11-14 2006-06-13 Taiyo Yuden Co., Ltd. Ceramic capacitor and method for the manufacture thereof

Also Published As

Publication number Publication date
JP3318952B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP3039417B2 (en) Multilayer ceramic capacitors
JP3024536B2 (en) Multilayer ceramic capacitors
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
EP0605904B1 (en) Nonreducible dielectric ceramic composition
JP3180690B2 (en) Multilayer ceramic capacitors
JP3024537B2 (en) Multilayer ceramic capacitors
JP2993425B2 (en) Multilayer ceramic capacitors
JP3180681B2 (en) Multilayer ceramic capacitors
JP2002164247A (en) Dielectric ceramic composition and layered ceramic capacitor
JPH1074660A (en) Laminated ceramic capacitor
JP3039409B2 (en) Multilayer ceramic capacitors
JP3334606B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP3796771B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3520053B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP3389220B2 (en) Dielectric porcelain composition, electronic component and method for producing electronic component
JP3064918B2 (en) Multilayer ceramic capacitors
JPH0734327B2 (en) Non-reducing dielectric ceramic composition
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JP3318952B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3438261B2 (en) Non-reducing dielectric porcelain composition
JP3316717B2 (en) Multilayer ceramic capacitors
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JPH0734326B2 (en) Non-reducing dielectric ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees