JPH05240999A - X-ray irradiation device with irradiation region monitor - Google Patents

X-ray irradiation device with irradiation region monitor

Info

Publication number
JPH05240999A
JPH05240999A JP4397992A JP4397992A JPH05240999A JP H05240999 A JPH05240999 A JP H05240999A JP 4397992 A JP4397992 A JP 4397992A JP 4397992 A JP4397992 A JP 4397992A JP H05240999 A JPH05240999 A JP H05240999A
Authority
JP
Japan
Prior art keywords
ray
visible light
sample
lens
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4397992A
Other languages
Japanese (ja)
Other versions
JP2995361B2 (en
Inventor
Shuzo Sudo
修三 須藤
Kunio Nakajima
邦雄 中島
Hiroyuki Suzuki
弘幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4043979A priority Critical patent/JP2995361B2/en
Publication of JPH05240999A publication Critical patent/JPH05240999A/en
Application granted granted Critical
Publication of JP2995361B2 publication Critical patent/JP2995361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a device for easily observing an X-ray irradiation region on sample surface by an X-ray irradiation device using visible light without obstracting the sample movement. CONSTITUTION:In between an X-ray source 1a and a total reflection type X-ray lens 4 to condense X-ray 12, an X-ray penetration mirror 6 penetrating the X-ray 12 and reflecting visible light 14 is inserted with an inclination. At a position optically equivalent to the X-ray source against the X-ray penetration mirror 6, a visible light source 10 is arranged to make the irradiation of both of the X-ray 12 and the visible light 14 on the spot of a sample 5 to be identical shape and position. Also, the visible light 14 irradiated on the sample and reflected by the X-ray penetration mirror 6 is separated from the visible light source axis with a half mirror 7, and on that axis, a two dimensional visible light position detector 11 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、照射領域モニターを備
えたX線照射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray irradiation apparatus equipped with an irradiation area monitor.

【0002】[0002]

【従来の技術】X線照射装置における、従来のX線照射
モニター装置としては、例えば、特開昭58−1332
39号公報に示すものがある。これは、X線照射装置と
試料との間に、X線は透過するが可視光線は反射するX
線透過鏡を、X線光軸に対してその面を略45度に傾け
て介在させる。また可視光線源を、一旦X線透過鏡に当
てて試料表面のX線照射領域を照射するように配置す
る。なお、試料とX線透過鏡との間には、X線および可
視光線を絞り込み、並行光線にするためのコリメータが
設けられている。この構成により、X線照射装置から発
生したX線は、X線透過鏡を透過して、コリメータによ
り絞り込まれ、並行X線となって試料表面を照射する。
また、可視光線源から発した可視光線は、X線透過鏡に
X線光軸に対して略直角に照射し、反射する。これによ
り可視光線はX線光軸と同軸になり、そして、コリメー
タにより絞り込まれ、並行光線となって試料表面を照射
する。つまり、X線にて試料表面を照射される領域を、
可視光線が照射する。この可視光線を照射部分を他の手
段にて観察することにより、X線照射領域をモニターす
るものである。
2. Description of the Related Art As a conventional X-ray irradiation monitor device in an X-ray irradiation device, for example, JP-A-58-1332 is known.
There is one disclosed in Japanese Patent No. 39. This is an X-ray that transmits X-rays but reflects visible light between the X-ray irradiation device and the sample.
The line-transmission mirror is interposed with its surface tilted at about 45 degrees with respect to the X-ray optical axis. Further, the visible light source is once placed on the X-ray transmission mirror so as to irradiate the X-ray irradiation area on the sample surface. A collimator is provided between the sample and the X-ray transmission mirror to narrow down the X-rays and visible rays to make them parallel rays. With this configuration, the X-rays generated from the X-ray irradiation device pass through the X-ray transmission mirror and are narrowed down by the collimator to become parallel X-rays and irradiate the sample surface.
Further, the visible light emitted from the visible light source is applied to the X-ray transmission mirror substantially at right angles to the X-ray optical axis and reflected. As a result, the visible light becomes coaxial with the X-ray optical axis, and is narrowed down by the collimator to become parallel light and irradiate the sample surface. That is, the area irradiated with the X-ray on the sample surface is
Visible light is emitted. The X-ray irradiation region is monitored by observing the portion irradiated with this visible light by other means.

【0003】また、他従来例として、例えば、特開平1
−185500号公報に示すものがある。この構成は、
X線を細長いガイドチューブにて、X線を試料表面にス
ポットにて照射する。X線照射装置と試料との間に、X
線を反射する反射鏡を、X線光軸に対してその面を略4
5度に傾けて介在させ、その中心にはガイドチューブが
通る穴が設けられている。また可視光線源を、一旦反射
鏡に当てて試料表面のX線照射領域を照射するように配
置する。更に、可視光線軸上には、試料表面上に可視光
線が焦点を結ぶように光学レンズが配置されている。こ
の例も、X線にて試料表面を照射される領域を、可視光
線が照射し、この可視光線を照射部分を他の手段にて観
察することにより、X線照射領域をモニターするもので
ある。
As another conventional example, for example, Japanese Patent Laid-Open No.
There is one disclosed in Japanese Patent Publication No. 185500. This configuration
The X-ray is irradiated on the surface of the sample with a spot by the elongated guide tube. Between the X-ray irradiation device and the sample, X
A reflecting mirror that reflects the rays, with its surface approximately 4 with respect to the X-ray optical axis
The guide tube is provided with a hole through which the guide tube is inserted. Further, the visible light source is placed on the reflecting mirror so as to irradiate the X-ray irradiation region on the sample surface. Further, an optical lens is arranged on the visible light axis so that the visible light is focused on the surface of the sample. This example also monitors the X-ray irradiation region by irradiating the region irradiated with the X-ray with the visible light and observing the portion irradiated with the visible light with other means. ..

【0004】[0004]

【発明が解決しようとする課題】特開昭58−1332
39号公報に示すものにおいては、X線および可視光線
を、中空円筒状のコリメータにて絞り込み、径の細いビ
ーム状にして試料表面に照射するため、X線源からのX
線放射立体角が小さくなる為大きなX線強度が得られな
い点、および回折現象のためにコリメータの内径を数十
μm程度以下にすることは困難である。つまり、微小の
ビーム径を得ることができない。
Problems to be Solved by the Invention JP-A-58-1332
In the technique disclosed in Japanese Patent No. 39, the X-ray and the visible light are narrowed by a hollow cylindrical collimator to form a beam having a small diameter, and the sample surface is irradiated with the X-ray from the X-ray source.
It is difficult to set the inner diameter of the collimator to about several tens of μm or less due to the fact that a large X-ray intensity cannot be obtained because the solid angle of radiation emission becomes small and due to the diffraction phenomenon. That is, a minute beam diameter cannot be obtained.

【0005】また、特開平1−185500号公報に示
すものにおいても、細管状のガイドチューブにてX線を
絞りかつ径の細いビーム状にして試料表面に照射し、ま
た、可視光線は光学レンズにてビーム状に絞られるた
め、それぞれの焦点位置を一致させるのにアライメント
を調整する必要があり、また試料位置がずれた場合、焦
点が一致しなくなるという課題がある。
Also, in the one disclosed in Japanese Patent Laid-Open No. 1-185500, a thin guide tube narrows X-rays to form a beam having a small diameter and irradiates the sample surface, and visible light is an optical lens. Since the beam is focused into a beam shape, it is necessary to adjust the alignment to match the respective focal positions, and there is a problem that the focal points do not match when the sample position is deviated.

【0006】さらに、前述の従来例では、ビーム状の可
視光線の試料照射位置を確認するための手段である可視
光観察装置(可視光撮像装置)を試料周りの別の位置に
配置する必要がある。試料に傾斜回転機構など、試料に
大きな自由度が要求される場合や、装置構成上、可視光
観察装置の配置場所に制限がなる場合、X線照射位置を
確認できない場合がでてくる。目視による直接可視光線
の照射領域(つまり、X線照射領域)を観察する場合
は、精々数百μm程度まてしか確認できない。
Further, in the above-mentioned conventional example, it is necessary to dispose a visible light observing device (visible light image pickup device) at another position around the sample, which is a means for confirming the irradiation position of the beam-like visible light on the sample. is there. There are cases where the sample requires a large degree of freedom, such as a tilt rotation mechanism, or where the arrangement of the visible light observation device is limited due to the device configuration, and the X-ray irradiation position cannot be confirmed. When directly observing a visible light irradiation area (that is, an X-ray irradiation area), it can be confirmed only up to several hundred μm.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するために、X線を発生するX線発生装置と、前記X線
をその鏡面状態の内面において全反射し、集光する全反
射型X線レンズと、前記X線発生装置と前記全反射型X
線レンズとの間に、前記X線の光軸に対してその面を傾
けて介在し、X線を透過し、可視光線を反射するX線透
過鏡と、前記X線透過鏡を反射し、前記全反射型X線レ
ンズにより反射した可視光線が、前記X線の光軸と同軸
になるように配置され、且つ前記X線発生装置と前記全
反射型X線レンズとのX線光学距離と、前記全反射型X
線レンズとの可視光光学距離とが等しく配置された可視
光源と、前記全反射型X線レンズと前記可視光源との間
に設けられたハーフミラーと、前記可視光と前記ハーフ
ミラーとの光軸に対して他方の光軸に可視光二次元位置
検出装置を設けたことを特徴とする照射領域モニター付
きX線照射装置である。
In order to solve the above-mentioned problems, the present invention provides an X-ray generator for generating X-rays, and total reflection for totally reflecting and condensing the X-rays on the inner surface of its mirror surface state. Type X-ray lens, the X-ray generator, and the total reflection type X
Between the X-ray lens and the X-ray lens, the surface of which is inclined with respect to the optical axis of the X-ray, transmits the X-ray, reflects the visible light, and reflects the X-ray transmissive mirror. The visible ray reflected by the total reflection type X-ray lens is arranged so as to be coaxial with the optical axis of the X-ray, and the X-ray optical distance between the X-ray generator and the total reflection type X-ray lens. , The total reflection type X
A visible light source having the same visible light optical distance as a linear lens, a half mirror provided between the total reflection X-ray lens and the visible light source, and light of the visible light and the half mirror An X-ray irradiating device with an irradiation region monitor, characterized in that a visible light two-dimensional position detecting device is provided on the other optical axis with respect to the axis.

【0008】[0008]

【作用】X線透過鏡によりX線光軸に重畳された可視光
は、X線発生装置と全反射型X線レンズとのX線光学距
離と、可視光線源と全反射型X線レンズとの可視光光学
距離とが等しく配置されているため、X線と同一の条件
にて全反射型X線レンズに入射する。この全反射型X線
レンズにて、X線と可視光は、鏡の反射原理に従って全
反射する。全反射型X線レンズの内径は、凹面鏡形状を
しているため、X線と可視光は試料表面の同一位置(領
域)を照射することになる。ここで、X線源と可視光線
源がスポット形状をしていれば、スポットとして試料表
面を照射する。この可視光線のスポット照射がX線照射
(スポット)の照射位置を示すことになる。さらに、可
視光線の試料への照射した可視光は、全反射型X線レン
ズを通り、X線透過鏡で反射され、ハーフミラーに到達
する。このハーフミラーにて、試料からの可視光の一部
は可視光線源とは別の他の光軸を通って、可視光二次元
位置検出装置に入力される。この可視光二次元位置検出
装置にて、可視光が試料の何処を照射しているかを観察
することができるものである。
The visible light superposed on the X-ray optical axis by the X-ray transmission mirror has the X-ray optical distance between the X-ray generator and the total reflection type X-ray lens, the visible light source and the total reflection type X-ray lens. Since they are arranged to have the same visible light optical distance, the light enters the total reflection type X-ray lens under the same conditions as the X-rays. With this total reflection type X-ray lens, X-rays and visible light are totally reflected according to the reflection principle of a mirror. Since the inner diameter of the total reflection type X-ray lens has a concave mirror shape, the X-ray and visible light irradiate the same position (region) on the sample surface. Here, if the X-ray source and the visible light source have a spot shape, the sample surface is irradiated as a spot. The spot irradiation of visible light indicates the irradiation position of X-ray irradiation (spot). Further, the visible light applied to the sample of visible light passes through the total reflection type X-ray lens, is reflected by the X-ray transmission mirror, and reaches the half mirror. With this half mirror, part of the visible light from the sample passes through another optical axis different from the visible light source and is input to the visible light two-dimensional position detecting device. With this visible light two-dimensional position detecting device, it is possible to observe where on the sample the visible light is radiated.

【0009】[0009]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。図1は本発明の一実施例のX線照射装置の
概略断面を示し、1はX線発生装置装置であり、図示し
ないスリットまたはピンホール等にて点状のX線源1a
を有している。X線源1aのスポットサイズは数百μm
から数μmまで可変することができる。X線源1aから
のX線12はX線軸13を有するビーム形状になり、H
e等X線の吸収のすくないガス、あるいは真空に保たれ
たパイプ2を通過する。Heガスの場合、エネルギー5
keV以上のX線12は99%以上通過する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic cross section of an X-ray irradiator according to an embodiment of the present invention. Reference numeral 1 denotes an X-ray generator, which is a point-like X-ray source 1a having a slit or a pinhole (not shown).
have. The spot size of the X-ray source 1a is several hundred μm
To several μm. The X-rays 12 from the X-ray source 1a have a beam shape having an X-ray axis 13,
The gas passes through the pipe 2 kept in a vacuum or a gas that hardly absorbs X-rays. Energy 5 for He gas
X-rays 12 having a keV or higher pass through 99% or more.

【0010】通過したX線12は、パイプ2の他端部に
レンズホルダー3が設けられている。レンズホルダー3
は、X線12を集光する全反射型X線レンズ4が5軸移
動可能に、備えられている。全反射型X線レンズ4の内
面は鏡面に仕上げられており、楕円体ミラーであり、凹
面状をしている。本実施例では、パイレックスガラス性
の全反射型X線レンズ4の内面形状は紡錘形状のものを
用いたが、皿状のものでも使用できる。
The X-ray 12 that has passed through is provided with a lens holder 3 at the other end of the pipe 2. Lens holder 3
Is equipped with a total reflection type X-ray lens 4 for focusing the X-rays 12 so as to be movable in five axes. The inner surface of the total reflection type X-ray lens 4 is mirror-finished, is an ellipsoidal mirror, and has a concave shape. In the present embodiment, the pyrex glass type total reflection type X-ray lens 4 has a spindle-shaped inner surface, but a dish-shaped one can also be used.

【0011】一方、X線照射装置には、試料表面のX線
照射位置にスポット状の可視光を照射するための可視光
源10が設けられている。可視光源10から発生した可
視光線14は、光学レンズ9により絞られ、その焦点上
にピンホール8が設けられており、ピンホール8は可視
光線14の光源としてのスポット形が決定される。な
お、可視光源10からの可視光線軸15a方向がX線軸
13方向と平行になるように、可視光源10、光学レン
ズ9およびピンホール8は位置している。
On the other hand, the X-ray irradiator is provided with a visible light source 10 for irradiating spot-shaped visible light on the X-ray irradiation position on the sample surface. The visible light 14 generated from the visible light source 10 is narrowed down by the optical lens 9, and the pinhole 8 is provided on the focal point thereof. The pinhole 8 determines the spot shape as the light source of the visible light 14. The visible light source 10, the optical lens 9, and the pinhole 8 are positioned so that the direction of the visible ray axis 15a from the visible light source 10 is parallel to the direction of the X-ray axis 13.

【0012】可視光源10からの可視光軸15a上にハ
ーフミラー7が傾けられて設けられている。その傾き
は、X線軸13の方向に45度で傾けられている。ハー
フミラー7で反射した可視光線14は可視光源10から
の可視光軸15aと直角な可視光軸15bを有し、その
可視光軸15bは、X線軸13と直交することになる。
ハーフミラー7からの可視光軸15bとX線軸13との
交点に、X線光軸13上にX線12を透過し、可視光線
を反射するX線透過鏡6が、X線軸12および可視光軸
15bに対して45度、試料5方向に傾けて、挿入され
ている。これらの配置および傾きは実施例に限定される
ものではなく、要は可視光源10からの可視光線14が
ハーフミラー7を通って、X線透過鏡6にて反射され、
全反射型X線レンズ4の内面に集束されて、試料5の表
面を照射するような配置であればよいものである。つま
り各鏡7、6の傾斜各は一般に45度が最も適している
がその角度に限定されるものではない。
The half mirror 7 is tilted on the visible light axis 15a from the visible light source 10. The inclination is 45 degrees in the direction of the X-ray axis 13. The visible light ray 14 reflected by the half mirror 7 has a visible light axis 15b perpendicular to the visible light axis 15a from the visible light source 10, and the visible light axis 15b is orthogonal to the X-ray axis 13.
At the intersection of the visible light axis 15b from the half mirror 7 and the X-ray axis 13, an X-ray transmission mirror 6 that transmits the X-rays 12 on the X-ray optical axis 13 and reflects the visible light is provided. It is inserted at an angle of 45 degrees with respect to the axis 15b in the direction of the sample 5. These arrangements and inclinations are not limited to those in the embodiment. In short, the visible light rays 14 from the visible light source 10 pass through the half mirror 7 and are reflected by the X-ray transmission mirror 6.
The arrangement is such that it is focused on the inner surface of the total reflection type X-ray lens 4 and irradiates the surface of the sample 5. That is, the inclination of each of the mirrors 7 and 6 is generally most suitable at 45 degrees, but is not limited to that angle.

【0013】X線透過鏡6には、一般に、ベリリウム又
はアルミニウムの薄板が用いられる。少なくとも可視光
を反射する面は、鏡面である。ここで、スリット8から
X線透過鏡6までの可視光14の光学距離と、X線発生
装置の図示しないスリット等のX線源位置からX線透過
鏡6までのX線光学距離とが等しくなるように各配置は
設定されている。
For the X-ray transmission mirror 6, a beryllium or aluminum thin plate is generally used. At least the surface that reflects visible light is a mirror surface. Here, the optical distance of the visible light 14 from the slit 8 to the X-ray transmission mirror 6 is equal to the X-ray optical distance from the X-ray source position such as a slit (not shown) of the X-ray generator to the X-ray transmission mirror 6. Each arrangement is set so that.

【0014】更に、可視光軸15b上にハーフミラー7
の延長線上(X線透過鏡と逆方向)に、可視光二次元位
置検出装置11が設けられている。可視光二次元位置検
出装置11は、光学的に試料5表面観察する装置となっ
ている。ここで、X線12および可視光15の作用につ
いて説明する。つまり、X線発生装置1から発生したX
線12は、試料5方向にX線軸13を有し、X線透過鏡
6を通過して、全反射型X線レンズ4にて反射され、集
束し、試料5表面上にスポットとして照射する。なお、
X線軸13付近を通過するX線12は、全反射型X線レ
ンズ4の中心部を通過するため、試料表面に集束されな
いのでストッパ19がX線軸13上に、全反射型X線レ
ンズ4の入口付近に設けられている。
Further, the half mirror 7 is placed on the visible light axis 15b.
The visible light two-dimensional position detection device 11 is provided on the extension line (in the direction opposite to the X-ray transmission mirror). The visible light two-dimensional position detecting device 11 is a device for optically observing the surface of the sample 5. Here, the actions of the X-ray 12 and the visible light 15 will be described. That is, the X generated from the X-ray generator 1
The line 12 has an X-ray axis 13 in the direction of the sample 5, passes through the X-ray transmission mirror 6, is reflected by the total reflection type X-ray lens 4, is focused, and is irradiated as a spot on the surface of the sample 5. In addition,
Since the X-rays 12 passing near the X-ray axis 13 pass through the central portion of the total reflection type X-ray lens 4, they are not focused on the sample surface. It is provided near the entrance.

【0015】また、可視光源10から発生し可視光14
は、ハーフミラー7にて反射して、X線透過鏡6に到達
する。ここで再び、可視光14はX線透過鏡6にて反射
され、前述のX線12と同一のビームとなる。X線透過
鏡6にて反射された可視光14は、X線と同様に、全反
射型X線レンズ4にて反射され、集束し、試料5表面上
にスポットとして照射する。つまり、試料5表面上にス
ポットとして照射されるX線12と可視光14は同一形
状を持つことになる。従って、試料5表面の可視光14
のスポットを観察することにより、X線照射領域をモニ
ターすることができる。
The visible light 14 emitted from the visible light source 10
Is reflected by the half mirror 7 and reaches the X-ray transmission mirror 6. Here again, the visible light 14 is reflected by the X-ray transmission mirror 6 and becomes the same beam as the above-mentioned X-ray 12. The visible light 14 reflected by the X-ray transmission mirror 6 is reflected by the total reflection type X-ray lens 4 as in the case of X-rays, is focused, and is irradiated as a spot on the surface of the sample 5. That is, the X-ray 12 and the visible light 14 that are irradiated as a spot on the surface of the sample 5 have the same shape. Therefore, the visible light 14 on the surface of the sample 5
The X-ray irradiation region can be monitored by observing the spots.

【0016】試料5表面をスポットとして照射した可視
光14は試料5表面にて散乱反射する。その一部は、再
び全反射型X線レンズ4に入射され、反射されて、X線
軸13に沿って、X線源1a方向に進行する。再びX線
透過鏡6により、可視光14は反射され、可視光軸15
bに沿って進行する。そして、ハーフミラー7に到達す
る。ハーフミラー7に到達した可視光14の一部は、ハ
ーフミラー7を透過して、可視光二次元検出装置11に
到達する。つまり、可視光二次元検出装置11は画像検
出装置を形成しており、試料5表面への可視光14スポ
ット照射の位置、つまりX線12の照射位置を拡大して
観察、確認することができるものである。
The visible light 14 radiated as a spot on the surface of the sample 5 is scattered and reflected on the surface of the sample 5. A part thereof is again made incident on the total reflection type X-ray lens 4, is reflected, and advances along the X-ray axis 13 in the direction of the X-ray source 1a. The visible light 14 is reflected by the X-ray transmission mirror 6 again, and the visible light axis 15 is reflected.
Proceed along b. Then, it reaches the half mirror 7. Part of the visible light 14 that has reached the half mirror 7 passes through the half mirror 7 and reaches the visible light two-dimensional detection device 11. That is, the visible light two-dimensional detection device 11 forms an image detection device, and the position of irradiation of the visible light 14 spot on the surface of the sample 5, that is, the irradiation position of the X-ray 12 can be enlarged and observed and confirmed. Is.

【0017】なお、ここで、試料への可視光14スポッ
ト照射の位置の近傍を観察するために、試料への可視光
14のスポット照射位置の近傍を光で照らす第2の可視
光源20が、試料5の近傍に設けられている。可視光二
次元検出器11での検出画像は、30μm程度の解像度
で検出されるが、そのデータを画像処理装置18を介し
て、テレビモニター17に画像表示させると、可視光ス
ポットの位置を数μm程度の解像度で画像表示すること
ができる。
Here, in order to observe the vicinity of the spot irradiation position of the visible light 14 on the sample, the second visible light source 20 for illuminating the vicinity of the spot irradiation position of the visible light 14 on the sample with light. It is provided near the sample 5. The image detected by the visible light two-dimensional detector 11 is detected with a resolution of about 30 μm. When the data is displayed on the television monitor 17 via the image processing device 18, the position of the visible light spot is several μm. Images can be displayed at a resolution of about a certain degree.

【0018】試料面を傾けて試料5を配置した場合、試
料5から全反射型X線レンズ4への可視光14の乱反射
光が少なくなっても、可視光14の照射位置近傍を照射
する第2の可視光源20が設けられているので、試料4
表面の観察が容易にできる。ここで、第2の可視光源2
0をファイバーによる照明にした場合、試料の傾斜等に
制約を与えずに、自由に、試料を傾けることができる。
試料を傾けたり、回転させる時可視光線の照射距離は変
化するが、全反射型X線レンズ4の焦点深度が深いた
め、可視光14の照射位置を見失うことが少ない。この
全反射型X線レンズ4においては、収差が大きく存在す
るが、300μm程度以上の視野が得られる。さらに、
収差補正レンズを使用することにより、さらに広い視野
が得られる。全反射型X線レンズ4は、長焦点深度であ
るため、試料5の傾きを80度程度以上傾けても100
μm領域程度の観察が可能である。
When the sample 5 is arranged with the sample surface tilted, even if the diffusely reflected light of the visible light 14 from the sample 5 to the total reflection type X-ray lens 4 decreases, the vicinity of the irradiation position of the visible light 14 is irradiated. 2 visible light sources 20 are provided, so sample 4
The surface can be easily observed. Here, the second visible light source 2
When 0 is illuminated by a fiber, the sample can be freely tilted without giving any restriction to the tilt of the sample.
When the sample is tilted or rotated, the irradiation distance of visible light changes, but since the total reflection type X-ray lens 4 has a deep focal depth, the irradiation position of visible light 14 is not lost easily. This total reflection type X-ray lens 4 has a large aberration, but a visual field of about 300 μm or more can be obtained. further,
A wider field of view can be obtained by using an aberration correction lens. Since the total reflection type X-ray lens 4 has a long depth of focus, even if the sample 5 is tilted by about 80 degrees or more,
Observation in the μm region is possible.

【0019】なお、X線源は、微小焦点型X線管に限っ
たものではなく、例えば回転対陰極型X線源やレーザー
プラズマ励起によるX線源、通常のX線管、放射光光源
等を直接X線源とする場合と、それにピンホール、スリ
ット、あるいは、他のX線光学素子による集束点をX線
源とする場合も、本発明に含まれる。鏡面状態をなす全
反射型X線レンズ4は図1に示した筒状の形状のものに
限らず、可視光の反射を起こすような表面を有する平面
または湾曲状の結晶も含まれ、他の材質や形状のもので
も本発明に含まれる。
The X-ray source is not limited to the micro focus X-ray tube. For example, a rotating anticathode X-ray source, an X-ray source excited by laser plasma, an ordinary X-ray tube, a synchrotron radiation source, etc. The present invention also includes the case where the X-ray source is used directly, and the case where the X-ray source is a pinhole, a slit, or a focal point formed by another X-ray optical element. The total reflection type X-ray lens 4 having a mirror surface state is not limited to the cylindrical shape shown in FIG. 1, but includes a flat or curved crystal having a surface that causes reflection of visible light. Materials and shapes are also included in the present invention.

【0020】また、本実施例の構成に限らず、X線軸1
3に複数のX線透過鏡6を配置する場合や、ハーフミラ
ー7を複数設けてる場合も本発明に含まれる。
The X-ray axis 1 is not limited to the structure of this embodiment.
The present invention also includes a case in which a plurality of X-ray transmission mirrors 6 are arranged in 3 and a case in which a plurality of half mirrors 7 are provided.

【0021】[0021]

【発明の効果】この構成により、試料表面上へのX線照
射領域の観察を顕微鏡、望遠鏡、ズームレンズ等の可視
光観察機構を試料位置付近に設置する必要がなく、試料
を自由に回転、傾斜することができ、またを、X線軸長
さ方向に対して多少位置がずれていても正確にX線照射
領域位置を数μm以下の精度で観察モニターすることが
できる。X線照射領域と、可視光線照射領域が同一形状
になるため、全反射型X線レンズの軸調整を、可視光線
のスポットを観察することにより達成することがでい
る。
With this structure, it is not necessary to install a visible light observing mechanism such as a microscope, a telescope, and a zoom lens near the sample position for observing the X-ray irradiation region on the sample surface, and the sample can be freely rotated. It is possible to incline, and the position of the X-ray irradiation region can be accurately observed and monitored with an accuracy of several μm or less even if the position is slightly displaced with respect to the X-ray axis length direction. Since the X-ray irradiation region and the visible light irradiation region have the same shape, the axis adjustment of the total reflection X-ray lens can be achieved by observing the spot of visible light.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明にかかわる一実施例の概略断面図
である。
FIG. 1 is a schematic sectional view of one embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

1 X線発生装置 1a X線源 2 パイプ 3 レンズホルダー 4 全反射型X線レンズ 5 試料 6 X線透過鏡 7 ハーフミラー 8 スリット 9 光学レンズ 10 可視光源 11 可視光二次元検出器 12 X線 13 X線軸 14 可視光 15a、15b 可視光軸 17 テレビモニター 18 画像処理装置 19 ストッパ 20 第2の可視光源 1 X-ray generator 1a X-ray source 2 Pipe 3 Lens holder 4 Total reflection type X-ray lens 5 Sample 6 X-ray transmission mirror 7 Half mirror 8 Slit 9 Optical lens 10 Visible light source 11 Visible light two-dimensional detector 12 X-ray 13 X Line axis 14 Visible light 15a, 15b Visible light axis 17 Television monitor 18 Image processing device 19 Stopper 20 Second visible light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 X線を発生するX線発生装置と、 前記X線をその鏡面状態の内面において全反射し、集光
する全反射型X線レンズと、 前記X線発生装置と前記全反射型X線レンズとの間に、
前記X線の光軸に対してその面を傾けて介在し、X線を
透過し、可視光線を反射するX線透過鏡と、 前記X線透過鏡を反射し、前記全反射型X線レンズによ
り反射した可視光線が、前記X線の光軸と同軸になるよ
うに配置され、且つ前記X線発生装置と前記全反射型X
線レンズとのX線光学距離と、前記全反射型X線レンズ
との可視光光学距離とが等しく配置された可視光源と、 前記全反射型X線レンズと前記可視光源との間に設けら
れたハーフミラーと、 前記可視光と前記ハーフミラーとの光軸に対して他方の
光軸に可視光二次元位置検出装置を設けたことを特徴と
する照射領域モニター付きX線照射装置。
1. An X-ray generator for generating X-rays, a total-reflection X-ray lens for totally reflecting and condensing the X-rays on the inner surface of the mirror surface thereof, the X-ray generator and the total reflection. Between the type X-ray lens,
An X-ray transmissive mirror that is inclined with respect to the optical axis of the X-ray and transmits X-rays and reflects visible light; and a total reflection X-ray lens that reflects the X-ray transmissive mirrors. Visible light reflected by the X-ray generator and the total reflection type X are arranged so as to be coaxial with the optical axis of the X-ray.
Provided between the total reflection X-ray lens and the visible light source, and a visible light source in which the X-ray optical distance to the line lens and the visible light optical distance to the total reflection X-ray lens are equal. An X-ray irradiation device with an irradiation area monitor, comprising: a half mirror; and a visible light two-dimensional position detection device on the other optical axis with respect to the optical axes of the visible light and the half mirror.
JP4043979A 1992-02-28 1992-02-28 X-ray irradiator with irradiation area monitor Expired - Lifetime JP2995361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4043979A JP2995361B2 (en) 1992-02-28 1992-02-28 X-ray irradiator with irradiation area monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4043979A JP2995361B2 (en) 1992-02-28 1992-02-28 X-ray irradiator with irradiation area monitor

Publications (2)

Publication Number Publication Date
JPH05240999A true JPH05240999A (en) 1993-09-21
JP2995361B2 JP2995361B2 (en) 1999-12-27

Family

ID=12678842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4043979A Expired - Lifetime JP2995361B2 (en) 1992-02-28 1992-02-28 X-ray irradiator with irradiation area monitor

Country Status (1)

Country Link
JP (1) JP2995361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635682A1 (en) * 1986-10-21 1988-04-28 Bbc Brown Boveri & Cie Monitoring device for lamp failure in airfield lighting systems
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3635682A1 (en) * 1986-10-21 1988-04-28 Bbc Brown Boveri & Cie Monitoring device for lamp failure in airfield lighting systems
CN115389538A (en) * 2022-08-09 2022-11-25 深圳市埃芯半导体科技有限公司 X-ray analysis apparatus and method
CN115389538B (en) * 2022-08-09 2023-12-29 深圳市埃芯半导体科技有限公司 X-ray analysis device and method

Also Published As

Publication number Publication date
JP2995361B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
CN110223797B (en) X-ray generating device and X-ray analyzing device
JP3996821B2 (en) X-ray analyzer
JP3497244B2 (en) Near-field scanning microscope
EP0325158A2 (en) X-ray irradiation apparatus provided with irradiation range monitor
JP4694296B2 (en) X-ray fluorescence three-dimensional analyzer
JP2995361B2 (en) X-ray irradiator with irradiation area monitor
US20050226372A1 (en) X-ray image magnifying device
JP3197104B2 (en) X-ray analyzer
JPH02259515A (en) Measuring instrument for fluorescent x-rays film thickness
JPS62106352A (en) Scanning type x-ray microscope
JP3819376B2 (en) X-ray apparatus and its anti-scatter cap
JPS60253956A (en) Extremely small part analyzing device using excitation beam
JP2948662B2 (en) Radiation image magnifying observation device
JP3049790B2 (en) Imaging soft X-ray microscope
Kubota et al. Determination of x‐ray tube focal spot position
KR101202977B1 (en) Hybrid Microscope for Simultaneously Observing Surface and Inner Structure of Target Sample
JPH0760199B2 (en) X-ray irradiation device with irradiation area monitor
RU2279151C1 (en) Method for recording deviation of probe bracket in lens-incorporating scanning microscope
JPH0760200B2 (en) X-ray irradiation device with irradiation area monitor
JPH08247967A (en) Fine area parallel beam irradiator
JP2008164503A (en) X-rays beam-condensing unit and x-ray analyzer
JP2024007885A (en) Measurement device and measurement method
JP2754069B2 (en) Laser interferometer
JP2022104820A (en) Illumination aperture for extending sample life in spiral tomography
JPH087331B2 (en) Infrared absorption spectrum measurement microscope device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101029

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20111029

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13