JPH05240006A - Pressure fluidized bed boiler combined power plant - Google Patents

Pressure fluidized bed boiler combined power plant

Info

Publication number
JPH05240006A
JPH05240006A JP4045725A JP4572592A JPH05240006A JP H05240006 A JPH05240006 A JP H05240006A JP 4045725 A JP4045725 A JP 4045725A JP 4572592 A JP4572592 A JP 4572592A JP H05240006 A JPH05240006 A JP H05240006A
Authority
JP
Japan
Prior art keywords
pressure turbine
turbine
compressor
fluidized bed
bed boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4045725A
Other languages
Japanese (ja)
Other versions
JP3065773B2 (en
Inventor
Akira Oda
田 亮 織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4045725A priority Critical patent/JP3065773B2/en
Publication of JPH05240006A publication Critical patent/JPH05240006A/en
Application granted granted Critical
Publication of JP3065773B2 publication Critical patent/JP3065773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent trouble from occurrence in a control system at the time of output change controlling by connecting high/medium pressure turbines to a compressor, connecting a low pressure turbine and a gas turbine to a power generator while facilitating a blowing controlling under a partially loaded condition, and providing a bypass valve between the medium pressure turbine and the low pressure turbine. CONSTITUTION:Combustion air is supplied to a pressure fluidization boiler 1 by connecting a compressor 2 to an output shaft 20 of a high pressure turbine 4 and a medium pressure turbine 5. A gas turbine 13 and a power generator 7 are connected to an output shaft 21 of a low pressure turbine 6 which is driven by low pressure steam discharged from the medium pressure turbine 5. The medium pressure turbine 5 and the low pressure turbine 6 are connected to each other by means of a bypass conduit 22 which has a bypass valve 23. It is, therefore, possible to facilitate controlling of a blowing rate under the partially loaded condition, and to prevent the trouble from occurrence in the control system at the time of output change controlling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧流動床ボイラ、蒸
気タービン発電システム及びガスタービン発電システム
とを組合わせた加圧流動床ボイラ複合発電プラントに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed boiler combined power generation plant in which a pressurized fluidized bed boiler, a steam turbine power generation system and a gas turbine power generation system are combined.

【0002】[0002]

【従来の技術】近年、将来の石炭火力の主力発電方式と
して、高効率、低公害、低コストを実現することができ
る加圧流動床ボイラ複合発電プラントが注目を浴びてい
る。
2. Description of the Related Art In recent years, a pressurized fluidized bed boiler combined cycle power plant capable of realizing high efficiency, low pollution and low cost has been attracting attention as a main power generation method of coal-fired power generation in the future.

【0003】図3は、蒸気加圧流動床ボイラ複合発電プ
ラントの概略システムを示す図であって、図中符号1は
加圧流動床ボイラであり、その加圧流動床ボイラ1には
コンプレッサ2で加圧された空気が燃焼用空気として供
給される。
FIG. 3 is a diagram showing a schematic system of a steam pressure fluidized bed boiler combined power generation plant. In the figure, reference numeral 1 is a pressurized fluidized bed boiler, and the pressurized fluidized bed boiler 1 has a compressor 2 The air pressurized by is supplied as combustion air.

【0004】ところで、上記加圧流動床ボイラ1で発生
した蒸気は、蒸気加減弁3を経て高圧タービン4に供給
され、そこで仕事を行なった蒸気は加圧流動床ボイラ1
で再熱された後中圧タービン5に供給される。中圧ター
ビン5で仕事を行なった蒸気はさらに低圧タービン6で
仕事を行ない発電機7を駆動した後、復水器8で復水さ
れ、給水加熱器9及びガスクーラ10を経て前記加圧流
動床ボイラ1に還流される。
By the way, the steam generated in the pressurized fluidized bed boiler 1 is supplied to the high pressure turbine 4 via the steam control valve 3, and the steam which has worked there is pressurized steamed bed boiler 1.
After being reheated at, it is supplied to the intermediate pressure turbine 5. The steam that has performed work in the medium-pressure turbine 5 further performs work in the low-pressure turbine 6 and drives the generator 7, and then is condensed in the condenser 8 and passes through the feed water heater 9 and the gas cooler 10 to the pressurized fluidized bed. It is returned to the boiler 1.

【0005】一方、加圧流動床ボイラ1で発生した燃焼
ガスは、高温サイクロン11、高温フイルター12を経
てガスタービン13に供給され、そこで仕事を行ない前
記コンプレッサ2及び発電機14を駆動した後、脱硝装
置15及びガスクーラ10を通り、煙突16から大気中
に放出される。
On the other hand, the combustion gas generated in the pressurized fluidized bed boiler 1 is supplied to a gas turbine 13 via a high temperature cyclone 11 and a high temperature filter 12, where it works and drives the compressor 2 and a generator 14, It passes through the denitration device 15 and the gas cooler 10 and is discharged from the chimney 16 into the atmosphere.

【0006】[0006]

【発明が解決しようとする課題】ところで、通常加圧流
動床ボイラを含む事業用のボイラにおいては、NOx
度を規定値以下に保つため、部分負荷時においては燃料
が減少した分だけボイラに送られる空気量を減少させな
ければならないが、加圧流動床ボイラ複合発電プラント
の場合には、通常の微粉炭焚ボイラにおける空気吸込フ
アンの翼開度による空気量コントロールや、LNGコン
バインドサイクルにおけるような燃焼温度コントロール
の如き手段をとることは不可能である。
By the way, in a commercial boiler including a normal pressure fluidized bed boiler, since the NO x concentration is kept below a specified value, the boiler is reduced to the amount corresponding to the decrease in fuel at the partial load. It is necessary to reduce the amount of air sent, but in the case of a pressurized fluidized bed boiler combined cycle power plant, the amount of air sent is controlled by the blade opening of the air suction fan in a normal pulverized coal-fired boiler, as in the LNG combined cycle. It is impossible to take measures such as effective combustion temperature control.

【0007】すなわち、微粉炭焚ボイラの空気吸込みフ
アンでは空気量を10%まで絞ることができるが、加圧
流動床ボイラ複合発電プラントの場合には、送風機が通
常コンバインドサイクル用の大型コンプレッサーである
ため、コンプレッサー入口のガイドベーンの翼開度によ
るコントロールでは、図4の実線に示すように約80%
負荷までが限度であり、それ以下の負荷については風量
が一定となり、風量調節は不可能である。
That is, the air intake fan of the pulverized coal burning boiler can reduce the air amount to 10%, but in the case of the pressurized fluidized bed boiler combined cycle power plant, the blower is usually a large compressor for a combined cycle. Therefore, in the control by the blade opening of the guide vane at the compressor inlet, about 80% as shown by the solid line in FIG.
The load is the limit, and for loads below that, the air volume is constant and the air volume cannot be adjusted.

【0008】又、通常のコンバインドサイクルにおいて
は、80%以下の負荷についは、負荷に応じて燃焼温度
を下げてコントロールを行なっているが、加圧流動床ボ
イラ複合発電プラントにおいては、炉内脱硫を行なう関
係上、SOx 値をキープするために燃焼温度は一定とす
る必要があり、燃焼温度コントロールも不可能である。
一方、ボイラへの送風量を少なくするためには、コンプ
レッサーの回転数を減少させればよいけれども、前述の
ようにコンプレッサー軸は発電機と直結しているため、
その回転数を変化させることもできない。
In addition, in a normal combined cycle, for a load of 80% or less, the combustion temperature is controlled according to the load, but in a pressurized fluidized bed boiler combined cycle power plant, desulfurization in a furnace is performed. In order to keep the SO x value, it is necessary to keep the combustion temperature constant, and it is also impossible to control the combustion temperature.
On the other hand, in order to reduce the amount of air blown to the boiler, it is sufficient to reduce the rotation speed of the compressor, but as mentioned above, the compressor shaft is directly connected to the generator,
The number of rotations cannot be changed.

【0009】このように、従来の加圧流動床ボイラ複合
発電プラントにおいては、部分負荷時の風量コントロー
ルができないという問題がある。本発明はこのような点
に鑑み、部分負荷時におけるボイラへの風量コントロー
ルを行なうことができる加圧流動床ボイラ複合発電プラ
ントを得ることを目的とする。
As described above, in the conventional pressurized fluidized bed boiler combined cycle power plant, there is a problem that the air flow rate cannot be controlled during partial load. The present invention has been made in view of the above points, and an object thereof is to obtain a pressurized fluidized bed boiler combined cycle power generation plant capable of controlling the air flow rate to the boiler under partial load.

【0010】[0010]

【課題を解決するための手段】本発明は、加圧流動床ボ
イラ、蒸気タービン発電システム及びガスタービン発電
システムとを組合わせた加圧流動床ボイラ複合発電プラ
ントにおいて、蒸気タービン発電システムの高中圧ター
ビンとガスタービン発電システムのコンプレッサとを同
一軸上に連結し、ガスタービン、蒸気タービン発電シス
テムの低圧タービン、及び発電機とを他の同一軸上に連
結するとともに、中圧タービンの途中段落と低圧タービ
ン間に、中圧タービン抽気を低圧タービンに導くバイパ
ス弁を設けたことを特徴とする。
The present invention provides a pressurized fluidized bed boiler combined power generation plant in which a pressurized fluidized bed boiler, a steam turbine power generation system and a gas turbine power generation system are combined, and a high intermediate pressure of the steam turbine power generation system. The turbine and the compressor of the gas turbine power generation system are connected on the same shaft, and the gas turbine, the low-pressure turbine of the steam turbine power generation system, and the generator are connected on the other same shaft, and the intermediate paragraph of the intermediate pressure turbine It is characterized in that a bypass valve for guiding the medium pressure turbine extracted air to the low pressure turbine is provided between the low pressure turbines.

【0011】[0011]

【作用】プラントの稼動中には、ボイラに燃焼用空気を
送給するコンプレッサーは高圧蒸気タービン及び中圧蒸
気タービンによって駆動され、一方発電機はガスタービ
ン及び低圧蒸気タービンによって駆動される。そこで、
部分負荷になると、蒸気加減弁が閉方向に制御され、高
・中圧蒸気タービンの回転数が低下され、それに伴って
コンプレッサーの回転数も低下される。したがって、コ
ンプレッサーからボイラへの燃焼用空気の送給量を部分
負荷時のボイラ燃料量を対応した量とすることができ
る。
During operation of the plant, the compressor, which supplies combustion air to the boiler, is driven by the high-pressure steam turbine and the medium-pressure steam turbine, while the generator is driven by the gas turbine and the low-pressure steam turbine. Therefore,
When the partial load is reached, the steam control valve is controlled in the closing direction, the rotation speed of the high / medium pressure steam turbine is reduced, and the rotation speed of the compressor is also reduced accordingly. Therefore, the amount of combustion air fed from the compressor to the boiler can be made to correspond to the amount of boiler fuel under partial load.

【0012】一方、部分負荷時に高中圧タービンと低圧
タービンとの出力割合が変わると、バイパス弁が開方向
に制御され、中圧タービン抽気が低圧タービン側に供給
されて、上記両タービン系の出力が一定になるように制
御されて制御系の振動が防止される。
On the other hand, when the output ratio of the high-middle-pressure turbine and the low-pressure turbine changes at the time of partial load, the bypass valve is controlled in the opening direction, the medium-pressure turbine extraction air is supplied to the low-pressure turbine side, and the output of both turbine systems is increased. Is controlled to be constant to prevent vibration of the control system.

【0013】[0013]

【実施例】以下、図1及び図2を参照して本発明の実施
例について説明する。なお、図3と同一部分には同一符
号を付し、その詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to FIGS. The same parts as those in FIG. 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0014】加圧流動床ボイラ1から蒸気加減弁3を経
て供給される高圧蒸気によって駆動される高圧タービン
4及び中圧タービン5の出力軸20には、上記加圧流動
床ボイラ1に燃焼用空気を供給するコンプレッサー2が
連結されている。また、上記中圧タービン5から排出さ
れた低圧蒸気が供給されその低圧蒸気によって駆動され
る低圧タービン6の出力軸21にはガスタービン13及
び発電機7が直結されている。
The output shaft 20 of the high pressure turbine 4 and the intermediate pressure turbine 5 driven by the high pressure steam supplied from the pressurized fluidized bed boiler 1 through the steam control valve 3 is used for combustion in the pressurized fluidized bed boiler 1. A compressor 2 for supplying air is connected. Further, the gas turbine 13 and the generator 7 are directly connected to the output shaft 21 of the low-pressure turbine 6 which is supplied with the low-pressure steam discharged from the intermediate-pressure turbine 5 and driven by the low-pressure steam.

【0015】一方、中圧タービン5の中間段落と低圧タ
ービン6の入口部とはバイパス導管22によって接続さ
れており、そのバイパス導管22にはバイパス弁23が
設けられている。
On the other hand, the intermediate stage of the intermediate pressure turbine 5 and the inlet of the low pressure turbine 6 are connected by a bypass conduit 22, and the bypass conduit 22 is provided with a bypass valve 23.

【0016】しかして、加圧流動床ボイラ1で発生した
蒸気によって高圧タービン4及び中圧タービン5が作動
されると、その高圧タービン4及び中圧タービン5によ
ってコンプレッサー2が回転駆動され、そのコンプレッ
サー2によって加圧された空気が燃焼用空気として加圧
流動床ボイラ1に供給される。
When the high-pressure turbine 4 and the intermediate-pressure turbine 5 are operated by the steam generated in the pressurized fluidized bed boiler 1, the compressor 2 is rotationally driven by the high-pressure turbine 4 and the intermediate-pressure turbine 5, and the compressor is The air pressurized by 2 is supplied to the pressurized fluidized bed boiler 1 as combustion air.

【0017】一方、上記加圧流動床ボイラ1で発生した
高温ガスは高温サイクロン11及び高温フイルタ12を
経てガスタービン13に送られ、そのガスタービン13
によって発電機7の駆動が行なわれる。また、中圧ター
ビン5の排気は、上記ガスタービン13と同一軸上に連
結された低圧タービン6に供給され、その低圧タービン
6によっても上記発電機7の回転駆動が行なわれる。
On the other hand, the high temperature gas generated in the pressurized fluidized bed boiler 1 is sent to the gas turbine 13 via the high temperature cyclone 11 and the high temperature filter 12, and the gas turbine 13 thereof is provided.
The generator 7 is driven by. Further, the exhaust gas of the intermediate pressure turbine 5 is supplied to a low pressure turbine 6 connected on the same axis as the gas turbine 13, and the low pressure turbine 6 also drives the generator 7 to rotate.

【0018】図2は、本発明プラントの制御ループを示
す図であって、本発明においては加圧流動床ボイラ1へ
の風量コントロールは蒸気タービンの蒸気加減弁3とコ
ンプレッサー2の入口ガイドベーン24とで行なわれ、
発電機の出力コントロールは蒸気加減弁3と中圧タービ
ン抽気バイパス弁23によって行なわれる。
FIG. 2 is a diagram showing a control loop of the plant of the present invention. In the present invention, the air flow rate control for the pressurized fluidized bed boiler 1 is performed by the steam control valve 3 of the steam turbine and the inlet guide vane 24 of the compressor 2. And with
The output control of the generator is performed by the steam control valve 3 and the intermediate pressure turbine extraction bypass valve 23.

【0019】すなわち、目標負荷が設定されるとその指
令によって蒸気加減弁3の開度が制御されるとともに、
目標蒸気条件になるように燃料フイーダーが動作され
る。また、蒸気加減弁3の制御によって高圧タービン及
び中圧タービンを介してコンプレッサ2の回転数が制御
され、コンプレッサ2の流量が制御されるが、さらに目
標空気流量になるようにコンプレッサ入口ガイドベーン
24が動作し、このコンプレッサ入口ガイドベーン24
が限界まで作動しても目標に達しない場合には蒸気加減
弁にフィードバックされる。
That is, when the target load is set, the opening of the steam control valve 3 is controlled by the command, and
The fuel feeder is operated to reach the target steam condition. Further, the rotation speed of the compressor 2 is controlled by controlling the steam control valve 3 via the high pressure turbine and the intermediate pressure turbine to control the flow rate of the compressor 2, and the compressor inlet guide vane 24 so that the target air flow rate is further achieved. Works, this compressor inlet guide vane 24
If the target does not reach the target even if is operated to the limit, it is fed back to the steam control valve.

【0020】一方、コンプレッサー空気流量、コンプレ
ッサー出入口温度、及びガスタービン出入口温度によっ
てコンプレッサー及びガスタービン出力計算が行なわ
れ、発電機出力とによって高中圧タービンと低圧タービ
ンの出力比が計算され、その出力比が目標範囲に納まる
ように中圧タービンからの抽気を制御するバイパス弁2
3の開度が制御される。
On the other hand, the output of the compressor and the gas turbine is calculated based on the compressor air flow rate, the temperature at the inlet / outlet of the compressor, and the temperature at the inlet / outlet of the gas turbine. By-pass valve 2 that controls the bleed air from the medium-pressure turbine so that the pressure falls within the target range
The opening degree of 3 is controlled.

【0021】しかして、例えばプラントが100%負荷
で定圧運転している状態において、約50%負荷運転の
指令が出たとすると、蒸気加減弁3が負荷指令にしたが
って約半分に絞られると同時にボイラ燃料も目標蒸気条
件をキープするために約半分に絞られる。このように蒸
気加減弁3が約半分に絞られることにより高・中圧ター
ビン4,5及びコンプレッサ2の回転数も約半分とな
り、風量も約半分になって、加圧流動床ボイラ1におけ
る燃焼温度を一定に保つとともにNOx 値が所定値以内
になるようにキープされる。
If, for example, the plant is operating at a constant pressure with 100% load and a command for about 50% load is issued, the steam control valve 3 is throttled to about half according to the load command and at the same time the boiler is operated. The fuel is also squeezed to about half to keep the target steam condition. By thus reducing the steam control valve 3 to about half, the rotational speeds of the high / medium pressure turbines 4, 5 and the compressor 2 are also reduced to about half, and the air volume is also reduced to about half, so that the combustion in the pressurized fluidized bed boiler 1 is performed. The temperature is kept constant and the NO x value is kept within a predetermined value.

【0022】ところで、加圧流動床ボイラ複合発電プラ
ント側の要求風量に対する細いコントロールは、蒸気加
減弁3では行なわれず、コンプレッサー入口ガイドベー
ン24で行なわれる。このコンプレッサー入口ガイドベ
ーン24は±10%の調整機能を有しており、コンプレ
ッサー軸の回転数コントロールによって大まかな調整が
行なわれていれば、細かな調整はコンプレッサ入口ガイ
ドベーンで可能であり、またこのガイドベーンの調整精
度は±1%であるが、複合発電プラント側の要求する風
量の許容精度は±3%程度でありこの点で問題となるこ
とはない。
By the way, the fine control of the required air volume on the pressurized fluidized bed boiler combined cycle power plant side is not performed by the steam control valve 3 but by the compressor inlet guide vane 24. This compressor inlet guide vane 24 has an adjusting function of ± 10%, and if rough adjustment is performed by controlling the rotation speed of the compressor shaft, fine adjustment can be performed with the compressor inlet guide vane. The adjustment accuracy of the guide vanes is ± 1%, but the allowable accuracy of the air volume required by the combined cycle power plant side is about ± 3%, and there is no problem in this respect.

【0023】一方、高・中圧タービン4,5と低圧ター
ビン6との出力比は定格負荷時には、高中圧:低圧=
4:6であるが、発電機軸側の出力コントロールを行な
うために蒸気加減弁3が作動され蒸気流動が減少する
と、その減少にしたがって高中圧タービンの出力割合が
大きくなり、50%蒸気量においは、出力比が高中圧:
低圧=6:4程度となり、コンプレッサー軸側の回転数
は半分以上となり、また発電機軸の出力は半分以下とな
ってしまう。したがって、コンプレッサー入口ガイドベ
ーンが風量を減らす方向に作動し、作動限界まで絞って
も目標空気量まで落ちない場合には前述のように蒸気加
減弁にフィードバックされ蒸気加減弁に閉指令が出され
る。これに対し、発電機軸は出力が不足するので、蒸気
加減弁3に対して開指令が出されることになり、制御系
が振動する可能性がある。
On the other hand, the output ratio between the high / medium pressure turbines 4 and 5 and the low pressure turbine 6 is such that at the rated load, high / medium pressure: low pressure =
Although it is 4: 6, when the steam control valve 3 is operated to control the output on the generator shaft side and the steam flow decreases, the output ratio of the high and medium pressure turbine increases as the decrease, and the 50% steam amount is reduced. , Output ratio is high and medium pressure:
The low pressure is about 6: 4, the rotational speed on the compressor shaft side is more than half, and the output of the generator shaft is less than half. Therefore, when the compressor inlet guide vane operates in a direction to reduce the air volume, and when the compressor does not fall to the target air volume even if it is throttled to the operating limit, it is fed back to the steam control valve as described above, and a closing command is issued to the steam control valve. On the other hand, since the generator shaft has insufficient output, an opening command is issued to the steam control valve 3, and the control system may vibrate.

【0024】そこで、部分負荷時には中圧タービン抽気
バイパス弁23が開方向に作動され、中圧タービン5か
ら蒸気が抽気され低圧タービン6に供給され、これによ
って高中圧タービン4,5の出力を減少させ、低圧ター
ビン6の出力を増加し、高中圧タービンと低圧タービン
の出力比がキープされる。
Therefore, during partial load, the intermediate-pressure turbine extraction bypass valve 23 is operated in the opening direction, steam is extracted from the intermediate-pressure turbine 5 and supplied to the low-pressure turbine 6, thereby reducing the output of the high-intermediate-pressure turbines 4, 5. The output of the low-pressure turbine 6 is increased, and the output ratio of the high-middle-pressure turbine and the low-pressure turbine is kept.

【0025】ところで、高中圧タービン出力PHIP と低
圧タービン出力PLPは、ガスタービン出力PGTとコンプ
レッサー動力PCompと発電機出力PGen から算出され、
コンプレッサー動力は、コンプレッサー入口流量Gとコ
ンプレッサー入口温度T1 、及びコンプレッサー出口温
度T2 から算出し、ガスタービン出力は、ガスタービン
入口温度T3 と出口温度と流量Gから算出し、 PHIP =PCompLP =PGen −PGT により、出力比θが算出される。
By the way, the high and medium pressure turbine output P HIP and the low pressure turbine output P LP are calculated from the gas turbine output P GT , the compressor power P Comp and the generator output P Gen ,
The compressor power is calculated from the compressor inlet flow rate G, the compressor inlet temperature T 1 , and the compressor outlet temperature T 2 , and the gas turbine output is calculated from the gas turbine inlet temperature T 3 , the outlet temperature and the flow rate G, and P HIP = P The output ratio θ is calculated by Comp P LP = P Gen −P GT .

【0026】そして、この出力比θが一定になるように
制御される。すなわち、出力比θが小さくなればバイパ
ス弁23を開方向に制御して低圧タービンの出力を増加
させ、θが大きくなればバイパス弁を絞って、高中圧タ
ービンの出力を増加させる。ただし、上記バイパス弁2
3の開閉は蒸気加減弁3の出力コントロールに外乱を与
えるため、θの目標値に或程度の幅をもたせ、蒸気加減
弁が少し触れても、θが目標範囲内に入っていれば、バ
イパス弁23が動作しないようにプログラムしておく。
Then, the output ratio θ is controlled to be constant. That is, when the output ratio θ becomes small, the bypass valve 23 is controlled in the opening direction to increase the output of the low pressure turbine, and when the output ratio θ becomes large, the bypass valve is throttled to increase the output of the high / intermediate pressure turbine. However, the above bypass valve 2
Since opening and closing of 3 gives disturbance to the output control of the steam control valve 3, the target value of θ should be made to have a certain range, and even if the steam control valve slightly touches, if θ is within the target range, bypass The valve 23 is programmed so as not to operate.

【0027】ところで、例えば350MWプラントの場
合、従来システムにおける各部出力は下記のようになっ
ている。
By the way, for example, in the case of a 350 MW plant, the output of each part in the conventional system is as follows.

【0028】 高中圧タービン出力 PHIP =120MW 低圧タービン出力 PLP =160MW ガスタービン出力 PGT =190MW コンプレッサー動力 PComp=120MW したがって、従来システムにおける各発電機出力及びプ
ラントトータル出力は次のようになっている。
High and medium pressure turbine output P HIP = 120 MW Low pressure turbine output P LP = 160 MW Gas turbine output P GT = 190 MW Compressor power P Comp = 120 MW Therefore, each generator output and plant total output in the conventional system are as follows. ing.

【0029】 蒸気タービン発電機出力 P1 =PHIP +PLP =120MW+160MW =280MW ガスタービン発電機出力 P2 =PGT−PComp =190MW−120MW =70MW プラントトータル出力 Ptotal =P1 +P2 =280MW+70MW =350MW 一方、本システムにおいては、 発電機軸出力 P1 =PLP+PGT =160MW+190MW =350MW コンプレッサー軸出力 P2 =PHIP −PComp アンバランス =120MW−120MW =0 プラントトータル出力 Ptotal =P1 =350MW となり、コンプレッサー所要動力と高中圧タービン出力
が一致しているため、本発明のシステムにすることによ
るヒートバランス等の変更はなく、熱効率の低下等の機
能低下は全くない。
Steam turbine generator output P 1 = P HIP + P LP = 120 MW + 160 MW = 280 MW Gas turbine generator output P 2 = P GT -P Comp = 190 MW-120 MW = 70 MW Plant total output P total = P 1 + P 2 = 280 MW + 70 MW = 350 MW On the other hand, in this system, generator shaft output P 1 = P LP + P GT = 160 MW +190 MW = 350 MW Compressor shaft output P 2 = P HIP -P Comp unbalance = 120 MW-120 MW = 0 Plant total output P total = P 1 = 350 MW, the required power of the compressor and the output of the high-to-middle-pressure turbine match, so there is no change in heat balance or the like due to the system of the present invention, and there is no functional deterioration such as reduction in thermal efficiency.

【0030】[0030]

【発明の効果】以上説明したように、本発明は高中圧タ
ービンとコンプレッサーを連結し、低圧タービンとガス
タービンを発電機に連結したので、プラント負荷に応じ
てコンプレッサーの回転数が変化し、部分負荷における
風量コントロールを容易に行なうことができる。しかも
中圧タービンと低圧タービンとの間に配設されたバイパ
ス弁の開度制御によって、高中圧タービン出力と低圧タ
ービン出力との出力比が一定になるように制御でき、出
力変更制御時に制御系の乱れが発生することも防止でき
る。
As described above, according to the present invention, the high-medium pressure turbine and the compressor are connected, and the low-pressure turbine and the gas turbine are connected to the generator. Therefore, the rotation speed of the compressor changes according to the plant load, and The air flow rate under load can be easily controlled. Moreover, by controlling the opening degree of the bypass valve arranged between the intermediate pressure turbine and the low pressure turbine, it is possible to control so that the output ratio between the high intermediate pressure turbine output and the low pressure turbine output becomes constant, and the control system during the output change control. It is also possible to prevent the occurrence of disturbance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加圧流動床ボイラ複合発電プラントの
概略系統図。
FIG. 1 is a schematic system diagram of a pressurized fluidized bed boiler combined cycle power generation plant of the present invention.

【図2】本発明のプラントにおけるプラント制御ループ
を示す図。
FIG. 2 is a diagram showing a plant control loop in the plant of the present invention.

【図3】従来の加圧流動床ボイラ複合発電プラントの概
略系統図。
FIG. 3 is a schematic system diagram of a conventional pressurized fluidized bed boiler combined cycle power plant.

【図4】従来システムにおける負荷とボイラへの送風量
との関係線図。
FIG. 4 is a relational diagram of a load and the amount of air blown to a boiler in a conventional system.

【符号の説明】[Explanation of symbols]

1 加圧流動床ボイラ 2 コンプレッサー 3 蒸気加減弁 4 高圧タービン 5 中圧タービン 6 低圧タービン 7 発電機 23 バイパス弁 1 Pressurized Fluidized Bed Boiler 2 Compressor 3 Steam Control Valve 4 High Pressure Turbine 5 Medium Pressure Turbine 6 Low Pressure Turbine 7 Generator 23 Bypass Valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F01K 7/38 102 F 8503−3G F02C 1/00 7910−3G 6/00 D 7910−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F01K 7/38 102 F 8503-3G F02C 1/00 7910-3G 6/00 D 7910-3G

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加圧流動床ボイラ、蒸気タービン発電シス
テム及びガスタービン発電システムとを組合わせた加圧
流動床ボイラ複合発電プラントにおいて、蒸気タービン
発電システムの高中圧タービンとガスタービン発電シス
テムのコンプレッサーとを同一軸上に連結し、ガスター
ビン、蒸気タービン発電システムの低圧タービン、及び
発電機とを他の同一軸上に連結するとともに、中圧ター
ビンの途中段落と低圧タービン間に、中圧タービン抽気
を低圧タービンに導くバイパス弁を設けたことを特徴と
する、加圧流動床ボイラ複合発電プラント。
1. A high-intermediate-pressure turbine of a steam turbine power generation system and a compressor of a gas turbine power generation system in a pressure fluidized bed boiler combined power generation plant combining a pressurized fluidized bed boiler, a steam turbine power generation system and a gas turbine power generation system. And the gas turbine, the low-pressure turbine of the steam turbine power generation system, and the generator on the same shaft, and the intermediate-pressure turbine between the intermediate stage of the intermediate-pressure turbine and the low-pressure turbine. A pressurized fluidized bed boiler combined cycle power plant, which is provided with a bypass valve that guides extracted air to a low-pressure turbine.
JP4045725A 1992-03-03 1992-03-03 Pressurized fluidized bed boiler combined cycle power plant Expired - Fee Related JP3065773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045725A JP3065773B2 (en) 1992-03-03 1992-03-03 Pressurized fluidized bed boiler combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045725A JP3065773B2 (en) 1992-03-03 1992-03-03 Pressurized fluidized bed boiler combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH05240006A true JPH05240006A (en) 1993-09-17
JP3065773B2 JP3065773B2 (en) 2000-07-17

Family

ID=12727305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045725A Expired - Fee Related JP3065773B2 (en) 1992-03-03 1992-03-03 Pressurized fluidized bed boiler combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3065773B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125102A (en) * 2010-12-10 2012-06-28 Mitsubishi Heavy Ind Ltd Power generation control device for ship, ship, and power generation control method for ship
WO2013150620A1 (en) * 2012-04-04 2013-10-10 三菱重工業株式会社 Vessel power-generation control device, vessel, and vessel power-generation control method
JP2015068196A (en) * 2013-09-27 2015-04-13 株式会社東芝 Steam turbine overspeed prevention system and power-generating plant
CN114810250A (en) * 2022-04-14 2022-07-29 重庆赛迪热工环保工程技术有限公司 Power generation thermodynamic system for reducing heat loss of steam turbine exhaust

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125102A (en) * 2010-12-10 2012-06-28 Mitsubishi Heavy Ind Ltd Power generation control device for ship, ship, and power generation control method for ship
WO2013150620A1 (en) * 2012-04-04 2013-10-10 三菱重工業株式会社 Vessel power-generation control device, vessel, and vessel power-generation control method
CN104093961A (en) * 2012-04-04 2014-10-08 三菱重工业株式会社 Vessel power-generation control device, vessel, and vessel power-generation control method
CN104093961B (en) * 2012-04-04 2016-02-03 三菱重工业株式会社 The electricity-generating control method of the power generation control of boats and ships, boats and ships and boats and ships
JP2015068196A (en) * 2013-09-27 2015-04-13 株式会社東芝 Steam turbine overspeed prevention system and power-generating plant
CN114810250A (en) * 2022-04-14 2022-07-29 重庆赛迪热工环保工程技术有限公司 Power generation thermodynamic system for reducing heat loss of steam turbine exhaust

Also Published As

Publication number Publication date
JP3065773B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US6226974B1 (en) Method of operation of industrial gas turbine for optimal performance
US5634327A (en) Method of operating a gas-turbine group
US6782703B2 (en) Apparatus for starting a combined cycle power plant
US4081956A (en) Combined gas turbine and steam turbine power plant
US5203159A (en) Pressurized fluidized bed combustion combined cycle power plant and method of operating the same
US7124591B2 (en) Method for operating a gas turbine
US5465569A (en) Method of establishing part-load operation in a gas turbine group
US6339926B1 (en) Steam-cooled gas turbine combined power plant
JP2954456B2 (en) Exhaust recirculation combined plant
US20050235649A1 (en) Method for operating a gas turbine
US6161385A (en) Turbomachine and method of use
JP2954754B2 (en) Operation control device for gas turbine system and pressurized fluidized bed boiler power plant
JP3065773B2 (en) Pressurized fluidized bed boiler combined cycle power plant
JP4208397B2 (en) Start-up control device for combined cycle power plant
JP2908884B2 (en) Pressurized fluidized bed combined plant and its partial load operation control method and control device
JP2002021508A (en) Condensate supply system
EP0527918B1 (en) Method for temperature control of the combustion air in a pfbc combustion plant
JPH08210601A (en) Controller for power plant having pressure fluidized bed boiler
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JPH09125984A (en) Steam-injected gas turbine and its controlling method
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JPH05179992A (en) Compound power generation system
JP3199893B2 (en) Pressurized fluidized bed combustion plant
JPH08166109A (en) Pressurized fluidized bed plant
JPH05296407A (en) After burning type combined cyclic power generating facility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees