JPH0523979Y2 - - Google Patents

Info

Publication number
JPH0523979Y2
JPH0523979Y2 JP1985131467U JP13146785U JPH0523979Y2 JP H0523979 Y2 JPH0523979 Y2 JP H0523979Y2 JP 1985131467 U JP1985131467 U JP 1985131467U JP 13146785 U JP13146785 U JP 13146785U JP H0523979 Y2 JPH0523979 Y2 JP H0523979Y2
Authority
JP
Japan
Prior art keywords
heat storage
heat
bent
plate
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985131467U
Other languages
Japanese (ja)
Other versions
JPS6245578U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985131467U priority Critical patent/JPH0523979Y2/ja
Publication of JPS6245578U publication Critical patent/JPS6245578U/ja
Application granted granted Critical
Publication of JPH0523979Y2 publication Critical patent/JPH0523979Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は熱交換器内を流れる2つの気流又は液
流が、該熱交換器内に形成された伝熱媒体を介し
て熱移動する事により熱交換を行うように構成し
た熱交換器に係り、特に前記伝熱媒体に蓄熱効果
をもたせた熱交換器に関するものである。
[Detailed description of the invention] "Industrial application field" This invention is a method for transferring heat between two air or liquid streams flowing inside a heat exchanger via a heat transfer medium formed inside the heat exchanger. The present invention relates to a heat exchanger configured to perform heat exchange, and particularly to a heat exchanger in which the heat transfer medium has a heat storage effect.

「従来技術とその問題点」 一般に熱交換されるべき排出流体(以下アウト
プツト流体という)と冷・熱エネルギーを有する
吸入流体又は循環流体等(以下インプツト流体と
いう)との熱交換は、両者間を隔離する金属その
他の良熱伝導性材料で形成される伝熱媒体を介し
て熱移動を行う、いわゆる顕熱熱交換器が主流を
占めているが、このような顕熱熱交換器は伝熱媒
体の保有する熱容量が少ない事から熱交換器が大
型となる。特に前記インプツト流体に気流を用い
た場合は伝熱媒体と共にインプツト流体自体の熱
容量が小である為に、前記熱交換器が大型化の傾
向は更に増大する。
"Prior Art and its Problems" In general, heat exchange between an exhaust fluid to be heat exchanged (hereinafter referred to as output fluid) and a suction fluid or circulating fluid, etc. that has cold or thermal energy (hereinafter referred to as input fluid) is carried out between the two. The mainstream is the so-called sensible heat exchanger, which transfers heat through a heat transfer medium made of isolated metal or other thermally conductive material; Since the heat capacity of the medium is small, the heat exchanger becomes large. In particular, when airflow is used as the input fluid, the heat exchanger tends to become larger because the heat capacity of the input fluid itself is small together with the heat transfer medium.

又、前記伝熱媒体の熱容量が小である為に、イ
ンプツト流体の熱量の変動が即アウトプツト流体
の熱量変動となつて現れ、温度変動や熱交換され
る熱量が不安定化し易く、又インプツト流体が気
流の場合はその熱容量が小さい為にアウトプツト
流体側で十分な熱が得られず、この為該熱量を補
完するために別の蓄熱槽を設けて必要量の熱量を
蓄熱せねばならなず、該蓄熱槽を設ける為の設備
費及び設置スペースが増大する。
Furthermore, since the heat capacity of the heat transfer medium is small, fluctuations in the amount of heat in the input fluid immediately appear as changes in the amount of heat in the output fluid, which tends to destabilize temperature fluctuations and the amount of heat exchanged. In the case of airflow, its heat capacity is small, so sufficient heat cannot be obtained on the output fluid side. Therefore, in order to supplement the amount of heat, another heat storage tank must be installed to store the necessary amount of heat. , equipment costs and installation space for providing the heat storage tank increase.

更に、前記顕熱式の熱交換器では、該熱交換器
内を流れるインプツト流体とアウトプツト流体に
時間差を有する場合は、全く熱交換を行う事が不
可能であるという問題を有し、例えば冷凍機が短
時間でも稼動不可能になつた場合はビル冷房等が
全く行えないという問題が派生する。
Furthermore, the sensible heat type heat exchanger has a problem in that if there is a time difference between the input fluid and the output fluid flowing in the heat exchanger, it is impossible to perform heat exchange at all. If the machine becomes inoperable even for a short period of time, the problem arises that the building cannot be cooled at all.

本考案はかかる従来技術の欠点に鑑み、前記伝
熱媒体自体の熱容量を大にすると共に、インプツ
ト流体側で熱量変動が生じても、これを伝熱媒体
で吸収し、アウトプツト流体側で安定した熱交換
を行う事の出来る熱交換器を提供する事を目的と
する。
In view of the shortcomings of the prior art, the present invention increases the heat capacity of the heat transfer medium itself, and even if heat fluctuations occur on the input fluid side, this is absorbed by the heat transfer medium, resulting in a stable output fluid. The purpose is to provide a heat exchanger that can perform heat exchange.

又本考案の他の目的とする所は、前記伝熱媒体
に蓄熱効果をもたせる事により、時間差による熱
交換を可能にした熱交換器を提供する事にある。
Another object of the present invention is to provide a heat exchanger that makes it possible to exchange heat at different times by imparting a heat storage effect to the heat transfer medium.

更に本考案の他の目的は前記伝熱媒体の単位堆
積当たりの熱容量を大きくし、小型化を図つた熱
交換器を提供する事にある。
Furthermore, another object of the present invention is to provide a heat exchanger which has a large heat capacity per unit pile of the heat transfer medium and is miniaturized.

「問題点を解決しようとする手段」 本考案はかかる技術的課題を達成する為に、潜
熱蓄熱剤を封入して形成する偏平空胴部を多数本
平行に連設して形成される可撓性シート板を頂部
が曲面状になる如く断面略波形状に屈曲して一定
方向に延設する屈曲空隙部を流通路となす複数の
屈曲シート板を形成し、該屈曲シート板の配設方
向を交互に異ならせながら良熱伝導性の境界板を
介して、該境界板に少なくとも屈曲シート板の偏
平空胴部の一部が接触するように積層配置すると
共に、融点の異なる2種類の潜熱蓄熱剤を用意
し、1の蓄熱剤を同一方向に配設した屈曲シート
板の偏平空胴部内に、又他の蓄熱剤を前記と別異
の方向に配設した他の屈曲シート板の偏平空胴部
内に夫々封入した事を特徴とする蓄熱式熱交換器
を提案する。
``Means for Solving Problems'' In order to achieve the above-mentioned technical problem, the present invention aims to solve the above-mentioned technical problems by using a flexible structure formed by connecting a large number of flat cavities in parallel, which are formed by enclosing a latent heat storage agent. A plurality of bent sheet plates are formed by bending a flexible sheet plate into a substantially wave-shaped cross section so that the top part has a curved surface shape and extending in a certain direction to form a plurality of bent sheet plates each having a bent cavity serving as a flow path, Two types of latent heat having different melting points are laminated so that at least a part of the flat cavity of the bent sheet plate is in contact with the boundary plate with good thermal conductivity while alternately changing the heat conductivity. A heat storage agent is prepared, and one heat storage agent is arranged in the same direction in the flat cavity of a bent sheet plate, and another heat storage agent is arranged in a different direction from the above flattened sheet plate. We propose a regenerative heat exchanger characterized by each being sealed within a cavity.

「効果」 かかる技術手段によれば、伝熱媒体を構成する
波状屈曲シート板内に潜熱蓄熱剤が封入されてい
る為に、該伝熱媒体自体の熱容量を大にすると共
に、所定の蓄熱効果を有し、これによりインプツ
ト流体側で熱量変動が生じても、これを波状屈曲
シート板で吸収し、アウトプツト流体側で安定し
た熱交換を行う事の出来ると共に、時間差による
熱交換をも可能にする事が出来る。
"Effect" According to this technical means, since the latent heat storage agent is sealed in the wavy bent sheet plate constituting the heat transfer medium, the heat capacity of the heat transfer medium itself is increased and a predetermined heat storage effect is achieved. As a result, even if heat fluctuations occur on the input fluid side, this can be absorbed by the wavy bent sheet plate, and stable heat exchange can be performed on the output fluid side, as well as heat exchange due to time differences. I can do it.

又前記波状屈曲シート板の蓄熱は潜熱蓄熱剤で
行われる為に、顕熱蓄熱の場合に比して単位堆積
当たりの熱容量が数段大きくなり、前記作用効果
が一層助長されると共に、熱交換器自体の小型化
を図る事が可能となる。
In addition, since the heat storage in the wavy bent sheet plate is performed using a latent heat storage agent, the heat capacity per unit stack is several steps larger than that in the case of sensible heat storage, and the above-mentioned effects are further promoted. It becomes possible to downsize the container itself.

特に本技術手段によれば、潜熱蓄熱剤を封入し
て形成される波状屈曲シート板で蓄熱体を形成
し、該シート板の屈曲空隙部を流通路となした為
に、構成が簡単で且つ流体との熱接触面積が増大
する。
In particular, according to the present technical means, the heat storage body is formed by a wavy bent sheet plate formed by enclosing a latent heat storage agent, and the bent gap of the sheet plate is used as a flow path, so that the structure is simple and Thermal contact area with the fluid increases.

又前記隣接する波状屈曲シート板に封入してあ
る潜熱蓄熱剤の融点は夫々異温度の融点、言い換
えれば、同一方向に流通路を形成してある各波状
屈曲シート板の潜熱蓄熱剤融点と、前記と別異の
方向に流通路を形成した他の波状屈曲シート板の
潜熱蓄熱剤融点とが異温度になるように設定した
為に、熱移動のスムーズ化と熱効率を向上させる
事が出来る。
Further, the melting points of the latent heat storage agents sealed in the adjacent wavy bent sheet plates are different melting points, in other words, the melting points of the latent heat storage agents of the respective wavy bent sheet plates forming flow paths in the same direction, Since the melting point of the latent heat storage agent is set to be different from the melting point of the latent heat storage agent of the other wavy bent sheet plate in which the flow passages are formed in a different direction from the above, it is possible to smooth heat transfer and improve thermal efficiency.

即ち、具体的には、前記波状屈曲シート板及び
境界板を介して別異の方向に形成された流通路内
を流れる高温側流体と低温側流体とを有する場合
において、高温側流体が流れる第1の波状屈曲シ
ート板の潜熱蓄熱剤融点が該流体温度より低い温
度に、一方低温側流体が流れる第2波状屈曲シー
ト板の潜熱蓄熱剤融点が該流体温度より高く、且
つ前記第1の波状屈曲シート板の潜熱蓄熱剤融点
より低い温度に設定するのが好ましい。
That is, specifically, in the case where there is a high temperature side fluid and a low temperature side fluid flowing in the flow passages formed in different directions via the wavy bent sheet plate and the boundary plate, the first fluid flows through the high temperature side fluid. The melting point of the latent heat storage agent in the first wavy bent sheet plate is lower than the fluid temperature, while the melting point of the latent heat storage agent in the second wavy bent sheet plate through which the low-temperature side fluid flows is higher than the fluid temperature, and It is preferable to set the temperature to be lower than the melting point of the latent heat storage agent of the bent sheet plate.

そしてこの様な所望の温度域を有する潜熱蓄熱
剤は既に公知であり、例えばが融点が−20〜−30
℃の潜熱蓄熱剤には酢酸、尿素、荷性カリ等の無
機又は有機混合体、又融点が20〜30℃の潜熱蓄熱
剤にはCaCl2・6H2Oを主成分とする混合体、更
に融点が50〜60℃の潜熱蓄熱剤にはCaCl2・6H2
Oを主成分とする混合体で、前記各種混合体の成
分量を種々変更する事により異なる温度域の潜熱
蓄熱剤が形成出来る。
Latent heat storage agents having such a desired temperature range are already known, for example, those with a melting point of -20 to -30.
℃ latent heat storage agents include inorganic or organic mixtures such as acetic acid, urea, and potassium, and latent heat storage agents with melting points of 20 to 30℃ include mixtures containing CaCl 2 6H 2 O as the main component, and CaCl 2 6H 2 is used as a latent heat storage agent with a melting point of 50 to 60℃.
This is a mixture containing O as a main component, and latent heat storage agents with different temperature ranges can be formed by variously changing the amounts of the components in the various mixtures.

更に本技術手段によれば、積層した波状屈曲シ
ート板の配列を交互に異ならせて例えば前記イン
プツト流体とアウトプツト流体とが流れる流通路
が夫々別異の方向に形成されている為に、前記各
流体が誤つて混合したり、又前記積層された波状
屈曲シート板毎に各通路を形成する事なく、前記
各流通路形成位置に合せて各流体毎の導入又は排
出通路を所定角度偏位させて形成するだけで足
り、組立て及び設備コストの低減が図られる。
Furthermore, according to the present technical means, the arrangement of the laminated wavy bent sheet plates is alternately different so that, for example, the flow passages through which the input fluid and the output fluid flow are formed in different directions. The introduction or discharge passage for each fluid is deviated at a predetermined angle in accordance with the position where each flow passage is formed, without erroneously mixing the fluids or forming each passage in each of the laminated wavy bent sheet plates. It suffices to simply form it, reducing assembly and equipment costs.

特に本考案は第2図に示す如く偏平空胴部を多
数本平行に連設して形成される可撓性シート板を
用いて、頂部が曲面状になる如く断面略波形状に
屈曲して屈曲シート板を形成したために、良熱伝
導性の境界板との接触部が面接触となり、その分
接触面積が向上すると共に、特に前記接触位置に
おいて屈曲シート板の偏平空胴部の一部が接触す
るように構成したために、該空胴部内の潜熱蓄熱
剤との熱交換効率が一層向上する。
In particular, the present invention uses a flexible sheet plate formed by connecting a large number of flat cavities in parallel as shown in Fig. 2, and is bent into a substantially wave-shaped cross section so that the top part is curved. Since the bent sheet plate is formed, the contact portion with the boundary plate having good thermal conductivity becomes a surface contact, and the contact area is improved accordingly, and a part of the flat cavity of the bent sheet plate is particularly formed at the contact position. Since it is configured to be in contact, the heat exchange efficiency with the latent heat storage agent in the cavity is further improved.

「実施例」 以下、図面を参照して本考案の好適な実施例を
例示的に詳しく説明する。ただしこの実施例に記
載されている構成部品の寸法、材質、形状、その
相対配置などは特に特定的な記載がない限りは、
この考案の範囲をそれのみに限定する趣旨ではな
く、単なる説明例に過ぎない。
Embodiments Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described in this example are as follows, unless otherwise specified.
This is not intended to limit the scope of this invention, but is merely an illustrative example.

第1図は本考案の実施例に係る熱交換器の全体
斜視図、第2図はその要部拡大図、第3図は波状
屈曲シート板の構成を示す部分斜視図である。そ
してA及びBは夫々インプツト流体と、アウトプ
ツト流体の流れ方向を示す。
FIG. 1 is an overall perspective view of a heat exchanger according to an embodiment of the present invention, FIG. 2 is an enlarged view of its main parts, and FIG. 3 is a partial perspective view showing the structure of a wavy bent sheet plate. A and B indicate the flow directions of the input fluid and the output fluid, respectively.

第3図において1A,1Bは波状屈曲シート板
を構成する波状シート板で、樹脂系被膜10と該
樹脂系被膜10内に封入された潜熱蓄熱剤20か
らなる。
In FIG. 3, 1A and 1B are wavy sheet plates constituting a wavy bent sheet plate, which are composed of a resin coating 10 and a latent heat storage agent 20 sealed within the resin coating 10.

樹脂系被膜10は所定間隔存して対面する樹脂
フイルム同士を所定間隔毎に一定方向に接着し
て、偏平空胴部11と空胴部11間に形成される
屈曲部位12とを交互に形成し、前記空胴部11
内に潜熱蓄熱剤20を封入する。
The resin film 10 is formed by bonding resin films facing each other at a predetermined interval in a fixed direction at predetermined intervals to alternately form flat hollow portions 11 and bent portions 12 formed between the hollow portions 11. and the cavity 11
A latent heat storage agent 20 is sealed inside.

そして潜熱蓄熱剤20は、前述した通り、熱交
換を行う流体の温度域に応じて燐酸、尿素、苛性
カリ等の無機及び有機混合体やCaCl2・6H2Oを
主成分とする混合体を用い、そして後記する波状
シート板1A,1Bの屈曲によつて形成される各
流通路2A,2B内を流れるアウトプツト(高温
側)流体温度とインプツト(低温側)流体温度と
の間に前記潜熱蓄熱剤20の融点が有する様に設
定し、好ましくは、高温側流体が流れる第2の波
状シート板1B内の潜熱蓄熱剤20融点が該流体
温度より低い温度に、一方低温側流体が流れる第
1の波状シート板1A内の潜熱蓄熱剤20融点が
該流体温度より高く、且つ前記第2の波状シート
板1B内の潜熱蓄熱剤20融点より低い温度にな
るように、前記各波状シート板1A,1B内に封
入する潜熱蓄熱剤20を選択する。
As described above, the latent heat storage agent 20 is made of an inorganic and organic mixture such as phosphoric acid, urea, and caustic potash, or a mixture whose main component is CaCl 2 .6H 2 O, depending on the temperature range of the fluid to be heat exchanged. , and the latent heat storage agent between the output (high temperature side) fluid temperature and the input (low temperature side) fluid temperature flowing in each flow path 2A, 2B formed by bending the corrugated sheet plates 1A, 1B, which will be described later. Preferably, the melting point of the latent heat storage agent 20 in the second corrugated sheet plate 1B through which the high-temperature side fluid flows is set to a temperature lower than that of the fluid temperature, while the melting point of the latent heat storage agent 20 in the second corrugated sheet plate 1B through which the high-temperature side fluid flows is set to have a melting point of 20. Each of the corrugated sheet plates 1A and 1B is arranged so that the melting point of the latent heat storage agent 20 in the corrugated sheet plate 1A is higher than the fluid temperature and lower than the melting point of the latent heat storage agent 20 in the second corrugated sheet plate 1B. Select the latent heat storage agent 20 to be sealed inside.

そして前記波状シート板1A,1Bは、第2図
に示すように屈曲部位12を支点としてV字状に
順次折曲し、該屈曲部位12を流体が一定方向に
通過する流通路2A,2Bとなす。
As shown in FIG. 2, the corrugated sheet plates 1A and 1B are sequentially bent into a V-shape with the bent portion 12 as a fulcrum, and flow paths 2A and 2B are formed through which the fluid passes through the bent portion 12 in a fixed direction. Eggplant.

そして該屈曲された波状屈曲シート板1A,1
Bはアルミ板等の熱良導体で形成した薄板状境界
板3を介して互いに90°交互に向きを変えて積層
配置すると共に、前記各部材1A−3−1B−3
同士を接着剤により一体的に固定している。
And the bent wavy bent sheet plate 1A, 1
B is stacked and arranged alternately by 90 degrees with each other through thin plate-shaped boundary plates 3 formed of a good thermal conductor such as an aluminum plate, and each of the above-mentioned members 1A-3-1B-3
They are integrally fixed together with adhesive.

この場合、前記波状屈曲シート板1A,1Bと
薄板状境界板3との接触は、屈曲部位12のみで
はなく該屈曲部位12と共に偏平空胴部側11の
側端側をも接触するよう構成した方が熱移動及び
熱効率の面から好ましい。
In this case, the wavy bent sheet plates 1A, 1B and the thin plate-like boundary plate 3 are configured to contact not only the bent portion 12 but also the side end side of the flat cavity side 11 together with the bent portion 12. This is more preferable in terms of heat transfer and thermal efficiency.

次にかかる実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

先づA方向より、一側流通路2A内に熱エネル
ギーを有するインプツト流体を流入させ、前記第
1の波状シート1A内の潜熱蓄熱剤90及び上下
の境界板3を通して第2の波状シート板1B内の
潜熱蓄熱剤20に伝熱させ、同時にこれらの蓄熱
剤20を凝固させる事により潜熱蓄熱を行う。
First, an input fluid having thermal energy is introduced into the one-side flow passage 2A from the direction A, and passes through the latent heat storage agent 90 in the first corrugated sheet 1A and the upper and lower boundary plates 3 to the second corrugated sheet plate 1B. Latent heat storage is performed by transferring heat to the latent heat storage agents 20 inside and solidifying these heat storage agents 20 at the same time.

次にB方向の他側流通路2B内に熱交換される
アウトプツト流体を流入させる事より、該流体と
直接接触される第2の波状シート板1B内の潜熱
蓄熱剤20と熱交換により奪熱され、所定の熱交
換が行われる。
Next, by flowing the output fluid to be heat exchanged into the other flow path 2B in the B direction, heat is removed by heat exchange with the latent heat storage agent 20 in the second corrugated sheet plate 1B that is in direct contact with the fluid. and a predetermined heat exchange is performed.

そして奪熱された第2の波状シート板1B内の
潜熱蓄熱剤20には第1の波状シート板1A内の
潜熱蓄熱剤20より順次冷熱源が供給され、而も
前記潜熱蓄熱剤20は潜熱蓄熱である為に熱容量
が極めて大であり、第2の波状シート板1B内の
潜熱蓄熱剤20の温度変動が生じる余地は全くな
く安定した熱交換が可能となる。
Then, a cold heat source is sequentially supplied to the latent heat storage agent 20 in the second corrugated sheet plate 1B from which the heat has been absorbed from the latent heat storage agent 20 in the first corrugated sheet plate 1A, and the latent heat storage agent 20 has latent heat. Since it is a heat storage, the heat capacity is extremely large, and there is no room for temperature fluctuation of the latent heat storage agent 20 in the second corrugated sheet plate 1B, making stable heat exchange possible.

即ち本実施例によれば、A方向の流通路2Aを
流れるインプツト流体の熱量が小さくなつたり変
動しても、両波状シート板1A,1B内に常に多
量の熱容量を備蓄してるので、B方向の流通路2
Bを流れるアウトプツト流体の熱交換の安定化と
共に、前記波状シート板1A,1B内の蓄熱が潜
熱蓄熱である為に、常に一定温度による熱交換が
可能となる。
That is, according to this embodiment, even if the heat amount of the input fluid flowing in the flow path 2A in the A direction decreases or fluctuates, a large amount of heat capacity is always stored in both the corrugated sheet plates 1A and 1B, so that the input fluid flowing in the B direction distribution path 2
In addition to stabilizing the heat exchange of the output fluid flowing through B, since the heat stored in the corrugated sheet plates 1A and 1B is latent heat storage, heat exchange at a constant temperature is always possible.

又本実施例に係る熱交換器は、アウトプツト
(高温側)流体温度−第2の波状シート板1B内
の潜熱蓄熱剤20融点温度−第1の波状シート板
1A内の潜熱蓄熱剤20融点温度−インプツト
(低温側)流体温度の順に設定温度順次低くなる
ように選択されている為に熱移動がスムーズにな
り且つ熱交換率も向上する。
In addition, the heat exchanger according to this embodiment has the following relationship: Output (high temperature side) fluid temperature - Melting point temperature of the latent heat storage agent 20 in the second corrugated sheet plate 1B - Melting point temperature of the latent heat storage agent 20 in the first corrugated sheet plate 1A - Since the input (low temperature side) fluid temperature is selected so that the set temperature becomes lower in order, the heat transfer becomes smooth and the heat exchange efficiency is improved.

又本実施例によればインプツト流体とアウトプ
ツト流体の熱変動に対しても安定した熱量が得ら
れると共に、熱交換効率の増加、熱容量が大で熱
の供給量が大きい。
Further, according to this embodiment, a stable amount of heat can be obtained even against thermal fluctuations of the input fluid and the output fluid, and the heat exchange efficiency is increased, and the heat capacity is large, so that the amount of heat supplied is large.

又本実施例によれば伝熱媒体たる波状屈曲シー
ト板に蓄熱効果を有する為に、インプツト流体の
中断又は再流入初期においてもアウトプツト流体
に熱変動が生じる事なく常に安定した熱交換を行
う事が出来る。
Furthermore, according to this embodiment, since the wavy bent sheet plate serving as the heat transfer medium has a heat storage effect, stable heat exchange can always be performed without any thermal fluctuation occurring in the output fluid even when the input fluid is interrupted or in the early stages of re-inflow. I can do it.

更に本実施例によれば波状屈曲シート板に蓄熱
効果を有する為に、熱交換すると同時にインプツ
ト流体の有する余分な熱量が波状屈曲シート板に
蓄熱され、熱効率が向上する。
Furthermore, according to this embodiment, since the wavy bent sheet plate has a heat storage effect, the excess heat of the input fluid is stored in the wavy bent sheet plate at the same time as the heat exchange is performed, thereby improving thermal efficiency.

更にインプツト流体とアウトプツト流体の熱量
変動が生じてもこれを吸収し、安定した熱量が得
られる。
Furthermore, even if there is a variation in the amount of heat between the input fluid and the output fluid, this can be absorbed and a stable amount of heat can be obtained.

更に又前記波状屈曲シート板は潜熱蓄熱である
為に蓄熱されるべき熱容量が極めて大で、且つ温
度変化も極めて低く抑える事が出来る。
Furthermore, since the wavy bent sheet plate stores latent heat, the heat capacity to be stored is extremely large, and temperature changes can be suppressed to an extremely low level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例に係る熱交換器の全体
斜視図、第2図はその要部拡大図、第3図は波状
屈曲シート板の構成を示す部分斜視図である。 1A,1B……波状屈曲シート板、20……潜
熱蓄熱剤、2A,2B……流通路、3……境界
板。
FIG. 1 is an overall perspective view of a heat exchanger according to an embodiment of the present invention, FIG. 2 is an enlarged view of its main parts, and FIG. 3 is a partial perspective view showing the structure of a wavy bent sheet plate. 1A, 1B: wavy bent sheet plate, 20: latent heat storage agent, 2A, 2B: flow path, 3: boundary plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 潜熱蓄熱剤を封入して形成される偏平空胴部を
多数本平行に連設して形成される可撓性シート板
を頂部が曲面状になる如く断面略波形状に屈曲し
て一定方向に延設する屈曲空隙部を流通路となす
複数の屈曲シート板を形成し、該屈曲シート板の
配設方向を交互に異ならせながら良熱伝導性の境
界板を介して、該境界板に少なくとも屈曲シート
板の偏平空胴部の一部が接触するように積層配置
すると共に、融点の異なる2種類の潜熱蓄熱剤を
用意し、1の蓄熱剤を同一方向に配設した屈曲シ
ート板の偏平空胴部内に、又他の蓄熱剤を前記と
別異の方向に配設した他の屈曲シート板の偏平空
胴部内に夫々封入した事を特徴とする蓄熱式熱交
換器。
A flexible sheet plate, which is formed by arranging a large number of flat cavities filled with a latent heat storage agent in parallel, is bent into a substantially wave-shaped cross section so that the top part is curved, and the plate is bent in a certain direction. A plurality of bent sheet plates are formed, each of which has an extending bent cavity as a flow path, and the bending sheet plates are arranged in alternately different directions, and at least one of the bent sheet plates is attached to the boundary plate through a boundary plate having good thermal conductivity. The bent sheet plates are laminated so that a part of the flat cavity part of the bent sheet plates is in contact with each other, two types of latent heat storage agents with different melting points are prepared, and one of the heat storage agents is arranged in the same direction. A regenerative heat exchanger characterized in that a heat storage agent is sealed in a cavity and in a flat cavity of another bent sheet plate arranged in a direction different from the above.
JP1985131467U 1985-08-30 1985-08-30 Expired - Lifetime JPH0523979Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985131467U JPH0523979Y2 (en) 1985-08-30 1985-08-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985131467U JPH0523979Y2 (en) 1985-08-30 1985-08-30

Publications (2)

Publication Number Publication Date
JPS6245578U JPS6245578U (en) 1987-03-19
JPH0523979Y2 true JPH0523979Y2 (en) 1993-06-18

Family

ID=31029937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985131467U Expired - Lifetime JPH0523979Y2 (en) 1985-08-30 1985-08-30

Country Status (1)

Country Link
JP (1) JPH0523979Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089239A (en) * 2006-10-02 2008-04-17 Susumu Kiyokawa Thin planar heat storage member
JP6409465B2 (en) 2014-09-30 2018-10-24 株式会社デンソー Heat storage system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341837A (en) * 1976-09-24 1978-04-15 Laing Nikolaus Green house heat accumulator
JPS57161490A (en) * 1981-03-30 1982-10-05 Nissan Motor Co Ltd Heat accumulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341837A (en) * 1976-09-24 1978-04-15 Laing Nikolaus Green house heat accumulator
JPS57161490A (en) * 1981-03-30 1982-10-05 Nissan Motor Co Ltd Heat accumulator

Also Published As

Publication number Publication date
JPS6245578U (en) 1987-03-19

Similar Documents

Publication Publication Date Title
US4116271A (en) Counter-current bumped plates heat exchanger
KR960007989B1 (en) Counter flow heat exchanger with floating plate
SE9704762L (en) plate heat exchangers
CN110351991A (en) Heat transfer substrate and heat spreader structures
JPH03263382A (en) Thermoelectric conversion device
JPH0523979Y2 (en)
JPS63105363A (en) Regenerator
JPS6152594A (en) Heat exchanger
KR20200067647A (en) Thermoelectric module and apparatus for modulating a temperature including thereof
JPH0129431Y2 (en)
JPS61228265A (en) Cold accumulator
JPH0547960Y2 (en)
JPH0443740Y2 (en)
JPS5938598A (en) Plate type heat exchanger
CN210741197U (en) Heat exchanger based on heat superconducting heat exchange plate
JPS61153396A (en) Heat exchanger
JPH08205567A (en) Thermoelectric generator and power generator using this thermoelectric generator
JPH02171591A (en) Laminated type heat exchanger
JPH09170887A (en) Heat exchanger
JPS61173092A (en) Heat exchanger
JPH0373797B2 (en)
JPH073170Y2 (en) Heat exchanger
JPS62213691A (en) Heat exchanging fin
JPH05696Y2 (en)
JPS6324389Y2 (en)