JPS5938598A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JPS5938598A
JPS5938598A JP57148872A JP14887282A JPS5938598A JP S5938598 A JPS5938598 A JP S5938598A JP 57148872 A JP57148872 A JP 57148872A JP 14887282 A JP14887282 A JP 14887282A JP S5938598 A JPS5938598 A JP S5938598A
Authority
JP
Japan
Prior art keywords
flow
heat exchanger
fluid
heat
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57148872A
Other languages
Japanese (ja)
Inventor
Isao Nikai
勲 二階
Tetsuro Nakada
仲田 哲朗
Kenji Watanabe
健次 渡辺
Kunio Ohori
大堀 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP57148872A priority Critical patent/JPS5938598A/en
Publication of JPS5938598A publication Critical patent/JPS5938598A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Abstract

PURPOSE:To intend to improve performance of exchanging heat, by providing a heat transmitting promotor to the part of a flow path of a heat exchanger other than a cross flow part, in a heat exchanger having a cross flow part so as to be designed to flow fluids having different temperatures, directly crossed to each other, at the outlet of the fluid. CONSTITUTION:Turbulent flow promotors in order to disturb the flow of fluid, twisted strips 3, for example, are inserted into the flow path of the fluid only on the high temperature side and the low temperature side of the counter-flow path 2, along the longitudinal direction of the flow paths. The said twisted strips 3 are fixed to plates or partition walls of a heat exchanger. When the fluids on the high temperature side and the low temperature side flow into the counter-flow part respectively, the flow of these fluids are disturbed because of the existence of the twisted strips 3. By these turbulences, the temperature boundary layer which is the resistance to transfer heat is decreased, and the heat transfer rate between the fluid and the solid surface inside of the flow path can be increased, accordingly, the heat transfer rate of a heat exchanger can be increased. By promoting heat transfer in such a manner, 1/50-1/20 out of total heat exchanged calorific value is absorbed into the cross flow part 1 in the above- mentioned form of a heat exchanger and under the temperature condition, so that the difference in temperature at the outlet of fluid can be suppressed down to the range at 5-15 deg.C.

Description

【発明の詳細な説明】 本発明は動力プラント、化学プラント等に用いられる熱
交換器で、カス−ガス、液−液、あるには液−ガスの間
接熱交換器どして適用するプレートフィン型のプレー1
へ型熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger used in power plants, chemical plants, etc., and is a heat exchanger for use in gas-gas, liquid-liquid, and even liquid-gas indirect heat exchangers. Kata play 1
This relates to a flattened heat exchanger.

たとえば、伝熱面を矩形フィンどしたプレー1−フィン
型熱交換器のうちには、第1図に示す如く斜交流部aど
対向流部11をbつものがある。
For example, among the play one-fin type heat exchangers in which the heat transfer surface is formed into rectangular fins, there is one having an oblique flow section a and a counterflow section 11, as shown in FIG.

斜交流部aでは、高温側流体を流す流路Cと低温側流体
を流す流路dとが斜交しており、対向流部[)では、高
温側流体用の流路Cど低温側流体用の流路dどが平行に
配した構成としである。
In the diagonal flow section a, the flow path C for flowing the high temperature side fluid and the flow path d for flowing the low temperature side fluid are obliquely intersecting, and in the counter flow section [), the flow path C for the high temperature side fluid and the flow path d for the low temperature side fluid cross each other obliquely. The flow channels d and the like are arranged in parallel.

上記従来の斜交流部aと対向流部すをもつプレートフィ
ン型熱交換器に、高温側流体を白抜矢印の方向に導き、
且つ低温側流体を黒矢印の方向に導いたときの熱交換器
の温度分布は、第2図に示ηどa3ゆである。高温側流
体、低温側流体が一定温度Tl1l、TO+で熱交換器
に流入りると、図のように温度分布が変化して両流体と
も熱交換器出口で温度分布が均一にならず、高温側、低
温側(゛ぞれぞれA Tll 2 、IJ ’l’c 
2の温度差が生じ、これにより不均一な熱応力の発生、
温度差による自然対流の発生、エクセルギー損失の増大
等の不都合を生じていた。上記A l−1+ 2 、 
IJ −1−02の値は、−例としUl’l+1=50
0℃、rc+=150℃のがスーガス熱交換器の場合に
約100℃にも連層る。
Introducing the high-temperature side fluid in the direction of the white arrow to the above-mentioned conventional plate-fin heat exchanger having the oblique flow section a and the counterflow section A,
The temperature distribution of the heat exchanger when the low-temperature fluid is guided in the direction of the black arrow is shown in FIG. When the high-temperature side fluid and the low-temperature side fluid flow into the heat exchanger at constant temperatures Tl1l and TO+, the temperature distribution changes as shown in the figure, and the temperature distribution of both fluids is not uniform at the exit of the heat exchanger, resulting in a high temperature. side, low temperature side (A Tll 2 , IJ 'l'c respectively)
2 temperature difference occurs, which causes uneven thermal stress,
This has caused disadvantages such as the generation of natural convection due to temperature differences and an increase in exergy loss. The above A l-1+ 2 ,
The value of IJ -1-02 is - for example, Ul'l+1=50
0°C and rc+=150°C are continuous to about 100°C in the case of a sous gas heat exchanger.

更に説明すると、従来の技術では第1図に示ず従来の熱
交換器において伝熱促進を行うときでも斜交流部aと対
向流部すの両方に伝熱促進しているため、斜交流部aど
対向流部すの収熱量の比は主として伝熱面積に比例する
ことになり、熱交換器の形状が決まると、この収熱量の
比が決まり、通常の形状、たとえば、第2図にJ34J
 ルWi / L−0,8〜1.2−rハ全交1%t4
a聞17)約115〜1/3が斜交流部で収態され、そ
の結束、対向流部人口での温度が不均一になり、これが
原因で出口温度も不均一になり、流体出入[1温度差が
200°C程度のとき、lj Dの温度の差が80〜1
20’Cにまで達して前記した、ように不均一な熱応力
の発生、温度差による自然対流の発生、エクセルギー損
失の増大等の不具合いが生じていた。
To explain further, in the conventional technology, even when heat transfer is promoted in a conventional heat exchanger (not shown in FIG. 1), heat transfer is promoted in both the diagonal flow section a and the counter flow section a. The ratio of the amount of heat absorbed by the opposing flow section A is mainly proportional to the heat transfer area, and once the shape of the heat exchanger is determined, the ratio of the amount of heat absorbed is determined, and if the shape is J34J
Le Wi/L-0,8~1.2-r full cross 1%t4
17) Approximately 115 to 1/3 of the fluid is collected in the oblique flow section, and the temperature in the opposite flow section becomes uneven, which causes the outlet temperature to become uneven, and the fluid flow [1] When the temperature difference is about 200°C, the difference in temperature of lj D is 80 to 1
When the temperature reached 20'C, problems such as generation of non-uniform thermal stress, generation of natural convection due to temperature difference, and increase in exergy loss occurred as described above.

本発明は、かかる問題をなくし熱交換器の高性能化を図
ろうとり−るーbのである。
The present invention aims to eliminate such problems and improve the performance of the heat exchanger.

以下、本発明の実施例を図面を参照して説明づ−る。Embodiments of the present invention will be described below with reference to the drawings.

第3図及び第4図に示づ如く、平面形状を六角形どし、
高温側の流体の入口部及び出口部の流路ど低温側の流体
の出口部及び入口部の流路がひに斜交する斜交流部1と
、高温側流体の流路と低温側流体の流路が平行に延びる
対向流部2どを右りるシレー1−フィン型熱交換器にお
いて、対向流部2に631jる高温側流体流路と低温側
流体流路内にのみ、流体の流れを乱すだめの乱流促進体
、たとえば、ねじり板3を、流路の長手方向に沿い挿入
し、該ねじり仮3をブレートあるいは隔壁等に固定する
As shown in Figures 3 and 4, the planar shape is hexagonal,
A diagonal flow section 1 in which the flow paths of the inlet and outlet portions of the fluid on the high temperature side and the flow paths of the outlet and inlet portions of the fluid on the low temperature side obliquely intersect, and the flow path of the high temperature side fluid and the flow path of the low temperature side fluid. In a single-fin type heat exchanger in which the flow paths extend in parallel to each other in the counterflow section 2, the fluid flow is limited only to the high temperature side fluid flow path and the low temperature side fluid flow path in the counterflow section 2. A turbulence promoter, for example, a torsion plate 3, is inserted along the longitudinal direction of the flow path, and the torsion plate 3 is fixed to a plate, a partition wall, or the like.

上記構成どし゛(あるので、高温側流体と低混側iL体
がそれぞれ対向流部に流れ込むと、ねじり仮3のために
該流体は流れが乱される。これにより伝達上の抵抗とな
る温度境界層を減少し1りて流体と流路内置体面どの熱
伝達率を増大させることができ、熱交換器の伝熱量を増
大させることができる。このように伝熱促進を行わける
ことにより、前記の熱交換器形状、温度条件で全交換熱
量の1 / 50〜1/20が斜交流部1で収態される
ことになり、流体出口の温度の差を5〜15℃にJ3さ
えることができる。
With both of the above configurations, when the high-temperature side fluid and the low-mixing side iL body flow into the opposing flow sections, the flow of the fluids is disturbed due to the torsion. By reducing the number of layers, it is possible to increase the heat transfer coefficient between the fluid and the surface of the body placed in the flow path, and the amount of heat transfer in the heat exchanger can be increased.By promoting heat transfer in this way, the above-mentioned With the heat exchanger shape and temperature conditions, 1/50 to 1/20 of the total heat exchanged will be collected in the oblique flow section 1, making it possible to keep the temperature difference at the fluid outlet to 5 to 15 degrees Celsius. can.

なお、以上の説明では、高温側と低温側の流1本の出入
1」部ひ斜交し、中間部で゛は対向流となる。j;うに
しだ熱交換器において、伝熱促進の方法どじ−(ねじり
板3を設置したたりのものを示したが、ねじり板3の設
置だけでなく曲の乱流()1:進物体の挿入やフィンに
孔を設【ノる等の他の伝熱促進法を採用してもJ:り、
又本発明は対向流部が並行流になる並行流式プレー1〜
フイン型熱交換器にb利用できること、更に、フィンを
持たないプレー1〜型熱交換器の場合は対向流部曳)並
行流部のみを伝熱促進させることによってし同様な効果
を期待Cきること、等は勿論Cある。
In the above explanation, the inflow and outflow of one flow on the high temperature side and the low temperature side intersects diagonally at the 1'' portion, and at the intermediate portion, the ゛ is a counterflow. j; In the Unishida heat exchanger, a method for promoting heat transfer is shown. Even if other heat transfer promotion methods such as inserting holes in the fins or forming holes in the fins,
Further, the present invention provides parallel flow type plays 1 to 1 in which the opposing flow sections become parallel flows.
It can be used for fin-type heat exchangers, and in addition, similar effects can be expected by promoting heat transfer only in the parallel flow section (in the case of play type heat exchangers without fins, the counter-flow section). There are, of course, C's.

以上述べた如く本発明の熱交換器にJ、れば、熱交換器
の流体出口温度を均一化でき、これにJ:り不均一熱応
力の発生が防止され、fL []流体の温度差による自
然対流が防止され、又温度が均一化されるので流体のニ
[クヒルギー損失を軽減でき、したがって熱交換器の耐
久性が向上し、熱交換性能が向上し、更に省エネルギー
化に役立つ、という優れた効果を奏し得る。
As described above, by using the heat exchanger of the present invention, it is possible to equalize the fluid outlet temperature of the heat exchanger, thereby preventing the occurrence of uneven thermal stress, and reducing the temperature difference of the fluid. This prevents natural convection and equalizes the temperature, reducing the secondary energy loss of the fluid, improving the durability of the heat exchanger, improving heat exchange performance, and helping to save energy. It can have excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の斜交流部をn1るプレー1へフィン型熱
交換器の説明用斜視図、第2図は第1図の熱交換器にL
i2りる温度分布の変化を示づ説明図、第3図は本発明
の熱交換器の一例を示す斜視図、第4図は本弁明の熱交
換器の構成要領を示す斜視図である。 1・・・斜交流部、2・・・対向流部、3・・・ねじり
板。 特  許  出  願  人 石川島播磨重]−業株式会省 第3図 第2図 君
Figure 1 is an explanatory perspective view of a conventional diagonal flow section to play 1 fin type heat exchanger, and Figure 2 is an explanatory perspective view of the heat exchanger shown in Figure 1.
FIG. 3 is a perspective view showing an example of the heat exchanger of the present invention, and FIG. 4 is a perspective view showing the configuration of the heat exchanger of the present invention. 1... Oblique flow section, 2... Counterflow section, 3... Torsion plate. Patent application: Person Ishikawajima Harima Heavy Duty] - Ministry of Industry and Stock Exchange, Figure 3, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)湿度の異なる流体が直交して流れるようにした斜交
流部を流体の出入口部に有する熱交換器の上記斜交流部
以外の個所の流体流路に、伝熱促進装置を施したことを
特徴とするプレー]・型熱交換器。
1) A heat transfer accelerator is applied to the fluid flow path at a location other than the diagonal flow section of a heat exchanger that has a diagonal flow section in which fluids with different humidity flow orthogonally at the fluid inlet and outlet sections. Features: - Type heat exchanger.
JP57148872A 1982-08-27 1982-08-27 Plate type heat exchanger Pending JPS5938598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148872A JPS5938598A (en) 1982-08-27 1982-08-27 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148872A JPS5938598A (en) 1982-08-27 1982-08-27 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5938598A true JPS5938598A (en) 1984-03-02

Family

ID=15462605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148872A Pending JPS5938598A (en) 1982-08-27 1982-08-27 Plate type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5938598A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296107A3 (en) * 2001-09-21 2004-07-21 Theodor Blum Counterflow heat exchanger
CZ300999B6 (en) * 2007-09-27 2009-10-07 2 V V S. R. O. Counter-current recuperative heat exchanger
US20170211893A1 (en) * 2016-01-22 2017-07-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Heat exchanger and heat exchange method
EP3734212A1 (en) * 2019-04-29 2020-11-04 Hamilton Sundstrand Corporation Asymmetric cross counter flow heat exchanger
EP3734213A1 (en) * 2019-04-29 2020-11-04 Hamilton Sundstrand Corporation Offset/slanted cross counter flow heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS438459Y1 (en) * 1965-11-18 1968-04-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS438459Y1 (en) * 1965-11-18 1968-04-15

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296107A3 (en) * 2001-09-21 2004-07-21 Theodor Blum Counterflow heat exchanger
CZ300999B6 (en) * 2007-09-27 2009-10-07 2 V V S. R. O. Counter-current recuperative heat exchanger
US20170211893A1 (en) * 2016-01-22 2017-07-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Heat exchanger and heat exchange method
EP3734212A1 (en) * 2019-04-29 2020-11-04 Hamilton Sundstrand Corporation Asymmetric cross counter flow heat exchanger
EP3734213A1 (en) * 2019-04-29 2020-11-04 Hamilton Sundstrand Corporation Offset/slanted cross counter flow heat exchanger

Similar Documents

Publication Publication Date Title
US4081025A (en) Multiple fluid stacked plate heat exchanger
US8069905B2 (en) EGR gas cooling device
CA1064902A (en) Heat exchange device
JPH0711325Y2 (en) Plate fin type heat exchanger
JPS58217195A (en) Heat exchanger
JPS5572795A (en) Corrugated fin type heat exchanger
JPS5938598A (en) Plate type heat exchanger
JPS6317393A (en) Heat exchanger
CN101424490A (en) Discontinuous double oblique crossing rib strengthened heat exchange method between flat-plates
Eckels et al. Heat transfer and pressure drop performance of finned tube bundles
JPS633185A (en) Finned heat exchanger
JPH0547960Y2 (en)
JPH10274490A (en) Plate fin coil
JPS6335274Y2 (en)
JPS59183296A (en) Heat exchanger of plate fin type
JPS5916693Y2 (en) Heat exchanger
JPS58138994A (en) Heat exchanger
JPH05340686A (en) Heat-exchanger
CN218443466U (en) Heat exchanger with two opposite air flows
JPS63197887A (en) Heat exchanger
JP2003302190A (en) Corrugated fin type heat exchanger
JPS6034938Y2 (en) Heat pipe heat exchanger
JPS6339582Y2 (en)
JPH0129439Y2 (en)
US2670936A (en) Sinuous wire element as extended surface on undulated heat exchanger plate wall