JPH05239409A - Conductive coating composition and production of conductive coating film - Google Patents

Conductive coating composition and production of conductive coating film

Info

Publication number
JPH05239409A
JPH05239409A JP12735492A JP12735492A JPH05239409A JP H05239409 A JPH05239409 A JP H05239409A JP 12735492 A JP12735492 A JP 12735492A JP 12735492 A JP12735492 A JP 12735492A JP H05239409 A JPH05239409 A JP H05239409A
Authority
JP
Japan
Prior art keywords
conductive coating
coating film
parts
composition
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12735492A
Other languages
Japanese (ja)
Inventor
Han Sasaki
範 佐々木
Eiji Omori
英二 大森
Jun Matsuzawa
純 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPH05239409A publication Critical patent/JPH05239409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE:To obtain a composition capable of giving a coating film excellent in conductivity, transparency and pencil hardness. CONSTITUTION:This composition comprises a siloxane polymer obtained by the hydrolytic condensation of a tetraalkoxysilane, a mixture obtained by dispersing an antimony-doped tin oxide powder of a particle diameter of 0.2mum or below in a silane coupling agent, a photosensitizer and a solvent. The process in the title comprises using this composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性塗料組成物に関
し、さらに詳しくはガラス、セラミックスなどの基材面
上に透明性に優れた導電膜を形成するのに好適な導電塗
料組成物およびこれを用いた導電塗膜の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive coating composition, and more specifically to a conductive coating composition suitable for forming a conductive film having excellent transparency on the surface of a substrate such as glass or ceramics. Relates to a method for producing a conductive coating film.

【0002】[0002]

【従来の技術】近年、帯電防止を目的として、テレビの
ブラウン管や各種のOA機器のディスプレーのガラス面
上に導電性の塗膜が形成されている。この方法には、水
酸基含有ポリマー、高級アルコール、界面活性剤などの
有機物を塗布する方法があるが、この方法では耐溶剤性
および耐擦傷性が劣るため、帯電防止効果の寿命が短く
実用的でない。またその他の方法として、無機系材料を
用いた帯電防止膜の形成が試みられている。例えば特開
昭62−187188号公報には、加水分解可能なスズ
化合物やアンチモンドープスズ化合物を加水分解して微
粒子を得た後、水を除去し、エタノール中に分散し焼成
する方法が開示されている。しかし、この方法ではバイ
ンダーを含まないため耐擦傷性に劣るという欠点があ
る。特開昭62−252481号公報には、導電性粉
末、バインダー、溶剤から成る組成物が開示されている
が、バインダーが有機系のため耐擦傷性に限界がある。
特開平1−299887号公報には、酸化スズ微粒子、
シリカゾル、有機溶剤からなる帯電防止処理液が開示さ
れているが、本液は加熱硬化タイプのため、ブラウン管
表面の薄い帯電防止膜を完全硬化するにはブラウン管全
体を加熱しなければならず、エネルギー効率上望ましく
なく、かつ、加熱、冷却に多大な時間を要する。
2. Description of the Related Art In recent years, a conductive coating film has been formed on a glass surface of a cathode ray tube of a television or a display of various OA devices for the purpose of preventing static electricity. This method includes a method of applying an organic substance such as a hydroxyl group-containing polymer, a higher alcohol, and a surfactant, but this method has poor solvent resistance and scratch resistance, and therefore has a short life of antistatic effect and is not practical. . As another method, formation of an antistatic film using an inorganic material has been attempted. For example, JP-A-62-187188 discloses a method in which a hydrolyzable tin compound or antimony-doped tin compound is hydrolyzed to obtain fine particles, water is removed, and the particles are dispersed in ethanol and baked. ing. However, this method has a drawback that it is inferior in scratch resistance because it does not contain a binder. Japanese Unexamined Patent Publication (Kokai) No. 62-252481 discloses a composition comprising a conductive powder, a binder and a solvent, but the binder is an organic type, so that the scratch resistance is limited.
Japanese Unexamined Patent Application Publication No. 1-29887 discloses tin oxide fine particles,
An antistatic treatment liquid consisting of silica sol and an organic solvent is disclosed, but since this liquid is a heat-curing type, it is necessary to heat the entire CRT in order to completely cure the thin antistatic film on the surface of the CRT. It is not desirable in efficiency, and it takes a lot of time for heating and cooling.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記従来技
術の問題点を解決し、導電性、透明性、耐溶剤性および
耐擦傷性に優れた導電塗料組成物及び導電塗膜の製造法
を提供するものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and a method for producing a conductive coating composition and a conductive coating film having excellent conductivity, transparency, solvent resistance and scratch resistance. Is provided.

【0004】[0004]

【課題を解決するための手段】本発明は、(A)テトラ
アルコキシシランを加水分解縮合して得られるシロキサ
ン系ポリマー、(B)アンチモンがドープされた粒径が
0.2μm以下の酸化スズ粉末をシランカップリング剤
で分散して得られる混合物、(C)光増感剤および
(D)溶剤を含有してなる導電塗料組成物並びに本組成
物を基材面に塗装し、紫外線を照射し硬化する導電塗膜
の製造法に関する。本発明の(A)成分であるシロキサ
ン系ポリマーの合成法について説明する。シロキサン系
ポリマーは、テトラアルコキシシランを溶剤に溶解し、
これに水を滴下し、加水分解縮合させて得られる。溶剤
としてはメタノール、エタノール、イソプロパノール、
ブタノールなどのアルコール類、アセトン、メチルエチ
ルケトンなどのケトン類、酢酸エチル、酢酸ブチルなど
のエステル類など一般的なシロキサン系ポリマーの合成
溶剤が使用できる。加水分解に必要な水量はテトラアル
コキシシラン1モルに対し、1.0〜10.0モルが好
ましい。1.0モル未満では均一な塗膜となりにくく、
10.0モルを超えると耐擦傷性が劣る傾向がある。ま
た、必要に応じ触媒として塩酸、硝酸などの無機酸、マ
レイン酸、酢酸などの有機酸が使用できる。合成温度は
50℃〜100℃の合成溶剤の沸点を越えない範囲で、
合成時間は塗膜形成性、膜強度の点から10分から15
時間程度の範囲が好ましい。
The present invention provides (A) a siloxane polymer obtained by hydrolyzing and condensing tetraalkoxysilane, and (B) antimony-doped tin oxide powder having a particle size of 0.2 μm or less. Is dispersed in a silane coupling agent, a conductive coating composition containing (C) a photosensitizer and (D) a solvent, and the composition are coated on the surface of a base material and irradiated with ultraviolet rays. The present invention relates to a method for producing a conductive coating film that cures. A method for synthesizing the siloxane-based polymer which is the component (A) of the present invention will be described. Siloxane-based polymer dissolves tetraalkoxysilane in a solvent,
It is obtained by adding water dropwise to this and subjecting it to hydrolysis and condensation. Solvents include methanol, ethanol, isopropanol,
Common siloxane polymer synthesis solvents such as alcohols such as butanol, ketones such as acetone and methyl ethyl ketone, and esters such as ethyl acetate and butyl acetate can be used. The amount of water required for hydrolysis is preferably 1.0 to 10.0 mol with respect to 1 mol of tetraalkoxysilane. If it is less than 1.0 mol, it is difficult to obtain a uniform coating film,
If it exceeds 10.0 mol, the scratch resistance tends to be poor. Inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as maleic acid and acetic acid can be used as a catalyst, if necessary. The synthesis temperature is within a range not exceeding the boiling point of the synthesis solvent of 50 ° C to 100 ° C,
The synthesis time is 10 minutes to 15 from the viewpoint of coating film forming property and film strength.
A range of about time is preferable.

【0005】(B)成分のアンチモンがドープされた酸
化スズ(以下アンチモンドープ酸化スズ粉末と記す)粉
末は、例えば塩酸の水溶液、アルコール溶液又はこれら
の混合溶液に塩化スズと塩化アンチモンとを溶解させて
得られる溶液を、加熱水中に加えて沈殿物を析出させ、
これを濾別洗浄したあと、焼成、粉砕することによって
製造できる。この粉末の粒径は0.2μm以下の物が使
用可能であるが、0.05μm以下のものがより好まし
い。粒径が0.2μmを越えると、薄膜形成が出来ずか
つ透明性が低下し、沈降が生じ易い。アンチモンドープ
酸化スズ粉末の好適な例としては、三菱マテリアル
(株)製のT−1などがある。(B)成分の製造に用い
られるシランカップリング剤としては式(I)で示され
るシランカップリング剤が好ましく
The component (B) antimony-doped tin oxide (hereinafter referred to as antimony-doped tin oxide powder) powder is prepared by dissolving tin chloride and antimony chloride in an aqueous solution of hydrochloric acid, an alcohol solution, or a mixed solution thereof. The resulting solution is added to heated water to precipitate,
It can be produced by filtering and washing this, followed by firing and crushing. Particles having a particle size of 0.2 μm or less can be used, but those having a particle size of 0.05 μm or less are more preferable. If the particle size exceeds 0.2 μm, a thin film cannot be formed, the transparency decreases, and sedimentation easily occurs. Preferable examples of the antimony-doped tin oxide powder include T-1 manufactured by Mitsubishi Materials Corporation. As the silane coupling agent used for producing the component (B), a silane coupling agent represented by the formula (I) is preferable.

【化1】 RnSi(OR′)4-n (I) (Rは炭素数1〜8の有機基、R′は炭素1〜5のアル
キル基、nは1または2である)、その例としてはγ−
メタアクリロキシプロピルトリメトキシシラン、ビニル
トリエトキシシラン、γ−グリシドキシプロピルトリメ
トキシシラン等があげられる。
Embedded image RnSi (OR ′) 4-n (I) (R is an organic group having 1 to 8 carbon atoms, R ′ is an alkyl group having 1 to 5 carbon atoms, and n is 1 or 2) Is γ−
Examples thereof include methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, and γ-glycidoxypropyltrimethoxysilane.

【0006】アンチモンドープ酸化スズ粉末をシランカ
ップリング剤で分散し、混合物を得る方法としては、酸
化スズ粉末がヘンシェルミキサー、スーパーミキサーな
どでよく撹拌されている中へシランカップリング剤を噴
霧あるいは点滴により添加する乾式法、酸化スズ粉末を
溶剤の存在下にシランカップリング剤と共に高速撹拌す
る湿式法、高温状態の酸化スズ粉末にシランカップリン
グ剤をスプレーにより噴霧添加するスプレー法等がある
が、粒子全体を均一に処理することができる湿式法が好
ましい。湿式法による分散装置としては、ボールミル、
サンドミル、3本ロールなどが用いられる。アンチモン
ドープ酸化スズ粉末のシランカップリング剤による分散
はせん断力の強いロール分散が好ましいが、サンドグラ
インダーなどのビーズミルによる分散も可能である。ア
ンチモンドープ酸化スズ粉末とシランカップリング剤の
分散液をシロキサン系ポリマーおよび溶剤に分散させる
場合はビーズミル、超音波分散など通常の分散法が適用
できる。
As a method for obtaining a mixture by dispersing antimony-doped tin oxide powder with a silane coupling agent, the silane coupling agent is sprayed or drip into the tin oxide powder while being well stirred by a Henschel mixer, super mixer, or the like. There is a dry method of adding by, a wet method of stirring tin oxide powder with a silane coupling agent at high speed in the presence of a solvent, a spray method of spray adding a silane coupling agent to tin oxide powder in a high temperature state, and the like. A wet method that can uniformly treat the entire particle is preferable. As a dispersing device by a wet method, a ball mill,
A sand mill, three rolls, etc. are used. Dispersion of the antimony-doped tin oxide powder with a silane coupling agent is preferably roll dispersion with a strong shearing force, but dispersion with a bead mill such as a sand grinder is also possible. When the dispersion liquid of the antimony-doped tin oxide powder and the silane coupling agent is dispersed in the siloxane-based polymer and the solvent, a usual dispersion method such as bead milling or ultrasonic dispersion can be applied.

【0007】(C)成分の光増感剤としては、ベンジル
ジメチルケタール、ベンゾフェノン、アセトフェノン、
ベンゾイン、これらの誘導体など常用の光増感剤が使用
できる。
As the photosensitizer of the component (C), benzyl dimethyl ketal, benzophenone, acetophenone,
Conventional photosensitizers such as benzoin and their derivatives can be used.

【0008】(D)成分の溶剤としては、アセトン、メ
チルエチルケトンなどのケトン系溶剤、メチルアルコー
ル、エチルアルコール、イソプロピルアルコール、ジア
セトンアルコールなどのアルコール系溶剤、酢酸エチ
ル、酢酸ブチルなどのエステル系溶剤、塩化メチレン、
1,1,1−トリクロロエタンなどの塩素系溶剤が使用
可能であるが成膜性の点からメチルエチルケトンを主成
分とすることが好ましい。
Examples of the component (D) solvent include ketone solvents such as acetone and methyl ethyl ketone, alcohol solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol and diacetone alcohol, ester solvents such as ethyl acetate and butyl acetate, Methylene chloride,
A chlorine-based solvent such as 1,1,1-trichloroethane can be used, but it is preferable to use methyl ethyl ketone as a main component from the viewpoint of film forming property.

【0009】本発明の導電塗料組成物の固型分は0.1
〜10重量%の範囲であることが好ましい。0.1重量
%未満では、低抵抗化が不十分で、10重量%を超える
と耐擦傷性が低下する傾向がある。前記(D)成分の溶
剤は組成物の固型分が0.1〜10重量%になるように
配合されることが好ましい。(C)成分の光増感剤は
(B)成分のシランカップリング剤100重量部に対し
0.1〜10重量部の範囲で使用することが好ましい。
0.1重量部未満では光硬化性が低下し、10重量部を
越えると耐擦傷性が低下する傾向がある。(B)成分の
アンチモンドープ酸化スズ粉末をシランカップリング剤
で分散する時の配合比は、シランカップリング剤100
重量部に対し、アンチモンドープ酸化スズは50〜20
00重量部の範囲が好ましい。この範囲以外では、ロー
ル分散が困難である。次に、(A)成分のシロキサン系
ポリマーと(B)成分のアンチモンドープ酸化スズ粉末
及びシランカップリング剤の配合比について述べる。シ
ロキサン系ポリマー100重量部に対し、アンチモンド
ープ酸化スズ粉末は10〜400重量部の範囲で使用す
ることが好ましい。10重量部未満では低抵抗化が不十
分であり、400重量部を越えると耐擦傷性が低下する
傾向がある。また、シランカップリング剤の配合比は、
シロキサン系ポリマーとアンチモンドープ酸化スズ粉末
の合計100重量部に対し、0.1〜200重量部の範
囲が好ましい。0.1重量部未満では、硬化性が低下
し、200重量部を越えると耐擦傷性が低下する傾向が
ある。
The solid content of the conductive coating composition of the present invention is 0.1
It is preferably in the range of 10% by weight. If it is less than 0.1% by weight, the resistance reduction is insufficient, and if it exceeds 10% by weight, the scratch resistance tends to be lowered. The solvent of the component (D) is preferably blended so that the solid content of the composition is 0.1 to 10% by weight. The photosensitizer as the component (C) is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the silane coupling agent as the component (B).
If it is less than 0.1 parts by weight, the photocurability tends to decrease, and if it exceeds 10 parts by weight, the scratch resistance tends to decrease. When the antimony-doped tin oxide powder as the component (B) is dispersed with a silane coupling agent, the compounding ratio is 100 silane coupling agent.
Antimony-doped tin oxide is 50 to 20 parts by weight.
A range of 00 parts by weight is preferred. Outside of this range, roll dispersion is difficult. Next, the compounding ratio of the siloxane polymer as the component (A), the antimony-doped tin oxide powder as the component (B), and the silane coupling agent will be described. The antimony-doped tin oxide powder is preferably used in the range of 10 to 400 parts by weight based on 100 parts by weight of the siloxane-based polymer. If it is less than 10 parts by weight, the resistance reduction is insufficient, and if it exceeds 400 parts by weight, the scratch resistance tends to be lowered. The compounding ratio of the silane coupling agent is
The range of 0.1 to 200 parts by weight is preferable with respect to 100 parts by weight of the total amount of the siloxane polymer and the antimony-doped tin oxide powder. If it is less than 0.1 part by weight, the curability tends to decrease, and if it exceeds 200 parts by weight, the scratch resistance tends to decrease.

【0010】本発明の導電塗料組成物は、スピンコー
ト、スプレーコート、ロールコート、ディップコートな
どの一般的な塗装方法でガラス、セラミックなどの基材
面上に塗装し、高圧水銀灯、超高圧水銀灯、メタルハラ
イドランプなど一般的な紫外線照射装置で紫外線を照射
し硬化して導電塗膜とされる。
The conductive coating composition of the present invention is applied on the surface of a substrate such as glass or ceramic by a general coating method such as spin coating, spray coating, roll coating or dip coating to obtain a high pressure mercury lamp or an ultra high pressure mercury lamp. A conductive coating film is obtained by irradiating ultraviolet rays with a general ultraviolet ray irradiating device such as a metal halide lamp and curing.

【0011】導電塗料組成物を基材面上に塗装後に紫外
線照射装置によって20mW/cm2〜200mW/c
2の露光照度の紫外線を照射後60℃〜250℃で加
熱硬化して透明導電塗膜とすることが好ましい。紫外線
の露光照度が20mW/cm2未満では低抵抗化が不十
分であり200mW/cm2を越えると温度がかかりす
ぎるため基材の損傷とエネルギー効率の点で好ましくな
い。60℃未満で加熱すると耐擦傷性が低下し250℃
を越えると基材の損傷とエネルギー効率の点で好ましく
ない。紫外線照射時間は、通常5秒以上とされ、紫外線
硬化による低抵抗化の面からいえば20秒以上照射する
のが好ましい。加熱硬化時間は特に制限はないがエネル
ギーロスの点から30分以上加熱する必要はない。紫外
線照射と加熱は同時に行ってもよいが紫外線照射後に加
熱を行うほうがエネルギー効率の点でより経済的であ
る。膜厚は、耐クラック性の点から、40μm以下とす
るのが好ましい。
After the conductive coating composition is coated on the surface of the substrate, it is exposed to 20 mW / cm 2 to 200 mW / c by an ultraviolet irradiation device.
After irradiation with ultraviolet rays having an exposure illuminance of m 2 , it is preferable to heat-cure at 60 ° C. to 250 ° C. to obtain a transparent conductive coating film. When the exposure illuminance of ultraviolet rays is less than 20 mW / cm 2 , the resistance reduction is insufficient, and when it exceeds 200 mW / cm 2 , the temperature is too high, which is not preferable in terms of damage to the substrate and energy efficiency. If heated below 60 ° C, scratch resistance will decrease and 250 ° C
If it exceeds, it is not preferable in terms of damage to the substrate and energy efficiency. The UV irradiation time is usually set to 5 seconds or longer, and it is preferably 20 seconds or longer from the viewpoint of resistance reduction due to UV curing. The heat curing time is not particularly limited, but it is not necessary to heat for 30 minutes or more from the viewpoint of energy loss. UV irradiation and heating may be performed at the same time, but heating after UV irradiation is more economical in terms of energy efficiency. From the viewpoint of crack resistance, the film thickness is preferably 40 μm or less.

【0012】[0012]

【実施例】次に実施例により本発明を説明する。実施
例、比較例の中で部、%とあるのは重量基準である。 <シロキサン系ポリマー溶液Aの合成>500mlのガ
ラス製の4つ口フラスコを用い、30ml/minの流
量で乾燥窒素を通しながらテトラエトキシシラン140
g、エチルアルコール240gを仕込み室温で撹拌しな
がら、マレイン酸1.5gを50gの水に溶解したマレ
イン酸水溶液を1時間かけて滴下し、その後70℃で4
時間反応しシロキサン系ポリマー溶液Aを得た。この不
揮発分を測定した結果、15%であった。 実施例1 T−1(三菱マテリアル(株)製アンチモンドープ酸化
スズ粉末の商品名、アンチモンドープ量10%、一次粒
子の粒径約0.05μm)50部、γ−メタアクリロキ
シプロピルトリメトキシシラン25部を3本ロールに3
回通し分散混合物を得た。この混合物1部、シロキサン
系ポリマー溶液A20部、ベンジルジメチルケタール
0.0003部、メチルエチルケトン79部をビーズミ
ル(ジルコニアビーズ0.5mmφ)で混合撹拌して組
成物Aを得た。これをガラス基板上に300rpmで3
0秒間スピンコートし、その後超高圧水銀灯で30mw
/cm2の露光照度で15分間照射し硬化させ硬化膜を
得た。
EXAMPLES The present invention will now be described with reference to examples. In Examples and Comparative Examples, parts and% are based on weight. <Synthesis of Siloxane Polymer Solution A> Using a 500 ml four-neck flask made of glass, tetraethoxysilane 140 was added while passing dry nitrogen at a flow rate of 30 ml / min.
g, and 240 g of ethyl alcohol were charged, while stirring at room temperature, an aqueous maleic acid solution prepared by dissolving 1.5 g of maleic acid in 50 g of water was added dropwise over 1 hour, and then at 70 ° C.
After reacting for a time, a siloxane-based polymer solution A was obtained. As a result of measuring the nonvolatile content, it was 15%. Example 1 50 parts of T-1 (trade name of antimony-doped tin oxide powder manufactured by Mitsubishi Materials Corp., antimony doping amount: 10%, particle size of primary particles: about 0.05 μm), γ-methacryloxypropyltrimethoxysilane 3 rolls of 25 parts
A rounded dispersion mixture was obtained. 1 part of this mixture, 20 parts of siloxane-based polymer solution A, 0.0003 parts of benzyl dimethyl ketal, and 79 parts of methyl ethyl ketone were mixed and stirred with a bead mill (zirconia beads 0.5 mmφ) to obtain a composition A. Place this on a glass substrate at 300 rpm for 3
Spin coat for 0 seconds, then 30mw with ultra high pressure mercury lamp
It was irradiated with an exposure illuminance of / cm 2 for 15 minutes to be cured to obtain a cured film.

【0013】実施例2 γ−メタアクリロキシプロピルトリメトキシシランをビ
ニルトリエトキシシランに変えた以外は実施例1と全く
同じ方法で硬化膜を得た。 比較例1 実施例1の組成物Aからベンジルジメチルケタールを除
いた組成物を実施例1と同様にスピンコートし、その後
160℃で30分間硬化させ硬化膜を得た。
Example 2 A cured film was obtained in the same manner as in Example 1 except that γ-methacryloxypropyltrimethoxysilane was changed to vinyltriethoxysilane. Comparative Example 1 A composition obtained by removing benzyl dimethyl ketal from the composition A of Example 1 was spin-coated in the same manner as in Example 1 and then cured at 160 ° C. for 30 minutes to obtain a cured film.

【0014】比較例2 シロキサン系ポリマー溶液A20部、T−1を0.7
部、メチルエチルケトン79部をビーズミル(ジルコニ
アビーズ、0.5mmφ)で混合撹拌して組成物Bを得
た。これより実施例1と同様な硬化方法で硬化膜を得
た。得られた硬化膜を用い、表面抵抗、550nmでの
透過率、鉛筆硬度および耐エチルアルコール性を評価し
た。表1に結果を示す。
Comparative Example 2 20 parts of siloxane polymer solution A and 0.7 parts of T-1
And 79 parts of methyl ethyl ketone were mixed and stirred with a bead mill (zirconia beads, 0.5 mmφ) to obtain a composition B. From this, a cured film was obtained by the same curing method as in Example 1. Using the obtained cured film, surface resistance, transmittance at 550 nm, pencil hardness and ethyl alcohol resistance were evaluated. The results are shown in Table 1.

【0015】[0015]

【表1】 *1 横河ヒューレットパッカード社製ハイレジスタン
スメータで測定した。 *2 UV分光光度計で550nmの吸光度を測定し
た。 *3 JIS C3003に準じて行った。 *4 エチルアルコール中に室温で24時間浸漬し、外
観の変化を目視で確認した。 *5 導電塗膜の外観を肉眼で観察した。
[Table 1] * 1 Measured with a Yokogawa Hewlett-Packard high resistance meter. * 2 Absorbance at 550 nm was measured with a UV spectrophotometer. * 3 Performed according to JIS C3003. * 4 Immersed in ethyl alcohol at room temperature for 24 hours, and visually confirmed changes in appearance. * 5 The appearance of the conductive coating film was visually observed.

【0016】実施例3 T−1、50部、γ−メタアクリロキシプロピルトリメ
トキシシラン25部およびメチルエチルケトン25部の
混合物をビーズミル(ジルコニアビーズ0.5mmφ)
により分散し分散混合物を得た。この混合物1部、シロ
キサン系ポリマー溶液A20部、ベンジルジメチルケタ
ール0.0003部、メチルエチルケトン79部を超音
波分散により分散して組成物Bを得た。これをガラス基
板上に300rpmで30秒間スピンコートし、超高圧
水銀灯で30mw/cm2の露光照度で3分間照射後、
100℃で10分間加熱し硬化させ硬化膜を得た。
Example 3 A mixture of T-1, 50 parts, γ-methacryloxypropyltrimethoxysilane 25 parts and methyl ethyl ketone 25 parts was bead milled (zirconia beads 0.5 mmφ).
To obtain a dispersion mixture. 1 part of this mixture, 20 parts of siloxane polymer solution A, 0.0003 parts of benzyl dimethyl ketal, and 79 parts of methyl ethyl ketone were dispersed by ultrasonic dispersion to obtain a composition B. This was spin-coated on a glass substrate at 300 rpm for 30 seconds and irradiated with an ultrahigh pressure mercury lamp at an exposure illuminance of 30 mw / cm 2 for 3 minutes,
A cured film was obtained by heating and curing at 100 ° C. for 10 minutes.

【0017】実施例4 γ−メタアクリロキシプロピルトリメトキシシランをビ
ニルトリエトキシシランに変えた以外は実施例3と全く
同じ方法で硬化膜を得た。
Example 4 A cured film was obtained in the same manner as in Example 3 except that γ-methacryloxypropyltrimethoxysilane was changed to vinyltriethoxysilane.

【0018】比較例3 実施例3の組成物Bからベンジルジメチルケタールを除
いた組成物を実施例3と同様にスピンコートし、その後
160℃で30分間硬化させ硬化膜を得た。
Comparative Example 3 A composition obtained by removing the benzyl dimethyl ketal from the composition B of Example 3 was spin-coated in the same manner as in Example 3 and then cured at 160 ° C. for 30 minutes to obtain a cured film.

【0019】比較例4 シロキサン系ポリマー溶液A20部、T−1、0.7
部、メチルエチルケトン79部を超音波分散により分散
して組成物を得た。これより実施例3と同様な硬化方法
で硬化膜を得た。
Comparative Example 4 20 parts of siloxane polymer solution A, T-1, 0.7
Parts and 79 parts of methyl ethyl ketone were dispersed by ultrasonic dispersion to obtain a composition. From this, a cured film was obtained by the same curing method as in Example 3.

【0020】比較例5 加熱温度を50℃に変えた以外は実施例3と全く同じ方
法で硬化膜を得た。得られた導電塗膜について、表面抵
抗、550nmでの透過率、鉛筆硬度、耐エチルアルコ
ール性および膜外観を評価した。表2に結果を示す。
Comparative Example 5 A cured film was obtained in the same manner as in Example 3 except that the heating temperature was changed to 50 ° C. The obtained conductive coating film was evaluated for surface resistance, transmittance at 550 nm, pencil hardness, ethyl alcohol resistance, and film appearance. The results are shown in Table 2.

【0021】[0021]

【表2】 *1 東京電子株式会社製高抵抗計スタックTR−3で
測定した。 *2 UV分光光度計で550nmの吸光度を測定し
た。 *3 JIS C3003に準じて行った。 *4 エチルアルコール中に室温で24時間浸漬し、外
観の変化を目視で確認した。 *5 導電塗膜の外観を肉眼で観察した。
[Table 2] * 1 Measured with a high resistance meter stack TR-3 manufactured by Tokyo Electronics Co., Ltd. * 2 Absorbance at 550 nm was measured with a UV spectrophotometer. * 3 Performed according to JIS C3003. * 4 Immersed in ethyl alcohol at room temperature for 24 hours, and visually confirmed changes in appearance. * 5 The appearance of the conductive coating film was visually observed.

【0022】表1および表2から本発明の導電塗料組成
物および製造法により得られる導電塗膜は、表面抵抗が
低く高透明でかつ鉛筆硬度が硬いため耐擦傷性に優れま
た耐溶剤性に優れていることが示される。
From Tables 1 and 2, the conductive coating composition and the conductive coating film obtained by the production method of the present invention have low surface resistance, high transparency, and high pencil hardness. Therefore, they are excellent in scratch resistance and solvent resistance. It is shown to be excellent.

【0023】[0023]

【発明の効果】本発明の導電塗料組成物は、金属粒子を
シランカップリング剤であらかじめ分散後に、シロキサ
ン系ポリマー、溶剤および光増感剤を混合して得られ、
これを紫外線硬化して、導電性、透明性、鉛筆硬度に優
れた塗膜とすることができる。また、本発明の導電塗料
組成物を、20mw/cm2以上の露光照度の紫外線を
照射したあと60℃以上の加熱により硬化する場合に
は、この塗膜を、エネルギー効率がよく短時間で得るこ
とができる。
The conductive coating composition of the present invention is obtained by previously dispersing metal particles with a silane coupling agent and then mixing a siloxane polymer, a solvent and a photosensitizer.
This can be ultraviolet-cured to form a coating film having excellent conductivity, transparency and pencil hardness. Further, when the conductive coating composition of the present invention is cured by being irradiated with ultraviolet rays having an exposure illuminance of 20 mw / cm 2 or more and then heated at 60 ° C. or more, this coating film is obtained with good energy efficiency in a short time. be able to.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)テトラアルコキシシランを加水分
解縮合して得られるシロキサン系ポリマー、(B)アン
チモンがドープされた粒径が0.2μm以下の酸化スズ
粉末をシランカップリング剤で分散して得られる混合
物、(C)光増感剤および(D)溶剤を含有してなる導
電塗料組成物。
1. A siloxane-based polymer obtained by hydrolyzing and condensing tetraalkoxysilane (A), and (B) tin oxide powder doped with antimony and having a particle size of 0.2 μm or less, dispersed with a silane coupling agent. A conductive coating composition comprising the mixture obtained by the above, (C) a photosensitizer and (D) a solvent.
【請求項2】 請求項1記載の導電塗料組成物を基材面
に塗装し、紫外線を照射し硬化する導電塗膜の製造法。
2. A method for producing a conductive coating film, which comprises coating the surface of a substrate with the conductive coating composition according to claim 1 and irradiating with ultraviolet rays to cure the coating film.
【請求項3】 請求項1記載の導電塗料組成物を基材面
上に塗装し、20mW/cm2〜200mW/cm2の露
光照度の紫外線を照射後、60℃〜250℃で加熱硬化
する導電塗膜の製造法。
3. A coating a conductive coating composition of claim 1 on a substrate surface, after irradiation with ultraviolet rays of exposure illuminance of 20mW / cm 2 ~200mW / cm 2 , is cured by heating at 60 ° C. to 250 DEG ° C. Method for producing conductive coating film.
JP12735492A 1991-06-07 1992-05-20 Conductive coating composition and production of conductive coating film Pending JPH05239409A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13634491 1991-06-07
JP3-136344 1991-06-07

Publications (1)

Publication Number Publication Date
JPH05239409A true JPH05239409A (en) 1993-09-17

Family

ID=15173006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12735492A Pending JPH05239409A (en) 1991-06-07 1992-05-20 Conductive coating composition and production of conductive coating film

Country Status (1)

Country Link
JP (1) JPH05239409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658525A2 (en) * 1993-11-10 1995-06-21 Central Glass Company, Limited Multilayered water-repellent film and method of forming same on glass substrate
WO2004007189A1 (en) * 2002-07-17 2004-01-22 Sekisui Chemical Co., Ltd. Antistatic molded article and antistatic paint
JPWO2012127608A1 (en) * 2011-03-22 2014-07-24 富士通株式会社 Coating film and method for producing the same
GB2510211A (en) * 2013-07-26 2014-07-30 Oxford Energy Technologies Ltd Composition containing oxide nanoparticles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658525A2 (en) * 1993-11-10 1995-06-21 Central Glass Company, Limited Multilayered water-repellent film and method of forming same on glass substrate
EP0658525A3 (en) * 1993-11-10 1995-09-13 Central Glass Co Ltd Multilayered water-repellent film and method of forming same on glass substrate.
US5674625A (en) * 1993-11-10 1997-10-07 Central Glass Company, Limited Multilayered water-repellent film and method of forming same on glass substrate
US5856016A (en) * 1993-11-10 1999-01-05 Central Glass Company Limited Multilayered water-repellent film and method of forming same on glass substrate
EP0866037A3 (en) * 1993-11-10 1999-02-10 Central Glass Company, Limited Multilayered water-repellent film and method of forming same on glass substrate
WO2004007189A1 (en) * 2002-07-17 2004-01-22 Sekisui Chemical Co., Ltd. Antistatic molded article and antistatic paint
JPWO2012127608A1 (en) * 2011-03-22 2014-07-24 富士通株式会社 Coating film and method for producing the same
GB2510211A (en) * 2013-07-26 2014-07-30 Oxford Energy Technologies Ltd Composition containing oxide nanoparticles

Similar Documents

Publication Publication Date Title
JP5427093B2 (en) Uniformly dispersible photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained using the same
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JPH06322317A (en) Coating composition for absorption of ultraviolet ray and its production
JP7141885B2 (en) Surface-treated zirconium nitride powder and its surface treatment method
JP2008303231A (en) Inorganic-organic composite coating composition
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
JP2004204175A (en) Coating containing colored pigment particle and substrate with visible light-shading film
JPH0925437A (en) Antimicrobial inorganic coating material
JP2010031158A (en) Black pigment dispersion, production method and application thereof
JPH05239409A (en) Conductive coating composition and production of conductive coating film
CN106590070A (en) Infrared barrier and heat insulation transparent inorganic coating, preparation method thereof and application
JPH06166834A (en) Conductive coating composition and production of conductive coating film
JPH06264009A (en) Conductive coating composition and production of conductive coating film
JPH05186719A (en) Inorganic conductive coating composition and production of conductive coating film therefrom
JPH06184470A (en) Production of electrically conductive coating composition and electrically conductive film
JPH05186718A (en) Conductive coating composition and production of conductive coating film
JP4820152B2 (en) Composite coating structure and painted exterior materials
JPH01256576A (en) Nonglare hard coating film
JP2637793B2 (en) Composition for coating
JP5031744B2 (en) Aqueous dispersion composition for UV shielding
JP2008114544A (en) Substrate with transparent coating
JP3499525B2 (en) Photocatalytic coating composition
JP4415953B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
JPH0277473A (en) Inorganic electrically conductive coating