JP4415953B2 - Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane - Google Patents

Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane Download PDF

Info

Publication number
JP4415953B2
JP4415953B2 JP2006039239A JP2006039239A JP4415953B2 JP 4415953 B2 JP4415953 B2 JP 4415953B2 JP 2006039239 A JP2006039239 A JP 2006039239A JP 2006039239 A JP2006039239 A JP 2006039239A JP 4415953 B2 JP4415953 B2 JP 4415953B2
Authority
JP
Japan
Prior art keywords
fine particles
film
membrane
titanium
coating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006039239A
Other languages
Japanese (ja)
Other versions
JP2006249424A (en
Inventor
広充 武田
健治 足立
裕子 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006039239A priority Critical patent/JP4415953B2/en
Publication of JP2006249424A publication Critical patent/JP2006249424A/en
Application granted granted Critical
Publication of JP4415953B2 publication Critical patent/JP4415953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明はガラス、プラスチックスその他の各種透明基材に応用可能な選択透過膜用塗布液に関し、より詳しくは紫外線、熱線、可視光線、赤外線をそれぞれ目的に合わせて選択的に透過、反射、吸収させるための選択透過膜用塗布液、選択透過膜および選択透過多層膜に関するものである。   The present invention relates to a selective permeable membrane coating solution applicable to various transparent substrates such as glass, plastics, and more specifically, selectively transmits, reflects, and absorbs ultraviolet rays, heat rays, visible rays, and infrared rays according to purposes. And a permselective membrane and a permselective multilayer film.

オゾンホールの発生や拡大により、地表面に到達する紫外線量が著しく増加し、日焼けや、皮膚癌などの人体への悪影響が問題となっている。また住宅、ビル、自動車、ショーウィンドゥなどの窓から紫外線が入り込み、カーテンや、絨毯、ソファーなどの家具や、絵画、書類などの退色、変色、劣化も問題となっている。   Due to the generation and expansion of the ozone hole, the amount of ultraviolet rays reaching the ground surface has increased remarkably, and adverse effects on the human body such as sunburn and skin cancer have become problems. In addition, ultraviolet rays enter through windows of houses, buildings, automobiles, show windows, etc., and fading, discoloration, and deterioration of furniture such as curtains, carpets, and sofas, paintings, and documents are also problematic.

従来使用されている紫外線遮蔽剤には、酸化チタン、酸化セリウム、酸化亜鉛などが挙げられるが、これらは長波長側(400nm付近)の紫外線吸収率が低くこれらを単独で使用した場含、400nm付近の光を効率よく、かつ十分に遮蔽するための紫外線遮蔽材料とはいえなかった。   Conventionally used ultraviolet screening agents include titanium oxide, cerium oxide, zinc oxide, etc., but these have a low ultraviolet absorption rate on the long wavelength side (near 400 nm), including when these are used alone, 400 nm. It was not an ultraviolet shielding material for efficiently and sufficiently shielding nearby light.

またベンゾフェノンなどの有機物を使用した紫外線遮蔽剤は、400nm付近の紫外線吸収率は高いが、紫外線を吸収することでそれ自身が分解してしまい、長期間安定した紫外線遮蔽能を維持することは困難であった。   In addition, UV screening agents that use organic substances such as benzophenone have a high UV absorption rate near 400 nm, but they themselves decompose by absorbing UV rays, making it difficult to maintain stable UV blocking performance for a long period of time. Met.

さらに省エネルギーの観点から、太陽光線の熱エネルギーの窓からの流入を遮蔽し、夏場の冷房負荷を軽減させるための熱線遮蔽ガラスや、また可視光領域の透過率を制御したプライバシー保護ガラスが近年注目されている。これらのガラスは使用部位や、各種の色調や、明るさ、熱線遮蔽率が好みによって要求されるものであるが、従来このような機能性膜は大部分がスパッタ法や、蒸着法などによる乾式法で作製されているために、上記のような要求に対する少量多品種生産には向いておらず、需要に対する細かい要求に対応しているとはいえず、かつ大掛かりな装置と複雑な工程が必要とされ、製品としてのコストも非常に高価なものとなっていた。   In addition, from the viewpoint of energy conservation, heat ray shielding glass that shields the inflow of solar energy from the window and reduces the cooling load in summer, and privacy protection glass that controls the transmittance in the visible light region have recently attracted attention. Has been. These glasses are used according to their preference, various colors, brightness, heat ray shielding rate, etc., but most of such functional films have conventionally been dry-type by sputtering or vapor deposition. Because it is manufactured by the method, it is not suitable for low-volume, multi-product production for the above-mentioned requirements, it cannot be said that it meets the detailed requirements for demand, and requires large equipment and complicated processes. Therefore, the cost as a product was very expensive.

しかもこれらのガラスには紫外線遮蔽機能(特に400nm付近の遮蔽機能)を付与したものは少なく、さらに紫外線、熱線(日射)、可視光線を同時に制御するガラスはほとんど無いという状態であった。
また有機染料を用いた着色フィルムも市販されているが、紫外線などによる有機染料の劣化が大きく、十分な効果を発揮するものとはいえなかった。
Moreover, few of these glasses have an ultraviolet shielding function (particularly, a shielding function around 400 nm), and there is almost no glass that simultaneously controls ultraviolet rays, heat rays (sunlight), and visible light.
A colored film using an organic dye is also commercially available, but the organic dye is greatly deteriorated by ultraviolet rays or the like, and cannot be said to exhibit a sufficient effect.

なお上記した機能性膜の作製に用いられている乾式法では、大掛かりな真空装置などが必要とされ、すでに住宅、ビル、自動車などに設置されているガラスへの現場での加工作業は実施不能であった。 In addition , the dry method used for the production of the functional film described above requires a large vacuum device, etc., and on-site processing work on glass already installed in houses, buildings, cars, etc. is carried out It was impossible.

本発明は上記従来の問題点を解決するためになされたものであり、その目的とするところは、400nm付近からそれ以下の波長の広範囲の紫外線を効率よく遮蔽し、従来の有機紫外線遮蔽剤および有機着色染料に比べて長期間安定してその効果を維持し、熱線遮蔽の機能も兼備し、可視光領域の透過率を制御し、しかも各種無機微粒子を混合することで目的に応じた色調が得られ、簡便で安価な塗布法を用いバインダーを選択することで、すでに設置されたガラスへの現場での施工も可能な選択透過膜用塗布液、選択透過膜および選択透過多層膜を提供することである。   The present invention has been made in order to solve the above-mentioned conventional problems. The object of the present invention is to efficiently shield a wide range of ultraviolet rays having a wavelength of about 400 nm or less from around 400 nm. Compared with organic coloring dyes, it maintains its effect stably for a long time, and also has a heat ray shielding function, controls the transmittance in the visible light region, and mixes various inorganic fine particles to achieve a color tone according to the purpose. Providing a selective permeable membrane coating solution, a selective permeable membrane, and a selectively permeable multilayer membrane that can be applied to the already installed glass on site by selecting a binder using a simple and inexpensive coating method. That is.

本発明者らは上記従来の問題点を解決するため、耐候性に優れた特定平均粒径の無機微粒子に着目し、これを分散することにより所期の目的を達成できることを見出し本発明を完成するに至った。   In order to solve the above-mentioned conventional problems, the present inventors have focused on inorganic fine particles having a specific average particle diameter excellent in weather resistance, and found that the intended purpose can be achieved by dispersing the fine particles, thereby completing the present invention. It came to do.

すなわち本発明の第1の実施態様は、平均粒径が100nm以下の酸化鉄微粒子、酸化水酸化鉄(III)微粒子のうち少なくとも1種を2.0から7.0重量%と、平均粒径が100nm以下の酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子のうち少なくとも1種を0.5から2.1重量%とを混合分散した選択透過膜用塗布液を基材に塗布後、硬化させて得られる選択透過膜であって、紫外線透過率τ uv が6.25%以下、日射透過率τ が66.28%以下、可視光透過率τ が26.99%以上であることを特徴とするものである。 That is, in the first embodiment of the present invention, at least one of iron oxide fine particles and iron (III) oxide fine particles having an average particle size of 100 nm or less is 2.0 to 7.0% by weight, and the average particle size is Selective transmission in which 0.5 to 2.1% by weight of at least one of ruthenium oxide fine particles, titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles, molybdenum silicide fine particles, and lanthanum boride fine particles having a particle size of 100 nm or less is mixed and dispersed. This is a permselective membrane obtained by applying a coating solution for a membrane to a substrate and then curing it. The ultraviolet transmittance τ uv is 6.25% or less, the solar transmittance τ e is 66.28% or less, and visible light transmission is achieved. The rate τ v is 26.99% or more.

また本発明の第2の実施態様は、上記した選択透過膜上に、さらにケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシド、もしくは各金属アルコキシドの部分加水分解重合物、もしくは合成樹脂のうち少なくとも1種を含有する皮膜が被着されてなる選択透過多層膜を特徴とするものである。 Further, in the second embodiment of the present invention, at least one of a metal alkoxide of silicon, zirconium, titanium, and aluminum, a partial hydrolysis polymer of each metal alkoxide, or a synthetic resin is further formed on the above-described permselective membrane. It is characterized by a permselective multilayer film to which a film containing seeds is deposited.

さらに本発明の第3の実施態様は、上記選択透過膜、選択透過多層膜を形成する、平均粒径が100nm以下の酸化鉄微粒子、酸化水酸化鉄(III)微粒子のうち少なくとも1種を2.0から7.0重量%と、平均粒径が100nm以下の酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子のうち少なくとも1種を0.5から2.1重量%を分散したことを特徴とし、またケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシド、もしくは各金属アルコキシドの部分加水分解重合物のうち少なくとも1種をさらに含有して、さらにバインダーとして合成樹脂をさらに含有する選択透過膜用塗布液を特徴とするものである。 Furthermore, in a third embodiment of the present invention, at least one of the iron oxide fine particles and iron oxide hydroxide (III) fine particles having an average particle size of 100 nm or less, which form the permselective membrane and the permselective multilayer membrane, is selected from two. At least one of ruthenium oxide fine particles, titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles, molybdenum silicide fine particles, and lanthanum boride fine particles having an average particle diameter of 100 nm or less and 0.0 to 7.0% by weight is 0.5%. And 2.1% by weight of a dispersion, and further containing at least one of silicon, zirconium, titanium, aluminum metal alkoxides, or partial hydrolysis polymers of metal alkoxides, and a binder. As a characteristic feature, the selective permeable membrane coating solution further contains a synthetic resin.

以上述べた通り本発明によれば、400nm付近からそれ以下の波長の広範囲の紫外線を効率よく遮蔽し、従来の有機紫外線遮蔽剤および有機着色染料に比べて長期間安定してその効果を維持し、熱線遮蔽の機能も兼備し、可視光領域の透過率を制御し、しかも各種の無機微粒子を混合することで目的に応じた色調が得られ、簡便で安価な塗布法を用いバインダーを選択することで、すでに設置されたガラスへの現場での施工も可能な選択透過膜用塗布液、選択透過膜および選択透過多層膜を提供することができる。   As described above, according to the present invention, it is possible to efficiently shield a wide range of ultraviolet rays from around 400 nm and below, and to maintain the effect stably over a long period of time compared to conventional organic ultraviolet shielding agents and organic coloring dyes. Also, it has a heat ray shielding function, controls the transmittance in the visible light region, and by mixing various inorganic fine particles, a color tone according to the purpose can be obtained, and a binder is selected using a simple and inexpensive coating method. Thus, it is possible to provide a selectively permeable membrane coating solution, a selectively permeable membrane, and a selectively permeable multilayer membrane that can be applied on site to already installed glass.

本発明者らは、長波長側(400nm付近)の紫外線を効率よく吸収する無機微粒子材料について鋭意研究した結果、まず酸化鉄、および酸化水酸化鉄(IIIに着目した。そして酸化鉄微粒子および酸化水酸化鉄(III)微粒子を平均粒径100nm以下として分散した塗布液を用いて基材に塗布すると、可視光領域の光を透過し、紫外線領域の光を吸収する特性を持つようになることが分かった。 As a result of intensive studies on inorganic fine particle materials that efficiently absorb ultraviolet rays on the long wavelength side (around 400 nm), the present inventors first focused on iron oxide and iron oxide hydroxide (III ) . When coated on a substrate using a coating solution in which iron oxide fine particles and iron (III) oxide fine particles are dispersed with an average particle size of 100 nm or less, it transmits light in the visible region and absorbs light in the ultraviolet region. It turns out that it will have.

次に、無機微粒子として酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子についても研究した結果、これらの無機微粒子はそれぞれ可視光領域に吸収を持つ粉末であり、平均粒径100nm以下の微粒子として分散した薄膜状態においては、可視光領域の光を透過し、近赤外領域の光を遮蔽する特性を持つようになることも分かった。   Next, as a result of research on inorganic fine particles such as ruthenium oxide fine particles, titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles, silicified molybdenum fine particles, and lanthanum boride fine particles, each of these inorganic fine particles is a powder having absorption in the visible light region. It was also found that in the thin film state dispersed as fine particles having an average particle size of 100 nm or less, it has a characteristic of transmitting light in the visible light region and shielding light in the near infrared region.

また色調については、上記無機微粒子を平均粒径100nm以下の微粒子として分散した薄膜状態にしたとき、それぞれ酸化鉄は赤色系を示し、酸化水酸化鉄(III)は黄色系、酸化ルテニウムは緑系、窒化チタン微粒子は青色系、窒化タンタル微粒子は茶色系、珪化チタン微粒子は灰色系、珪化モリブデン微粒子はブロンズ系、ホウ化ランタン微粒子は緑色系の色調を示す膜となるものである。   As for the color tone, when the inorganic fine particles are dispersed in the form of fine particles having an average particle size of 100 nm or less, the iron oxide exhibits a red color, the iron oxide hydroxide (III) is a yellow color, and the ruthenium oxide is a green color. The titanium nitride fine particles are blue, the tantalum nitride fine particles are brown, the titanium silicide fine particles are gray, the molybdenum silicide fine particles are bronze, and the lanthanum boride fine particles are green.

上記無機材料以外にもそれと同等の上記諸特性を示すものは、以下に挙げることができる。
酸化ルテニウム微粒子の代わりにPbRu6.5微粒子やBiRu7−x微粒子を使用することが可能であり、また窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブデン微粒子の代わりに、窒化ジルコニウム微粒子や窒化ハフニウム微粒子を使用することも可能であり、さらにホウ化ランタン微粒子の代わりに、ホウ化チタンなどを使用することも可能であり、さらにまた酸化水酸化鉄(III)微粒子の代わりに、窒素酸化鉄や窒化鉄を使用することも可能である。
In addition to the above inorganic materials, the same shows the equivalent of the properties can be listed below.
Pb 2 Ru 2 O 6.5 fine particles and Bi 2 Ru 2 O 7-x fine particles can be used instead of ruthenium oxide fine particles, and titanium nitride fine particles, tantalum nitride fine particles, titanium silicide fine particles, molybdenum silicide fine particles can be used. Zirconium nitride fine particles and hafnium nitride fine particles can be used instead of titanium boride, and titanium boride can be used instead of lanthanum boride fine particles. Furthermore, iron oxide hydroxide (III ) Instead of fine particles, it is also possible to use iron iron oxide or iron nitride.

本発明において塗布液中の上記無機微粒子の平均粒径は100nm以下とする必要がある。平均粒子径が100nmよりも大きくなると分散液中の微粒子同士の凝集による塗布液中の凝集微粒子の沈降原因となる。また平均粒径が100nmを超える微粒子もしくはそれらの凝集した粗大粒子は、それによる光散乱により膜のへイズ上昇および可視光透過率低下の原因となるので好ましくない。そして上記無機微粒子の平均粒径は上記した理由により100nm以下とする必要があるが、現状の技術で経済的に入手可能な最低の平均粒径は2nm程度であるために、これが下限となる。   In the present invention, the average particle size of the inorganic fine particles in the coating solution needs to be 100 nm or less. When the average particle diameter is larger than 100 nm, the aggregated fine particles in the coating liquid are settled due to the aggregation of the fine particles in the dispersion. Further, fine particles having an average particle diameter exceeding 100 nm or coarse particles formed by agglomeration thereof are not preferable because they cause increase in film haze and decrease in visible light transmittance due to light scattering. The average particle size of the inorganic fine particles needs to be 100 nm or less for the reason described above. However, since the lowest average particle size that is economically available with the current technology is about 2 nm, this is the lower limit.

塗布液中の微粒子の分散媒は特に限定されるものではなく、塗布条件や、塗布環境、塗布液中のアルコキシド、合成樹脂バインダーなどに合わせて選択可能であり、たとえば水や、アルコールなどの有機溶媒などの各種が使用可能で、また必要に応じて酸やアルカリを添加してpHを調整してもよい。さらにインク中微粒子の分散安定性を一層向上させるために、各種のカップリング剤、界面活性剤などを添加することも可能である。その時のそれぞれの添加量は、無機微粒子に対して30重量%以下、好ましくは5重量%以下である。また上記微粒子の分散方法は微粒子が均一に溶液中に分散する方法であれば任意に選択できるが、例としてはボールミル、サンドミル、超音波分散などの方法を挙げることができる。   The dispersion medium for the fine particles in the coating liquid is not particularly limited, and can be selected according to the coating conditions, coating environment, alkoxide in the coating liquid, synthetic resin binder, and the like. For example, organic substances such as water and alcohol Various solvents and the like can be used, and the pH may be adjusted by adding acid or alkali as necessary. Furthermore, in order to further improve the dispersion stability of the fine particles in the ink, various coupling agents, surfactants and the like can be added. The amount of each added at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles. The fine particle dispersion method can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples of the fine particle dispersion method include a ball mill, a sand mill, and an ultrasonic dispersion method.

本発明における選択透過膜は、基体上に上記微粒子が高密度に堆積し膜を形成するものであり、塗布液中に含まれるケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシドもしくはこれら金属のアルコキシドの部分加水分解重合物、または合成樹脂バインダーは塗布、硬化後、微粒子の基体への結着性を向上させ、さらに膜の硬度を向上させる効果がある。またこのようにして得られた膜上に、さらにケイ素、ジルコニウム、チタン、アルミニウムなどの各金属アルコキシ酸化物もしくはこれら金属アルコキシドの部分加水分解重合物または合成樹脂を含有する皮膜を第2層として被着することで微粒子を主成分とする膜の基体への結着力や、膜の硬度および耐候性を一層向上させることも可能となる。   The permselective membrane in the present invention is a membrane in which the fine particles are deposited at a high density on a substrate to form a membrane. Each of the metal alkoxides of silicon, zirconium, titanium, and aluminum contained in the coating solution or alkoxides of these metals is used. The partially hydrolyzed polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after coating and curing, and further improving the hardness of the film. Further, on the film thus obtained, a coating containing a metal alkoxy oxide such as silicon, zirconium, titanium or aluminum or a partially hydrolyzed polymer of these metal alkoxides or a synthetic resin is coated as a second layer. By attaching it, it becomes possible to further improve the binding force of the film containing fine particles as a main component to the substrate, the hardness and weather resistance of the film.

塗布液中にケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシドもしくはこれら金属アルコキシドの部分加水分解重合物または合成樹脂を含まない場合、この塗布液を基体に塗布後に得られる膜は、基体上に上記微粒子のみが堆積した膜構造となる。
このままでも光の選択透過性を示すが、この膜に上記と同様にさらにケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシドもしくはこれら金属アルコキシドの部分加水分解重合物もしくは合成樹脂を含む塗布液を塗布して皮膜を形成し多層膜とすることにより、塗布液成分が第1層の微粒子の堆積した間隙を埋めて成膜されるため、膜のへイズが低減し可視光領域の光透過率を向上させ、微粒子の基体への結着性を向上させる。
When the coating solution does not contain silicon, zirconium, titanium, and aluminum metal alkoxides, partially hydrolyzed polymer of these metal alkoxides, or synthetic resin, the film obtained after coating the coating solution on the substrate is formed on the substrate. A film structure in which only fine particles are deposited is obtained.
Even if it remains as it is, it shows selective permeability of light, but in the same manner as above, a coating solution containing each metal alkoxide of silicon, zirconium, titanium, and aluminum, a partially hydrolyzed polymer of these metal alkoxides, or a synthetic resin is applied. By forming a film and forming a multi-layer film, the coating liquid component fills the gap in which the fine particles of the first layer are deposited, thus reducing the film haze and improving the light transmittance in the visible light region. To improve the binding property of the fine particles to the substrate.

上記微粒子を主成分とする膜を、ケイ素、ジルコニウム、チタン、アルミニウムなどの各金属アルコキシドもしくはこれら金属アルコキシドの部分加水分解重合物からなる皮膜で被着する方法としては、スパッタ法や、蒸着法も可能であるが、成膜工程の容易さや、成膜コストが低いなどの利点から、塗布法が有効である。この皮膜用塗布液は水やアルコール中にケイ素、ジルコニウム、チタン、アルミニウムなどのアルコキシドおよびその部分加水分解重含物を1種もしくは2種以上含むものであり、その含有量は加熱後に得られる酸化物換算で全溶液中の40重量%以下が好ましい。また必要に応じて酸やアルカリを添加してpHを調整することも可能である。このような液を上記微粒子を主成分とする膜上にさらに第2層として塗布し加熱することでケイ素、ジルコニウム、チタン、アルミニウムなどの酸化物皮膜を容易に作製することが可能である。   As a method of depositing the film containing the fine particles as a main component with a film made of each metal alkoxide such as silicon, zirconium, titanium, and aluminum or a partially hydrolyzed polymer of these metal alkoxides, a sputtering method or a vapor deposition method may be used. Although possible, the coating method is effective because of the advantages such as the ease of the film forming process and the low film forming cost. This coating solution for coating contains one or more alkoxides such as silicon, zirconium, titanium and aluminum and partially hydrolyzed heavy compounds thereof in water or alcohol, and the content thereof is an oxidation obtained after heating. It is preferably 40% by weight or less in the total solution in terms of product. Moreover, it is also possible to adjust pH by adding an acid and an alkali as needed. An oxide film such as silicon, zirconium, titanium, or aluminum can be easily produced by applying such a liquid as a second layer on the film containing the fine particles as a main component and heating.

塗布液および皮膜用の塗布液の塗布方法としては、特に限定されるものではなくスピンコート法、スプレーコート法、ディップコート法、スクリーン印刷法、流し塗りなど、処理液を平坦にかつ薄く均一に塗布できる方法であればいかなる方法でも適宜採用することができる。   The application method of the coating solution and the coating solution for the film is not particularly limited, and the treatment solution is flat, thin and even, such as spin coating, spray coating, dip coating, screen printing, and flow coating. Any method can be used as long as it can be applied.

上記各金属アルコキシドおよびその部分加水分解重合物を含む塗布液の塗布後の基体加熱温度は、100℃未満では塗膜中に含まれるアルコキシドおよびその部分加水分解重合物の重合反応が未完結で残る場合が多く、また水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過率の低減の原因となるので、100℃以上が好ましく、さらに好ましくは塗布液中の溶媒の沸点温度以上で加熱を実施する。   When the substrate heating temperature after application of the coating solution containing each metal alkoxide and its partially hydrolyzed polymer is less than 100 ° C., the polymerization reaction of the alkoxide and its partially hydrolyzed polymer contained in the coating film remains incomplete. In many cases, water or an organic solvent remains in the film and causes a reduction in the visible light transmittance of the film after heating. Therefore, the temperature is preferably 100 ° C. or higher, more preferably the boiling point temperature of the solvent in the coating solution. Heating is performed as described above.

また合成樹脂バインダーを使用した場合は、それぞれの硬化方法にしたがって硬化させればよく、たとえば紫外線硬化樹脂であれば紫外線を適量照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよいため、既存の窓ガラスなどへの現場での塗布が可能であり、汎用性が広がる。   When a synthetic resin binder is used, it may be cured in accordance with each curing method. For example, an ultraviolet curable resin may be irradiated with an appropriate amount of ultraviolet light. Since it can be used, it can be applied to existing window glass in the field, expanding versatility.

本発明による塗布液は上記微粒子を分散したものであり、焼成時の熱による塗布液の成分の分解あるいは化学反応を利用して目的の日射遮蔽膜を形成するものではないため、特性の安定した均一な膜厚の薄膜の透過膜を形成することができる。   The coating liquid according to the present invention is a dispersion of the above-mentioned fine particles, and does not form the desired solar shading film by utilizing the decomposition or chemical reaction of the components of the coating liquid due to heat during firing, and thus has stable characteristics. A thin permeable membrane having a uniform thickness can be formed.

本発明における微粒子分散膜は、基体上に微粒子が高密度に堆積し膜を形成するものであり、塗布液中に含まれるケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシドもしくはこれらの部分加水分解重合物、もしくは合成樹脂バインダーは塗膜の硬化後、微粒子の基体への結着性を向上させ、さらに膜の強度を向上させる効果がある。   The fine particle-dispersed film in the present invention is a film in which fine particles are deposited at a high density on a substrate to form a film. Each metal alkoxide of silicon, zirconium, titanium, and aluminum contained in a coating solution or a partial hydrolysis polymerization thereof. The product or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after the coating film is cured, and further improving the strength of the film.

このように本発明によれば上記無機微粒子の材料を適当に混合することで、紫外線、可視光線、赤外線の日射透過率、色調を調節して目的に合わせたインクの作製が可能となる。またこれら微粒子材料は、無機材料であるので有機材料と比較して耐候性は非常に高く、たとえば太陽光線(紫外線)の当たる部位に使用しても色や、諸特性の劣化は殆ど生じない。   As described above, according to the present invention, by appropriately mixing the materials of the above-mentioned inorganic fine particles, it is possible to produce an ink that meets the purpose by adjusting the solar radiation transmittance and color tone of ultraviolet rays, visible rays, and infrared rays. In addition, since these fine particle materials are inorganic materials, they have extremely high weather resistance as compared with organic materials. For example, even if they are used in a portion exposed to sunlight (ultraviolet rays), the color and various characteristics hardly deteriorate.

また少量多品種の生産が可能で要求に沿った選択透過膜ができるという面では、たとえば1つの建物のガラス窓に塗布するときも西日の差し込む窓には、その暑さを低減させるために日射遮蔽効果の高い調合、1階の人目の多い窓にはプライバシー保護用に可視光透過率の低い調合、日中の強い日差しが差し込み、家具や、カーテンなどの色あせ、人の日焼けが気になる窓には紫外線遮蔽率の高い調合、部屋の色調に合わせた調合など、各種の要求を簡易な方法で満たすことが可能となる。さらに、これらの要望は実際に利用し始めて気づくことが殆どであるので、常温で硬化するバインダーを使用した塗布液で窓などの使用状況に応じて塗布液を調合し、現場で施工することも可能であり非常に有用である。
[実施例]
In addition , in terms of the ability to produce a small amount of various types and a permselective membrane that meets the requirements, for example, when applying to a glass window of a single building, to reduce the heat of the window that is inserted into the western sun. In addition, it has a high sun-shielding effect, 1st floor windows with low visible light transmittance for privacy protection, strong sunlight in the daytime, fading furniture and curtains, and people sunburning It becomes possible to satisfy various requirements such as blending with a high UV shielding rate and blending according to the color tone of the room by a simple method. In addition, since these requests are mostly noticed when they are actually used, it is possible to prepare a coating solution according to the usage situation such as a window with a coating solution using a binder that cures at room temperature, and to apply it on site. It is possible and very useful.
[Example]

以下本発明の実施例を比較例とともに説明する。
[参考例1]
Examples of the present invention will be described below together with comparative examples.
[Reference Example 1]

酸化鉄(Fe)微粒子(平均粒径30nm)20g、エチルアルコール69.5g、ジアセトンアルコール(DAA)10g、およびチタネート系カップリング剤(味の素(株)製プレンアクトKR−44:商品名)0.5gを混合し、直径4mmのジルコニアボールを用いて80時間ボールミル混合して酸化鉄(Fe)の分散液100gを作製した(A液)。 Iron oxide (Fe 2 O 3 ) fine particles (average particle size 30 nm) 20 g, ethyl alcohol 69.5 g, diacetone alcohol (DAA) 10 g, and titanate coupling agent (Ajinomoto Co., Ltd. Preneact KR-44: trade name ) 0.5 g was mixed, and ball mill mixing was performed for 80 hours using zirconia balls having a diameter of 4 mm to prepare 100 g of a dispersion of iron oxide (Fe 2 O 3 ) (solution A).

つぎに平均重合度で4〜5量体であるエチルシリケート40(多摩化学工業(株)製)を25g、エタノール32g、5%塩酸水溶液8g、水5gで調整したエチルシリケート溶液70gに、エタノール30gを均一に混合してエチルシリケート混合液100gを調製した(B液)。   Next, 25 g of ethyl silicate 40 (manufactured by Tama Chemical Industry Co., Ltd.) having an average degree of polymerization of 4 to 5 is 25 g, 32 g of ethanol, 8 g of 5% hydrochloric acid aqueous solution, 70 g of ethyl silicate solution adjusted with 5 g of water, 30 g of ethanol. Were mixed uniformly to prepare 100 g of an ethylsilicate mixed solution (solution B).

A液とB液を表1の参考例1の組成になるように、エタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて30分間加熱し目的とする膜を得た。 Solution A and Solution B were diluted with ethanol so that the composition of Reference Example 1 shown in Table 1 was mixed, and 15 g of this solution was rotated on a 200 × 200 × 3 mm soda-lime-based plate glass substrate rotating at 200 rpm. The solution was dripped from the flask and shaken for 5 minutes. This was put in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the intended film.

形成された膜について、日立製作所製の分光光度計を用いて200〜1800nmの透過率を測定し、JISR3106に従って日射透過率(τe)、可視光透過率(τv)を、ISO9050に従って紫外線透過率(τuv)を算出した。また400nmにおける透過率(400nmT%)を読み取った。これらの結果を表2に示す。また、表2には下記する実施例、参考例および比較例1、2で得られた膜の光学特性についても併せて示した。
[参考例2]
About the formed film | membrane, the transmittance | permeability of 200-1800 nm was measured using the spectrophotometer made from Hitachi, and the solar transmittance (τe) and the visible light transmittance (τv) according to JISR3106, the ultraviolet transmittance ( τuv) was calculated. Further, the transmittance at 400 nm (400 nm T%) was read. These results are shown in Table 2. Table 2 also shows the optical characteristics of the films obtained in Examples, Reference Examples and Comparative Examples 1 and 2 described below.
[Reference Example 2]

A液の酸化鉄(Fe)濃度を3.0%までエタノールで希釈し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。この上にさらに、B液のSiO濃度を3.0%までエタノールで希釈した溶液15gを、200rpmで回転する上記塗布基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて30分間加熱し目的とする膜を得た。この膜の光学特性を表2に示す。
[参考例3]
The iron oxide (Fe 2 O 3 ) concentration of solution A is diluted with ethanol to 3.0%, and 15 g of this solution is dropped from a beaker onto a 200 × 200 × 3 mm soda-lime-based plate glass substrate rotating at 200 rpm. The rotation was stopped after shaking for 5 minutes. Further, 15 g of a solution obtained by diluting the SiO 2 concentration of solution B with ethanol to 3.0% was dropped from the beaker onto the coated substrate rotating at 200 rpm, shaken for 5 minutes, and then stopped rotating. This was put in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the intended film. The optical properties of this film are shown in Table 2.
[Reference Example 3]

酸化水酸化鉄(III)(FeO(OH))微粒子(平均粒径30nm)20g、エチルアルコール69.5g、ジアセトンアルコール(DAA)10g、およびチタネート系カップリング剤(味の素(株)製プレンアクトKR−44:商品名)0.5gを混合し、直径4mmのジルコニアボールを用いて80時間ボールミル混合して酸化水酸化鉄(III)(FeO(OH))の分散液100gを調製した(C液)。また常温硬化樹脂(常温硬化型シリコーン樹脂)をエタノールで希釈して、固形分20%溶液とした(D液)。   Iron oxide (III) oxide (FeO (OH)) fine particles (average particle size 30 nm) 20 g, ethyl alcohol 69.5 g, diacetone alcohol (DAA) 10 g, and titanate coupling agent (Ajinomoto Co., Ltd., Plenact KR -44: 0.5 g of trade name) was mixed, and ball mill mixing was performed for 80 hours using zirconia balls having a diameter of 4 mm to prepare 100 g of an iron (III) oxide hydroxide (FeO (OH)) dispersion (solution C). ). Moreover, normal temperature hardening resin (normal temperature hardening type silicone resin) was diluted with ethanol, and it was set as 20% solid content solution (D liquid).

C液とD液を表1の参考例3の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得て、この膜の光学特性を測定した。この膜の光学特性を表2に示す。
[参考例4]
The liquid C and liquid D were diluted with ethanol so as to have the composition of Reference Example 3 in Table 1, and the target film was obtained by the same procedure as in Reference Example 1, and the optical characteristics of this film were measured. The optical properties of this film are shown in Table 2.
[Reference Example 4]

A液、C液、D液を表1の参考例4の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例5]
A liquid, C liquid, and D liquid were diluted with ethanol so that it might become a composition of the reference example 4 of Table 1, and the target film | membrane was obtained by the procedure similar to the reference example 1. FIG. The optical properties of this film are shown in Table 2.
[Example 5]

酸化ルテニウム微粒子(RuO)(平均粒径40nm)20g、エチルアルコール69.5g、N−メチル−2−ピロリドン10g、およびチタネート系カップリング剤(味の素(株)製プレンアクトKR−44:商品名)0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して酸化ルテニウム(RuO)の分散液100gを作製した(E液)。 Ruthenium oxide fine particles (RuO 2 ) (average particle size 40 nm) 20 g, ethyl alcohol 69.5 g, N-methyl-2-pyrrolidone 10 g, and titanate coupling agent (Ajinomoto Co., Ltd. Preneact KR-44: trade name) 0.5 g was mixed, and ball mill mixing was performed for 100 hours using zirconia balls having a diameter of 4 mm to prepare a dispersion 100 g of ruthenium oxide (RuO 2 ) (solution E).

A液、E液、B液を表1の実施例5の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例6]
A liquid, E liquid, and B liquid were diluted with ethanol so that it might become a composition of Example 5 of Table 1, and the target film | membrane was obtained by the procedure similar to the reference example 1. FIG. The optical properties of this film are shown in Table 2.
[Example 6]

C液、E液、B液を表1の実施例6の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例7]
C liquid, E liquid, and B liquid were diluted with ethanol so as to have the composition of Example 6 in Table 1, and a target film was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Example 7]

C液、E液、B液を表1の実施例7の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例8]
Liquid C, liquid E and liquid B were diluted with ethanol so as to have the composition of Example 7 in Table 1, and the intended membrane was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Example 8]

C液、E液、B液を表1の実施例8の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例9]
Liquid C, liquid E and liquid B were diluted with ethanol so as to have the composition of Example 8 in Table 1, and the target membrane was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Example 9]

窒化チタン微粒子(TiN)(平均粒径30nm)20g、ジアセトンアルコール69.5g、N−メチル−2−ピロリドン10g、およびシラン系カップリング剤0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して窒化チタン(TiN)の分散液100gを作製した(F液)。   Mixing 20 g of titanium nitride fine particles (TiN) (average particle size 30 nm), 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone, and 0.5 g of silane coupling agent, and using zirconia balls having a diameter of 4 mm The mixture was ball milled for 100 hours to prepare 100 g of a titanium nitride (TiN) dispersion (liquid F).

C液、F液、B液を表1の実施例9の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[参考例10]
Liquid C, liquid F and liquid B were diluted with ethanol so as to have the composition of Example 9 in Table 1, and the target membrane was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Reference Example 10]

F液、B液を表1の参考例10の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例11]
Liquid F and liquid B were diluted with ethanol so as to have the composition of Reference Example 10 in Table 1, and the intended membrane was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Example 11]

ホウ化ランタン微粒子(LaB)(平均粒径40nm)20g、ジアセトンアルコール69.5g、N−メチル−2−ピロリドン10g、およびシラン系カップリング剤0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合してホウ化ランタン(LaB)の分散液100gを作製した(G液)。 Lanthanum boride fine particles (LaB 6 ) (average particle size 40 nm) 20 g, diacetone alcohol 69.5 g, N-methyl-2-pyrrolidone 10 g, and silane coupling agent 0.5 g were mixed, and a zirconia ball having a diameter of 4 mm. Was used for 100 hours to prepare a dispersion of lanthanum boride (LaB 6 ) 100 g (solution G).

A液、G液、B液を表1の実施例11の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[参考例12]
A liquid, G liquid, and B liquid were diluted with ethanol so that it might become a composition of Example 11 of Table 1, and the target film | membrane was obtained by the procedure similar to the reference example 1. FIG. The optical properties of this film are shown in Table 2.
[Reference Example 12]

E液、B液を表1の参考例12の組成になるようにエタノールで希釈して、参考例1と同様な手順により目的とする膜を得た。この膜の光学特性を表2に示す。
[実施例13]
Liquid E and liquid B were diluted with ethanol so as to have the composition of Reference Example 12 in Table 1, and the intended membrane was obtained by the same procedure as in Reference Example 1 . The optical properties of this film are shown in Table 2.
[Example 13]

窒化タンタル(TaN)微粒子(平均粒径40nm)20g、ジアセトンアルコール69.5g、N−メチル−2−ピロリドン10gおよびシラン系カップリング剤0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して窒化タンタル(TaN)の分散液100gを作製した(H液)。   20 g of tantalum nitride (TaN) fine particles (average particle size 40 nm), 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone and 0.5 g of a silane coupling agent are mixed, and zirconia balls having a diameter of 4 mm are used. Ball mill mixing was performed for 100 hours to prepare 100 g of a tantalum nitride (TaN) dispersion (liquid H).

C液、H液、B液を表1の実施例13の組成になるようにエタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて15分間加熱し目的とする膜を得た。この膜の光学特性を表に示す。
[実施例14]
Liquid C, liquid H and liquid B were diluted with ethanol so as to have the composition of Example 13 in Table 1 and mixed well, and 15 g of this solution was rotated on a 200 × 200 × 3 mm soda-lime-based plate glass substrate rotating at 200 rpm. The solution was dropped from the beaker and shaken for 5 minutes as it was, and then the rotation was stopped. This was put in an electric furnace at 180 ° C. and heated for 15 minutes to obtain the intended film. The optical properties of this film are shown in Table 2 .
[Example 14]

珪化チタン(TiSi)微粒子(平均粒径50nm)20g、ジアセトンアルコール69.5g、N−メチル−2−ピロリドン10gおよびシラン系カップリング剤0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して珪化チタン(TiSi)の分散液100gを作製した(I液)。 Mixing titanium silicide (TiSi 2 ) fine particles (average particle size 50 nm) 20 g, diacetone alcohol 69.5 g, N-methyl-2-pyrrolidone 10 g and silane coupling agent 0.5 g, and using zirconia balls having a diameter of 4 mm. The mixture was ball milled for 100 hours to prepare 100 g of a titanium silicide (TiSi 2 ) dispersion (liquid I).

A液、I液、B液を表1の実施例14の組成になるようにエタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて15分間加熱し目的とする膜を得た。この膜の光学特性を表に示す。
[実施例15]
A solution, I solution, and B solution were diluted with ethanol so as to have the composition of Example 14 in Table 1 and mixed well, and 15 g of this solution was rotated at 200 rpm on a 200 × 200 × 3 mm soda-lime-based plate glass substrate. The solution was dropped from the beaker and shaken for 5 minutes as it was, and then the rotation was stopped. This was put in an electric furnace at 180 ° C. and heated for 15 minutes to obtain the intended film. The optical properties of this film are shown in Table 2 .
[Example 15]

珪化モリブデン(MoSi)微粒子(平均粒径45nm)20g、ジアセトンアルコール69.5g、N−メチル−2−ピロリドン10gおよびシラン系カップリング剤0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して珪化モリブデン(MoSi)の分散液100gを作製した(J液)。 Mixing 20 g of molybdenum silicide (MoSi 2 ) fine particles (average particle size 45 nm), 69.5 g of diacetone alcohol, 10 g of N-methyl-2-pyrrolidone and 0.5 g of silane coupling agent, and using zirconia balls having a diameter of 4 mm The mixture was ball milled for 100 hours to prepare 100 g of a dispersion of molybdenum silicide (MoSi 2 ) (solution J).

C液、J液、B液を表1の実施例15の組成になるようにエタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて15分間加熱し目的とする膜を得た。この膜の光学特性を表に示す。
〔比較例1〕
Liquid C, Liquid J and Liquid B were diluted with ethanol so as to have the composition of Example 15 in Table 1 and mixed well, and 15 g of this solution was rotated at 200 rpm on a 200 × 200 × 3 mm soda-lime-based plate glass substrate. The solution was dropped from the beaker and shaken for 5 minutes as it was, and then the rotation was stopped. This was put in an electric furnace at 180 ° C. and heated for 15 minutes to obtain the intended film. The optical properties of this film are shown in Table 2 .
[Comparative Example 1]

酸化チタン(TiO)微粒子(平均粒径50nm)30g、エチルアルコール59.5g、ジアセトンアルコール(DAA)10g、およびチタネート系カップリング剤(味の素(株)製プレンアクトKR−44:商品名)0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混合して酸化チタンの分散液100gを作製した(液)。 Titanium oxide (TiO 2 ) fine particles (average particle size 50 nm) 30 g, ethyl alcohol 59.5 g, diacetone alcohol (DAA) 10 g, and titanate coupling agent (Ajinomoto Co., Ltd. Preneact KR-44: trade name) 0 0.5 g was mixed and ball mill mixing was performed for 100 hours using zirconia balls having a diameter of 4 mm to prepare 100 g of a titanium oxide dispersion (solution K ).

K液、B液を表1の比較例1の組成になるようにエタノールで希釈して十分混合し、この溶液15gを100rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま2分間振り切った後回転を止めた。これを180℃の電気炉に入れて15分間加熱し目的とする膜を得た。この膜の光学特性を表2に示す。
〔比較例2〕
The liquid K and the liquid B were diluted with ethanol so as to have the composition of Comparative Example 1 shown in Table 1, and mixed sufficiently. The solution was added dropwise and shaken for 2 minutes. This was put in an electric furnace at 180 ° C. and heated for 15 minutes to obtain the intended film. The optical properties of this film are shown in Table 2.
[Comparative Example 2]

酸化亜鉛(ΖnO)微粒子(平均粒径45nm)30g、エチルアルコール59.5g、ジアセトンアルコール(DAA)10g、およびチタネート系カップリング剤(味の素(株)製プレンアクトKR−44:商品名)0.5gを混合し、直径4mmのジルコニアボールを用いて100時間ボールミル混含して酸化亜鉛の分散液100gを作製した(液)。 30 g of zinc oxide (OnO) fine particles (average particle size 45 nm), 59.5 g of ethyl alcohol, 10 g of diacetone alcohol (DAA), and titanate coupling agent (Plainact KR-44 manufactured by Ajinomoto Co., Inc.) 5 g was mixed and mixed with a ball mill for 100 hours using zirconia balls having a diameter of 4 mm to prepare 100 g of a zinc oxide dispersion (Liquid L ).

液、B液を表1の比較例2の組成になるようにエタノールで希釈して、比較例1と同様な手順で目的とする膜を得た。この膜の光学特性を表2に示す。 The liquids L and B were diluted with ethanol so as to have the composition of Comparative Example 2 in Table 1, and the intended membrane was obtained in the same procedure as Comparative Example 1. The optical properties of this film are shown in Table 2.

Figure 0004415953
Figure 0004415953

Figure 0004415953
Figure 0004415953

表2より本発明に係る実施例では、日射透過率(τe)、可視光透過率(τv)、紫外線透過率(τuv)および400nmにおける透過率(400nmT%)の光学特性の全般に亘って比較例に比べ優れた数値を示すとともに、所望の色調が得られることが分かる。   From Table 2, in the examples according to the present invention, comparison is made over the optical characteristics of solar transmittance (τe), visible light transmittance (τv), ultraviolet transmittance (τuv) and transmittance at 400 nm (400 nm T%). It can be seen that the numerical values are superior to those of the examples and a desired color tone is obtained.

Claims (5)

平均粒径が100nm以下の酸化鉄微粒子、酸化水酸化鉄(III)微粒子のうち少なくとも1種を2.0から7.0重量%と、平均粒径が100nm以下の酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子のうち少なくとも1種を0.5から2.1重量%とを混合分散した選択透過膜用塗布液を基材に塗布後、硬化させて得られる選択透過膜であって、紫外線透過率τAt least one of iron oxide fine particles and iron (III) oxide fine particles having an average particle size of 100 nm or less is 2.0 to 7.0% by weight, ruthenium oxide fine particles and titanium nitride particles having an average particle size of 100 nm or less. After applying a selective permeable membrane coating solution in which 0.5 to 2.1 wt% of at least one of tantalum nitride fine particles, titanium silicide fine particles, silicified molybdenum fine particles, and lanthanum boride fine particles is mixed and dispersed to a substrate, A selectively permeable membrane obtained by curing, having an ultraviolet transmittance τ uvuv が6.25%以下、日射透過率τIs 6.25% or less, solar transmittance τ e が66.28%以下、可視光透過率τ66.28% or less, visible light transmittance τ v が26.99%以上であることを特徴とする選択透過膜。Is a permselective membrane, characterized in that it is 26.99% or more. 請求項1記載の選択透過膜上に、さらにケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシド、もしくは各金属アルコキシドの部分加水分解重合物、もしくは合成樹脂のうち少なくとも1種を含有する皮膜が被着されてなることを特徴とする選択透過多層膜。 A film containing at least one of a metal alkoxide of silicon, zirconium, titanium, and aluminum, a partially hydrolyzed polymer of each metal alkoxide, or a synthetic resin is deposited on the permselective membrane according to claim 1. A selectively permeable multilayer film characterized by being made. 請求項1または2に記載の選択透過膜を形成する選択透過膜用塗布液であって、A selectively permeable membrane coating solution for forming the selectively permeable membrane according to claim 1 or 2,
平均粒径が100nm以下の酸化鉄微粒子、酸化水酸化鉄(III)微粒子のうち少なくとも1種を2.0から7.0重量%と、平均粒径が100nm以下の酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子のうち少なくとも1種を0.5から2.1重量%を、溶媒中に混合分散したことを特徴とする選択透過膜用塗布液。    At least one of iron oxide fine particles and iron (III) oxide fine particles having an average particle size of 100 nm or less is 2.0 to 7.0% by weight, ruthenium oxide fine particles and titanium nitride particles having an average particle size of 100 nm or less. A coating for a selectively permeable membrane, characterized in that 0.5 to 2.1% by weight of at least one of tantalum nitride fine particles, titanium silicide fine particles, molybdenum silicide fine particles, and lanthanum boride fine particles is mixed and dispersed in a solvent. liquid.
ケイ素、ジルコニウム、チタン、アルミニウムの各金属アルコキシド、もしくは各金属アルコキシドの部分加水分解重合物のうち、少なくとも1種をさらに含有することを特徴とする請求項3に記載の選択透過膜用塗布液。4. The permselective membrane coating solution according to claim 3, further comprising at least one of silicon, zirconium, titanium, and aluminum metal alkoxides, or a partially hydrolyzed polymer of each metal alkoxide. バインダーとして合成樹脂をさらに含有することを特徴とする請求項3または4に記載の選択透過膜用塗布液。The selective permeable membrane coating solution according to claim 3 or 4, further comprising a synthetic resin as a binder.
JP2006039239A 1997-09-30 2006-02-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane Expired - Lifetime JP4415953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039239A JP4415953B2 (en) 1997-09-30 2006-02-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26475697 1997-09-30
JP29778197 1997-10-15
JP2006039239A JP4415953B2 (en) 1997-09-30 2006-02-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26136798A Division JP4058822B2 (en) 1997-09-30 1998-09-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Publications (2)

Publication Number Publication Date
JP2006249424A JP2006249424A (en) 2006-09-21
JP4415953B2 true JP4415953B2 (en) 2010-02-17

Family

ID=37090231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039239A Expired - Lifetime JP4415953B2 (en) 1997-09-30 2006-02-16 Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane

Country Status (1)

Country Link
JP (1) JP4415953B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024145A (en) * 2007-07-24 2009-02-05 Asahi Glass Co Ltd Fluororesin composition for coating and product using the same
US7947125B1 (en) 2009-10-30 2011-05-24 Canon Kabushiki Kaisha Fine particle dispersion liquid containing tantalum oxide fine particles, tantalum oxide fine particle-resin composite, and method of producing fine particle dispersion liquid
JP6101476B2 (en) * 2012-12-07 2017-03-22 国立大学法人 香川大学 Automatic analyzer, blood type determination reagent, and aggregate hemolysis reagent

Also Published As

Publication number Publication date
JP2006249424A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4058822B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
EP0905100B1 (en) Coating solution for forming a selectively transmitting film
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
AU736327B2 (en) Film for cutting off heat rays and a coating liquid for forming the same
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
JP2000096034A (en) Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
EP0779343B1 (en) Coating solution for a heat-ray shielding film and a process for forming a heat-ray shielding film by employing the same
JP4415953B2 (en) Selective permeable membrane coating solution, selective permeable membrane and selective permeable multilayer membrane
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
CN108531076A (en) Sun screening film formation coating fluid and relevant adhesive, sun screening film and base material
JP4058850B2 (en) Coating solution for solar filter film formation
JP2008231367A (en) Composition for forming ultraviolet ray- and heat ray-shielding transparent layer, and transparent layer and use of the same
JP2002194290A (en) Method for preparing coating fluid for forming deep colored film
JP4104353B2 (en) Paint composition
JP4058878B2 (en) Coating liquid for forming room temperature curable solar radiation shielding film, solar radiation shielding film using the same, and substrate having solar radiation shielding function
JP3760671B2 (en) Heat ray / ultraviolet shielding film forming coating liquid and heat ray / ultraviolet shielding film using the same
CN115703933B (en) Nanoparticle, preparation method thereof and application of nanoparticle in heat insulation coating
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JPH10101340A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
JPH1036774A (en) Coating liquid for sun light-shading film and sun light-shading film using the same
JPH09310037A (en) Coating liquid for solar radiation-blocking film and solar radiation-blocking film using the same
JPH11258418A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JPH09302284A (en) Coating fluid for sunlight-screening film and sunlight-screening film made by using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

EXPY Cancellation because of completion of term