JPH0523771B2 - - Google Patents
Info
- Publication number
- JPH0523771B2 JPH0523771B2 JP1032711A JP3271189A JPH0523771B2 JP H0523771 B2 JPH0523771 B2 JP H0523771B2 JP 1032711 A JP1032711 A JP 1032711A JP 3271189 A JP3271189 A JP 3271189A JP H0523771 B2 JPH0523771 B2 JP H0523771B2
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- sac
- pulse wave
- pressure
- blood pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000002302 brachial artery Anatomy 0.000 claims description 27
- 230000036772 blood pressure Effects 0.000 claims description 23
- 210000003041 ligament Anatomy 0.000 claims description 17
- 239000004744 fabric Substances 0.000 claims description 9
- 238000001514 detection method Methods 0.000 description 28
- 230000017531 blood circulation Effects 0.000 description 12
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 11
- 238000009530 blood pressure measurement Methods 0.000 description 10
- 230000035487 diastolic blood pressure Effects 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000035488 systolic blood pressure Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000004217 heart function Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000009795 derivation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000029865 regulation of blood pressure Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、血圧測定用縛帯に属するものではあ
るが、血圧のみならずその縛帯下における上腕動
脈の一定距離間の脈波移動時間の検出に基づきそ
の血流速度を同時に測定することができ、その結
果血圧値と血流速度との双方の検査時の変動の関
係から血圧変動の原因の究明を非観血に行なうこ
とが可能となり血圧変動に伴う医療の診断および
治療上有用であり、かつ縛帯とポンプおよび圧力
計との接続誤操作に伴う計測誤差を防止し得る血
圧および脈波移動時間測定用縛帯に関するもので
ある。[Detailed Description of the Invention] [Field of Industrial Application] Although the present invention relates to a blood pressure measurement strap, the present invention is applicable not only to blood pressure but also to the pulse wave travel time over a certain distance of the brachial artery under the strap. The blood flow velocity can be measured simultaneously based on the detection of The present invention relates to a strap for measuring blood pressure and pulse wave transit time, which is useful for medical diagnosis and treatment associated with blood pressure fluctuations, and which can prevent measurement errors due to incorrect connection of the strap with a pump or a pressure gauge.
血圧変動の原因としては、主として心臓機能の
変動と末梢機能の変動とが考えられるが、血圧値
の変動のみからはその変動の原因が電気いずれの
変動或いは双方の変動にあるのか非観血に判断す
ることができない。しかしその血圧値の変動に同
じく心臓機能と末梢機能の変動に密接な関係を有
する血流速度の変動とを加味して比較検討すれば
その血圧変動の原因を非観血に究明することがで
きる。
The causes of blood pressure fluctuations are mainly thought to be changes in cardiac function and peripheral function, but it is not possible to determine non-invasively from the fluctuations in blood pressure values alone whether the fluctuations are due to fluctuations in electricity or both. I can't judge. However, if we compare the fluctuations in blood pressure values with fluctuations in blood flow velocity, which are also closely related to changes in cardiac function and peripheral function, we can investigate the cause of the fluctuations in blood pressure non-invasively. .
しかるに従来の血圧測定用縛帯は、第4図示の
構造であるため、これによつては単に血圧値の変
動のみを測定し得るにとどまり、血流速度はもち
ろんその測定を換算により行なうことができる脈
波移動時間の検出も行なうことができず、血圧変
動の原因の究明には他の検査方法を待たねばなら
なかつた。すなわち従来の血圧測定用縛帯A′は、
布のう1内に連結管2を介して接続した大ゴムの
う3と中ゴムのう4とを大ゴムのう3を上腕動脈
の中枢側に位置せしめて固定配置し、大ゴムのう
3の一側端部より外部へ導出した導管5を排気調
整バルブ6を有するポンプ7に接続する一方、中
ゴムのう4の一側端部より外部へ導出した導管8
を圧力計9等に接続した構造である。そして縛帯
A′を上腕に巻き付けポンプ7を介して縛帯A′を
所定に加圧し排気調整弁6を介して徐々に減圧し
ていき聴心器又は動脈音検出手段を用いて動脈音
を検出しそのときの縛帯A′圧の圧力値を圧力計
9等を介して読み取ることによつて、専ら収縮期
圧(最大血圧)と拡張期圧(最小血圧)の測定を
行つていた。したがつてこの構造においては、縛
帯A′の減圧に伴い縛帯A′に進入した脈波が大ゴ
ムのう3と中ゴムのう4下を通過する際それらに
与えた脈波による圧力信号が中ゴムのう4から導
管8へ排出されてそれを脈波信号として検出する
とともに、脈波が中ゴムのう4下から末梢側へ放
出されるに伴い発生する動脈音の検出に基づき血
圧値を測定することができるのみであり、縛帯
A′下の一定距離を通過する脈波の移動時間を検
出することはできない。そしてこの場合、大ゴム
のう3から別に導管を外部に導出させて縛帯
A′下への進入時の脈波による圧力信号を取り出
して脈波移動時間を検出しようとしても、大ゴム
のう3が大容積であるためその大抵抗を受けて脈
波による圧力信号の減衰率が高く縛帯A′下への
進入時の脈波による圧力信号の取り出しを適確に
行なうことができず、結局脈波移動時間の検出は
困難である。 However, since the conventional blood pressure measurement cuff has the structure shown in Figure 4, it is only possible to measure blood pressure fluctuations, and it is not possible to measure the blood flow velocity as well as the blood flow rate by conversion. However, it was not possible to detect pulse wave transit time, which is possible, and it was necessary to wait for other testing methods to investigate the cause of blood pressure fluctuations. In other words, the conventional cuff A' for blood pressure measurement is
A large rubber pouch 3 and a medium rubber pouch 4 are connected to each other through a connecting tube 2 in a cloth pouch 1, and the large rubber pouch 3 is positioned and fixed on the central side of the brachial artery. A conduit 5 led out from one end of the inner rubber case 3 is connected to a pump 7 having an exhaust adjustment valve 6, while a conduit 8 led out from one end of the inner rubber case 4.
It has a structure in which it is connected to a pressure gauge 9, etc. and a shibari
A' is wrapped around the upper arm, the cuff A' is pressurized to a predetermined level via the pump 7, and the pressure is gradually reduced via the exhaust control valve 6, and the arterial sound is detected using an audioscope or arterial sound detection means. The systolic pressure (maximum blood pressure) and diastolic pressure (minimum blood pressure) were exclusively measured by reading the pressure value of the cuff A' pressure at that time using a pressure gauge 9 or the like. Therefore, in this structure, the pressure due to the pulse wave applied to the large rubber sac 3 and the middle rubber sac 4 when the pulse wave enters the band A' due to the pressure reduction of the band A' passes under the large rubber sac 3 and the middle rubber sac 4. The signal is discharged from the middle rubber sac 4 to the conduit 8 and detected as a pulse wave signal, and based on the detection of the arterial sound generated as the pulse wave is released from below the middle rubber sac 4 to the distal side. Blood pressure can only be measured and the cuff
It is not possible to detect the travel time of the pulse wave passing a certain distance below A'. In this case, a separate conduit is led out from the large rubber pouch 3 and the strap is tied.
Even if we try to detect the pulse wave travel time by extracting the pressure signal caused by the pulse wave when it enters below A', the pressure signal due to the pulse wave attenuates due to the large resistance due to the large volume of the large rubber 3. Since the rate is high, it is not possible to accurately extract the pressure signal due to the pulse wave at the time of entry under the cuff A', and as a result, it is difficult to detect the pulse wave travel time.
また、前記従来の血圧測定用縛帯A′において
は、前記ポンプのとおりポンプ接続用導管5と圧
力計等接続用導管8は夫々縛帯A′において大ゴ
ムのう3と中ゴムのう4とに分けて接続されてい
るが縛帯A′から外部への導出端部は近接配置し
ているため、導管5と導管8のポンプおよび圧力
計等への誤装着をすることがしばしばあり、その
結果動脈音の検出が不充分である等により血圧測
定に計測誤差を伴うおそれが多分にあつた。 In addition, in the conventional cuff A' for measuring blood pressure, as in the pump, the pump connection conduit 5 and the pressure gauge etc. connection conduit 8 are connected to the large rubber pouch 3 and the medium rubber pouch 4 in the cuff A', respectively. Although they are connected separately, the leading ends of the strap A' to the outside are placed close to each other, so it is often the case that the conduit 5 and conduit 8 are incorrectly attached to the pump, pressure gauge, etc. As a result, there was a high possibility that blood pressure measurement would be accompanied by measurement errors due to insufficient detection of arterial sounds.
本発明は、上記従来の血圧測定用縛帯が血圧値
の測定しか行なうことができないため血圧変動の
究明には他の検査方法を必要としていたという実
状に鑑み、血圧測定用縛帯を用いて血流速度を換
算により求め得る脈波移動時間の検出を血圧測定
と同時に可能となして血圧変動の原因の究明を他
の検査方法を必要とすることなく非観血に行ない
得るようになすことを第1の目的となし、かつ、
上記従来の血圧測定用縛帯において頻発していた
ゴムのうとポンプおよび圧力計等に対する接続用
導管の誤装着による血圧測定の計測誤差のおそれ
を確実に防止することを第2の目的とする。
The present invention has been developed in view of the fact that the above-mentioned conventional blood pressure cuffs can only measure blood pressure values, and therefore other testing methods are required to investigate blood pressure fluctuations. To enable detection of pulse wave travel time, which can be calculated by converting blood flow velocity, at the same time as blood pressure measurement, and to enable investigation of the cause of blood pressure fluctuations in a non-invasive manner without requiring other testing methods. as the primary purpose, and
A second purpose is to reliably prevent measurement errors in blood pressure measurement due to incorrect attachment of connecting conduits to rubber bladders, pumps, pressure gauges, etc., which frequently occur in the conventional blood pressure measurement straps.
本発明は、上記第1の目的を達成するために、
縛帯内に上腕動脈の中枢側から末梢側に沿つて固
定配置された従来の血圧測定用の大ゴムのうと中
ゴムのうとは別に更に大ゴムのうより上腕動脈の
中枢側に位置しそれと分離した小ゴムのうを設
け、この小ゴムのうより導出させた導出管を介し
て脈波の縛帯下進入時の圧力信号を取り出すこと
によつてこの縛帯下における上腕動脈の一定距離
に対する脈波移動時間の検出を可能としたことを
第1の特徴となし、第2の目的を達成するため
に、従来において大ゴムのうと中ゴムのうより
別々に外部へ導出させていた接続用導管を単一の
導管となし且つこの単一導管と前記小ゴムのうよ
りの導出管を所定位置にて接続せしめたことを第
2の特徴とする。すなわち本発明は縛帯の全体構
造として、「布のう内に、上腕動脈の中枢側から
末梢側に沿つて、小ゴムのうと大ゴムのうと中ゴ
ムのうとを夫々その順序に固定配置し、小ゴムの
うは大ゴムのうと分離する一方中ゴムのうは大ゴ
ムのうと連結管を介して接続せしめ、小ゴムのう
の一側端部からは脈波の縛帯下進入時の信号導出
管を、中ゴムのうの一側端部からは単一導管を
夫々上腕動脈の末梢側方向下流側に沿つて導出
し、前記信号導出管の先端部を単一導管の中ゴム
のうからの導出端部より適宜距離先端部側下流の
位置に接続するとともに、その単一導管の先端部
で信号導出管との接続位置より更に下流側先端部
に排気調整バルブを有するポンプと動脈音検出手
段と脈波信号検出手段とを夫々分岐接続しせめ、
かつ、血圧と脈波移動時間検出の目的に適合する
べく大ゴムのうと中ゴムのうと小ゴムのうとの容
積比を所定に設定した」ことを特徴とするもので
ある。
In order to achieve the above first object, the present invention has the following features:
In addition to the conventional large rubber sac and medium rubber sac for blood pressure measurement, which are fixedly placed within the cuff from the central side of the brachial artery to the distal side, there is also a rubber sac located on the central side of the brachial artery from the large rubber sac. By providing a separate small rubber sac and extracting the pressure signal when the pulse wave enters the ligament through a guide tube led out from the small rubber sac, a certain distance of the brachial artery under the ligament is detected. The first feature is that it makes it possible to detect the pulse wave travel time for the pulse wave, and in order to achieve the second purpose, the connection that was conventionally led to the outside separately from the large rubber sac and the middle rubber sac. A second feature is that the service conduit is a single conduit, and the single conduit and the outlet tube of the small rubber lining are connected at a predetermined position. In other words, the overall structure of the strap of the present invention is that ``a small rubber bladder, a large rubber bladder, and a medium rubber bladder are fixedly arranged in that order within a cloth bladder from the central side to the distal side of the brachial artery. , the small rubber sac is separated from the large rubber sac, while the middle rubber sac is connected to the large rubber sac via a connecting tube, and one end of the small rubber sac is connected to the sac when the pulse wave enters the ligament. A single conduit is led out from one end of the inner rubber tube along the downstream side in the distal direction of the brachial artery, and the distal end of the signal guide tube is connected to the inner rubber tube of the single conduit. A pump and an arterial sound pump are connected at an appropriate distance downstream from the lead-out end of the single conduit, and have an exhaust adjustment valve further downstream from the point of connection with the signal lead-out pipe at the distal end of the single conduit. branch-connecting the detection means and the pulse wave signal detection means, respectively;
In addition, the volume ratio of the large rubber bladder, the medium rubber bladder, and the small rubber bladder is set to a predetermined value in order to meet the purpose of detecting blood pressure and pulse wave travel time.
上記構成に係る本発明の作用について説明す
る。縛帯Aを上腕Bに巻き付けポンプを操作して
各ゴムのう内に圧縮空気を送入し縛帯内の圧力を
上腕動脈の血流が止まる程度より約30〜40mmHg
高い圧力に加圧した後、排気調整バルブを用いて
所定の減圧速度で縛帯内の圧力を徐々に減少させ
ていく。
The operation of the present invention with the above configuration will be explained. Wrap the cuff A around the upper arm B and operate the pump to send compressed air into each rubber sac, increasing the pressure inside the cuff to about 30 to 40 mmHg above the level where the blood flow in the brachial artery stops.
After pressurizing to a high pressure, the pressure inside the strap is gradually reduced at a predetermined pressure reduction rate using an exhaust adjustment valve.
しかして上腕動脈の脈波が縛帯内の圧力に抗し
てその下を通過可能な程度に縛帯内の圧力が減少
したとき、縛帯下へ進入した上腕動脈の脈波はそ
の圧力により先ず小ゴムのうを押圧してそれに対
し容積変化を生じさせ、次いで縛帯下を上腕動脈
の末梢側に向つて通過するのに伴い大ゴムのうお
よびこれと連結管を介して接続している中ゴムの
うに容積変化を生じせめしていく。上腕動脈の脈
波が縛帯下に進入を開始し小ゴムのうを押圧する
とその圧力に応じて小ゴムのう内の圧縮空気が脈
波信号導出管に排出されこれが脈波の縛帯下進入
時の脈波信号SPとして脈波信号導出管に接続し
ている単一導管を介して脈波信号検出手段に送ら
れ、そのときの縛帯内の圧力を介して脈波信号
SPの圧力が計測される。この縛帯下進入時の脈
波信号SPの圧力信号は小ゴムのうが小容積で抵
抗が小さいため減衰率が小さく、脈波信号検出手
段に到達するまでの時間は微少である。一方縛帯
下へ進入した脈波は、続いて大ゴムのうから中ゴ
ムのう下を通過するに伴いこれらのゴムのうを押
圧してその内部の圧縮空気をその圧力に応じて中
ゴムのうから単一導管へ排出し、それが縛帯通過
時の脈波信号SP′の圧力信号として脈波検出手段
に送られる。このとき末梢へ進行する脈波によつ
て中ゴムのう下から末梢側へ放出された血液によ
り動脈音SKが発生され、これが単一導管を介し
て動脈音検出手段に送られる。したがつてこの最
初に発生した動脈音SKの検出に伴い、そのとき
の脈波信号SP′の圧力を脈波検出手段により縛帯
内の圧力を介して計測し、これを収縮期圧(最大
血圧)とする。そして脈波の縛帯下進入時におけ
る小ゴムのうから導出される脈波信号SPと縛帯
通過時における中ゴムのうから導出される脈波信
号SP′との夫々の脈波信号検出手段への到達時間
は、小ゴムのうの容積と大ゴムのうおよび中ゴム
のうの容積との差による抵抗の大きさにより時間
差があり、SPがSP′より先行し両者の間には第3
図示の如くStの時間が計測される。このStの時間
は脈波が縛帯下を小ゴムのうから中ゴムのうまで
に至る距離L(第1,第2図示)を通過した時間
に相当し、縛帯内において各ゴムのうは所定の位
置に固定配置されているから前記二点間の距離L
は一定であるとともに、縛帯下における上腕動脈
の二点間の距離に相当する。したがつて前記時間
Stは縛帯の圧迫下における上腕動脈の二点間の距
離Lを脈波が移動した時間となる。次いで縛帯圧
を順次減少させていくと、中ゴムのうより発生す
る動脈音の振幅は次第に小さくなりやがで消失す
るに至るが、その消失する直前の振幅が急激に減
少したときの動脈音DKを検出し、そのときの脈
波信号DP′の圧力を計測して拡張期圧(最小血
圧)を測定する。その際拡張期圧時の縛帯下進入
時の脈波の圧力信号DPと縛帯通過時の脈波の圧
力信号DP′間の時間Dt、同じく動脈音完全消失時
の縛帯下進入時の脈波信号Poと縛帯通過時の脈
波信号Po′間の時間Pt等一連の時間と血圧値とを
計測する。この血圧の各期における脈波の縛帯下
進入時と縛帯通過時の脈波信号の検出時間差St、
Dt、Ptは心臓機能および末梢機能が正常(血圧
調節機能が正常に働いている)であるときは、縛
帯圧の減少に伴い漸次短縮される規則性がある
が、心臓機能に異常がある場合にはその規則性に
変調が現われる。 However, when the pressure within the cuff is reduced to such an extent that the pulse wave of the brachial artery can pass under the cuff against the pressure within the cuff, the pulse wave of the brachial artery that has entered under the cuff will be affected by that pressure. First, the small rubber sac is pressed to cause a change in volume, and then, as it passes under the ligament towards the distal side of the brachial artery, it is connected to the large rubber sac via a connecting tube. During this process, the rubber sac undergoes a volume change. When the pulse wave of the brachial artery starts to enter under the ligament and presses on the small rubber sac, the compressed air inside the small rubber sac is discharged into the pulse wave signal derivation tube according to the pressure, which causes the pulse wave to go under the ligament. The pulse wave signal SP at the time of entry is sent to the pulse wave signal detection means via a single conduit connected to the pulse wave signal derivation tube, and the pulse wave signal is transmitted via the pressure inside the cuff at that time.
SP pressure is measured. The pressure signal of the pulse wave signal SP at the time of entry under the cuff has a small attenuation rate because the small rubber sac has a small volume and low resistance, and the time required for it to reach the pulse wave signal detection means is very short. On the other hand, the pulse wave that has entered the area under the ligament then presses on these rubber sacs as it passes from the large rubber sac to the underside of the middle rubber sac, and the compressed air inside the sac is released into the middle rubber sac according to the pressure. It is discharged from the body into a single conduit, and is sent to the pulse wave detection means as a pressure signal of the pulse wave signal SP' when the ligament passes. At this time, an arterial sound SK is generated by the blood discharged from the medial bladder to the peripheral side due to the pulse wave proceeding to the peripheral side, and this is sent to the arterial sound detection means via a single conduit. Therefore, along with the detection of this first generated arterial sound SK, the pressure of the pulse wave signal SP' at that time is measured by the pulse wave detection means via the pressure in the cuff, and this is calculated as the systolic pressure (maximum blood pressure). Then, the pulse wave signal SP derived from the small rubber sac when the pulse wave enters the ligament, and the pulse wave signal SP' derived from the middle sac when the pulse wave passes through the ligament, are sent to the respective pulse wave signal detection means. The arrival time varies depending on the amount of resistance caused by the difference between the volume of the small rubber sac and the volumes of the large and medium rubber sacs, so that SP precedes SP' and there is a third
As shown in the figure, the time of St is measured. This time St corresponds to the time when the pulse wave passes the distance L (shown in the first and second diagrams) from the small rubber sac to the middle rubber sac under the cuff, and each rubber sac within the cuff is Since they are fixedly arranged at predetermined positions, the distance L between the two points is
is constant and corresponds to the distance between two points on the brachial artery under the ligature. Therefore, the said time
St is the time it takes for the pulse wave to travel the distance L between two points in the brachial artery under the pressure of the cuff. Next, as the cuff pressure is gradually decreased, the amplitude of the arterial sound generated from the middle rubber bladder gradually decreases and eventually disappears, but the amplitude of the arterial sound when the amplitude suddenly decreases just before it disappears. The sound DK is detected, and the pressure of the pulse wave signal DP′ at that time is measured to measure the diastolic pressure (minimum blood pressure). At this time, the time Dt between the pressure signal DP of the pulse wave when the diastolic pressure is applied under the ligament and the pressure signal DP′ of the pulse wave when the ligament passes, and the time Dt when the pulse wave is entered under the ligament when the arterial sound has completely disappeared. A series of times such as the time Pt between the pulse wave signal Po and the pulse wave signal Po' when passing through the cuff, and the blood pressure value are measured. The detection time difference St of the pulse wave signal when the pulse wave enters the ligament and when it passes through the ligament in each phase of this blood pressure,
When cardiac and peripheral functions are normal (blood pressure regulation function is working normally), Dt and Pt gradually shorten regularly as the cuff pressure decreases, but when there is an abnormality in cardiac function. In some cases, variations appear in the regularity.
しかして、上記の如く検出された縛帯圧迫下に
おける上腕動脈の二点間の一定距離Lを通過する
脈波の移動時間に基づき血流速度(m/s)に換
算し、収縮期圧と拡張期圧の血圧変動と各期およ
びその間の血流速度の変動との比較検討により、
血圧変動の原因が心臓機能又は末梢機能のいずれ
の変動或いは双方の変動にあるのかを非観血に判
断することができる。 Therefore, based on the travel time of the pulse wave passing through a certain distance L between two points in the brachial artery under cuff compression detected as described above, it is converted into blood flow velocity (m/s), and the systolic pressure is calculated. By comparing blood pressure fluctuations in diastolic pressure with fluctuations in blood flow velocity in each period and between them,
It is possible to non-invasively determine whether blood pressure fluctuations are caused by fluctuations in cardiac function, peripheral function, or both.
次に別紙図面第1図〜第3図について、本発明
実施の一例を示す。Aは縛帯であり、布のう10
内に、大、中、小3個のゴムのう11,12,1
3がその周囲を囲む縫目により固定配置されてい
る。大ゴムのう11と中ゴム12とは小径の連結
管14を介して接続されており、大ゴムのうは中
ゴムのうより上腕動脈の中枢側に位置している。
小ゴムのう13は大ゴムのう11と分離されて更
に大ゴムのうの上流側即ち縛帯Aの使用時におけ
る上腕動脈の中枢側に配置されている。小ゴムの
う13の一側端部からは縛帯下進入当初の脈波信
号導出管15が上腕動脈の末梢側に向かつて導出
されており、その先端部は中ゴムのう12の連結
管14と反対側端部より同じく上腕動脈の末梢側
方向に向かつて導出されている単一導管16の中
ゴムのう12より適当距離上腕動脈の末梢側方向
下流側(実施例図においては縛帯Aの外部)に接
続している。中ゴムのう12より導出されている
単一導管16の縛帯Aからの外部導出端部は前記
脈波信号導出管15との接続位置より更に下流側
先端部で脈波信号検出センサー17と、動脈音検
出センサー18と、排気調整バルブ19を有する
ポンプ20とに分岐配管接続されている。脈波信
号検出センサー17および動脈音検出センサー1
8は、夫々脈波(圧力)測定手段と動脈音測定手
段およびこれらを制御するマイクロコンピユータ
等の制御手段に接続されている。排気調整バルブ
19を有するポンプ20に接続している単一導管
16は中ゴムのう12に接続し中ゴムのう12は
連結管14を介して大ゴムのう11に接続してお
り、大ゴムのう11と分離している小ゴムのう1
3は導出管15を介して中ゴムのう12から導出
される単一導管16の中ゴムの12より下流側位
置に接続しているので、導出管15と単一導管1
6は各ゴムのう内への給排気兼用となり、この配
管接続構成により各ゴムのう11,12,13内
の空気圧は同圧に維持され、ポンプ20の操作に
伴う給・排気操作時いずれにおいても各ゴムのう
11,12,13内の圧力は同一の圧力変化をす
る。また前記ゴムのうの配置と配管接続構成によ
り縛帯下への脈波進入、通過に伴う小ゴムのう1
3の圧力変化(振動)と大ゴムのう11および中
ゴムのう12の圧力変化(振動)は相互に影響を
及ぼすおそれはない。そして上記各ゴムのう1
1,12,13の容積比はWHO等の規格に基づ
き血圧および脈波移動時間の検出の目的に適合す
るべく所定に設定されている。ちなみに、縛帯A
の布のう10の巾l0はWHOの血圧測定用縛帯基
準を満足する140mm以上となし、この布のう10
内に配置される各ゴムのうの巾は大ゴムのう11
の巾l2を基準とし、小ゴムのう13の巾l1と中ゴ
ムのうの巾l3は大ゴムのう11の巾l2の各1/8、1/
6程度となしている。また縛帯Aの布のう10の
巾l0は成人用、小児用、幼児用の別により多少の
差があるが、各ゴムのうの巾の比率はその範囲内
においていずれも前記と同一の比率に構成されて
おり、従来の血圧測定用縛帯と同様血圧測定に支
障はない。
Next, an example of implementing the present invention will be shown with reference to the attached drawings, FIGS. 1 to 3. A is a binding belt, cloth bag 10
Inside, there are 3 large, medium, and small rubber bags 11, 12, 1
3 is fixedly placed by a seam surrounding its periphery. The large rubber sac 11 and the middle rubber sac 12 are connected through a small-diameter connecting tube 14, and the large rubber sac is located closer to the center of the brachial artery than the middle rubber sac.
The small rubber sac 13 is separated from the large rubber sac 11 and is placed further upstream of the large rubber sac, that is, on the central side of the brachial artery when the cuff A is used. From one side end of the small rubber sac 13, a pulse wave signal deriving tube 15, which is used at the time of entry under the cuff, is led out toward the distal side of the brachial artery, and its tip connects to the connecting tube of the middle rubber sac 12. A single conduit 16 is led out from the end opposite to 14 toward the distal side of the brachial artery by an appropriate distance from the inner rubber sac 12 to the distal side downstream of the brachial artery (in the example diagram, the ligature is (external to A). The external lead-out end of the single conduit 16 led out from the inner rubber bag 12 from the strap A connects to the pulse wave signal detection sensor 17 at the tip further downstream from the connection position with the pulse wave signal lead-out pipe 15. , an arterial sound detection sensor 18 , and a pump 20 having an exhaust adjustment valve 19 are connected by branch piping. Pulse wave signal detection sensor 17 and arterial sound detection sensor 1
8 are respectively connected to a pulse wave (pressure) measuring means, an arterial sound measuring means, and a control means such as a microcomputer for controlling these. A single conduit 16 connected to a pump 20 with an exhaust adjustment valve 19 connects to a medium rubber pouch 12, which in turn connects to a large rubber pouch 11 via a connecting pipe 14; Small rubber sac 1 separated from rubber sac 11
3 is connected to the single conduit 16 led out from the inner rubber bag 12 via the outlet pipe 15 at a position downstream of the inner rubber 12, so that the outlet pipe 15 and the single conduit 1
6 is also used for supplying and exhausting into each rubber sac, and with this piping connection configuration, the air pressure inside each rubber sac 11, 12, 13 is maintained at the same pressure, and when the pump 20 is operated, the air pressure is maintained at the same pressure. Also, the pressure inside each rubber chamber 11, 12, 13 undergoes the same pressure change. In addition, due to the arrangement of the rubber sac and the piping connection configuration, the small rubber sac 1 accompanying the pulse wave entering and passing under the cuff.
There is no possibility that the pressure change (vibration) of 3 and the pressure change (vibration) of the large rubber case 11 and the medium rubber case 12 will affect each other. And 1 of each of the above rubber
The volume ratios of 1, 12, and 13 are predetermined based on standards such as WHO, in order to meet the purpose of detecting blood pressure and pulse wave transit time. By the way, shibari A
The width of the cloth bag 10 is 140 mm or more, which satisfies the WHO standard for blood pressure measurement straps.
The width of each rubber bag placed inside is 11 large rubber bags.
Based on the width l2 of the small rubber pouch 13, the width l1 of the small rubber pouch 13 and the width l3 of the middle rubber pouch are 1/8 and 1/8 of the width l2 of the large rubber pouch 11 , respectively.
It is set at around 6. Also, the width l0 of the cloth pouch 10 of strap A varies slightly depending on whether it is for adults, children, or infants, but the ratio of the width of each rubber pouch is the same as above within that range. It is configured at a ratio of
しかして上述のとおり、上腕に巻き付けた縛帯
Aに対し所定の加圧・減圧操作を行ないながら第
3図示の要領で、縛帯A下に進入し血管の末梢側
に進行する上腕動脈の脈波の縛帯A下進入開始時
の脈波信号SP、DP、Poの検出とその脈波の縛帯
A通過(中ゴムのう12通過)時における脈波信
号SP′、DP′、Po′および動脈音SK、DKの検出の
なし、動脈音SKとDK発生時に夫々対応する血
圧の収縮期圧(脈波信号SP′の指示に基づく縛帯
A内の圧力)と拡張期圧(脈波信号DP′の指示に
基づく縛帯A内の圧力)を測定するとともに、縛
帯Aの圧迫抵抗により時間差をもつて検出される
脈波信号SPとSP′、DPとDP′、PとP′間の検出時
間差St、Dt、Ptを検出し縛帯A下における上腕
動脈の二点間の距離Lを移動する脈波の移動時間
を検出し、この脈波移動時間を血流速度(m/
S)に換算して各時点の血流速度を測定する。小
ゴムのう13の振動により発せられる脈波信号
SP、DP、Poおよび大ゴムのう11の中ゴムのう
12の振動により発せられる脈波信号SP′、DP′、
Poはいずれも圧力信号として脈波信号検出セン
サー17により検出され、電気信号に変換されて
圧力(血圧値)の測定がなされる。また脈波信号
SP′、DP′が中ゴムのう12より単一導管16に
導出された際に遅くれて発生する動脈音SK、
DKは動脈音検出センサー18により検出されて
電気信号に変換され、動脈音の測定がなされる。 However, as mentioned above, while performing predetermined pressurization and decompression operations on the cuff A wrapped around the upper arm, the pulse of the brachial artery that enters under the cuff A and progresses to the distal side of the blood vessel is measured in the manner shown in Figure 3. Detection of pulse wave signals SP, DP, and Po at the time when the wave starts to enter below the band A, and pulse wave signals SP', DP', and Po' when the pulse wave passes through the band A (passing the inner rubber wall 12) and no detection of arterial sounds SK, DK, systolic pressure (pressure in cuff A based on pulse wave signal SP' indication) and diastolic pressure (pressure in cuff A based on pulse wave signal SP') and diastolic pressure (pressure in cuff A based on pulse wave signal SP') In addition to measuring the pressure inside cuff A based on the indication of signal DP', pulse wave signals SP and SP', DP and DP', and P and P' are detected with time differences due to the compression resistance of cuff A. The travel time of the pulse wave traveling the distance L between the two points of the brachial artery under the cuff A is detected, and this pulse wave travel time is expressed as the blood flow velocity (m/
Measure the blood flow velocity at each time point in terms of S). Pulse wave signal emitted by vibration of small rubber bladder 13
SP, DP, Po and pulse wave signals SP', DP', which are emitted by the vibrations of the rubber pouch 12 inside the large rubber pouch 11;
Po is detected as a pressure signal by the pulse wave signal detection sensor 17, and is converted into an electrical signal to measure the pressure (blood pressure value). Also pulse wave signal
Arterial sound SK that occurs late when SP' and DP' are led out from the inner rubber sac 12 to the single conduit 16,
DK is detected by the arterial sound detection sensor 18 and converted into an electrical signal, and the arterial sound is measured.
本発明は叙上のように構成したので、上述の従
来技術の有する問題点を解消し、次の効果を有す
る。
Since the present invention is configured as described above, it solves the problems of the prior art described above and has the following effects.
第1に、従来と異なり縛帯の布のう内に連結管
を介して接続上腕動脈の中枢側から末梢側に沿つ
て所定の順序に固定配置されている大ゴムのうと
中ゴムのうとは別に、大ゴムのうより上腕動脈の
中枢側に位置し大ゴムのうとは分離した小ゴムの
うを同じく布のう内に固定配置し、小ゴムのうよ
り導出した脈波信号導出管と中ゴムのうより導出
した単一導管とを中ゴムのうより下流側の位置で
接続し気体流路を形成し、大、中、小各ゴムのう
の容積比を所定の割合に設定したので、従来と同
様動脈音の検出に基づき収縮期圧(最大血圧)と
拡張期圧(最小血圧)を測定することができると
ともに、従来においては困難であつた脈波の縛帯
下進入時の脈波信号の検出を確実に行なうことが
でき、この脈波信号とこれとは時間差をもつて検
出される縛帯下通過時の脈波信号に基づき縛帯下
を小ゴムのうと中ゴムのうとの二点間の一定距離
を通過した脈波の移動時間を収縮期圧から拡張気
圧に至るまでの毎心拍動に対応して検出すること
ができるとともにこれを換算することにより血流
速度の測定が可能となる。したがつて、血圧測定
用縛帯を用いて血圧値の測定のみならず、被検者
の反復検査或いは標準パターンとの比較に基づ
き、血圧変動と血流速度の変動との相互の関係を
勘案して血圧変動の原因が心臓機能又は末梢機能
のいずれの変動にあるのか或いは双方にあるのか
を心臓カテーテルその他の検査方法を待たずに非
観血に判断することができ、血圧変動に伴う医療
の診断および治療上有用である。 First, unlike conventional methods, the large and medium rubber sacs are fixedly arranged in a predetermined order from the central side to the distal side of the brachial artery, which are connected to the brachial artery via a connecting tube within the cloth sac of the straitjacket. Separately, a small rubber sac, which is located closer to the center of the brachial artery than the larger rubber sac and is separate from the larger rubber sac, is also fixedly placed within the cloth sac, and a pulse wave signal derivation tube led out from the small rubber sac. A gas flow path was formed by connecting a single conduit led out from the middle rubber pouch at a position downstream from the middle rubber pouch, and the volume ratio of each large, medium, and small rubber pouch was set to a predetermined ratio. Therefore, it is possible to measure systolic pressure (systolic pressure) and diastolic pressure (diastolic pressure) based on the detection of arterial sounds as in the past, and it is also possible to measure the pulse wave when it enters below the ligament, which was difficult in the past. The pulse wave signal can be reliably detected, and the pulse wave signal is detected with a time difference when passing under the cuff. It is possible to detect the travel time of a pulse wave that has passed a certain distance between two points in the body, corresponding to each heartbeat from systolic pressure to diastolic pressure, and by converting this, it is possible to calculate the blood flow velocity. Measurement becomes possible. Therefore, in addition to measuring blood pressure values using a blood pressure cuff, we also take into account the mutual relationship between blood pressure fluctuations and blood flow velocity fluctuations based on repeated tests of subjects or comparisons with standard patterns. This makes it possible to determine non-invasively whether blood pressure fluctuations are caused by changes in cardiac function, peripheral function, or both, without waiting for cardiac catheterization or other testing methods, and to improve medical care associated with blood pressure fluctuations. useful for diagnosis and treatment.
第2に、従来においてはポンプ接続用の導管と
圧力計接続用の導管とが別々に設けられており
夫々ゴムのうに対する接続位置を異にしているに
もかかわらず、これらの導管から導出している外
部導管に対する連結端部が近接位置に設けられて
いる関係上ポンプおよび圧力計接続用導管の誤装
着により動脈音の検出に困難性を伴う等血圧測定
に計測誤差を生ずるおそれが多分にあつた。これ
に対して本発明においては、各ゴムとうに接続す
る外部導管をポンプ接続用と圧力計接続用とに分
けず単一導管となしたので、前記従来の外部導管
誤装着に伴う難点を解消し血圧測定に性正確を期
することができるとともに、全体構造の簡潔化を
図ることができ製造および使用上好適である。 Secondly, in the past, the conduit for connecting the pump and the conduit for connecting the pressure gauge were provided separately, and although the connection positions with respect to the rubber sac were different, there was no connection between the conduit and the pressure gauge. Because the connecting end of the external conduit is located close to the external conduit, there is a high possibility that incorrect attachment of the conduit for connecting the pump and pressure gauge will cause measurement errors in isopressure measurement, which may make it difficult to detect arterial sounds. It was hot. In contrast, in the present invention, the external conduit connected to each rubber tube is not divided into one for pump connection and one for pressure gauge connection, but is made into a single conduit, thereby solving the above-mentioned difficulty associated with incorrect attachment of external conduit. It is possible to ensure accuracy in blood pressure measurement and to simplify the overall structure, which is suitable for manufacturing and use.
第1図〜第3図は本発明実施の一例を示すもの
で、第1図は縛帯を給排気手段と信号検出手段に
接続した状態の要部を断面とした縛帯の平面図、
第2図は縛帯を上腕に巻き付けた状態の使用説明
図、第3図は上記縛帯を用いて縛帯下における脈
波の移動時間を検出する検出方法の原理説明図、
第4図は従来の血圧測定用縛帯の要部を断面とし
た平面図である。
A……縛帯、10……布のう、11……大ゴム
のう、12……中ゴムのう、13……小ゴムの
う、14……連結管、15……脈波の縛帯下進入
時の脈波信号導出管、16……単一導管、17…
…脈波信号検出センサー、18……動脈音検出セ
ンサー、19……排気調整バルブ、20……ポン
プ。
FIGS. 1 to 3 show an example of the implementation of the present invention, and FIG. 1 is a plan view of the strap in a state where the strap is connected to the supply/exhaust means and the signal detection means, with main parts in cross section;
Fig. 2 is an explanatory diagram of the use of the cuff wrapped around the upper arm; Fig. 3 is a diagram explaining the principle of a detection method for detecting the travel time of a pulse wave under the cuff using the cuff;
FIG. 4 is a plan view showing a main part of a conventional cuff for measuring blood pressure in cross section. A...Bandage, 10...Cloth bag, 11...Large rubber bag, 12...Medium rubber bag, 13...Small rubber bag, 14...Connecting tube, 15...Pulse wave binding Pulse wave signal derivation tube when entering the subleucorrhea, 16...Single conduit, 17...
...Pulse wave signal detection sensor, 18...Arterial sound detection sensor, 19...Exhaust adjustment valve, 20...Pump.
Claims (1)
沿つて、小ゴムのうと大ゴムのうと中ゴムのうと
を夫々その順序に固定配置し、小ゴムのうは大ゴ
ムのうと分離する一方中ゴムのうは大ゴムのうと
連結管を介して接続せしめ、小ゴムのうの一側端
部からは脈波の縛帯下進入時の信号導出管を、中
ゴムのうの一側端部からは単一導管を夫々上腕動
脈の末梢側方向下流側に沿つて導出し、前記信号
導出管の先端部を単一導管の中ゴムのうからの導
出端部より適宜距離先端部側下流の位置に接続す
るとともに、その単一導管の先端部で信号導出管
との接続位置より更に下流側先端部に排気調整バ
ルブを有するポンプと動脈音検出手段と脈波信号
検出手段とを夫々分岐接続しせめ、かつ、血圧と
脈波移動時間検出の目的に適合するべく大ゴムの
うと中ゴムのうと小ゴムのうとの容積比を所定に
設定したことを特徴とする血圧および脈波移動時
間測定用縛帯。1. Fixedly place the small rubber sac, large rubber sac, and medium rubber sac in that order in the cloth sac from the central side to the distal side of the brachial artery, and separate the small sac from the large sac. On the other hand, the medium rubber sac is connected to the large rubber sac via a connecting tube, and from one end of the small rubber sac, a signal output tube when the pulse wave enters the ligament is connected to one side of the middle rubber sac. A single conduit is led out from the side end along the downstream side in the distal direction of the brachial artery, and the tip of the signal lead-out tube is placed an appropriate distance from the end of the single conduit from the inner rubber sac to the distal end side. A pump, an arterial sound detecting means, and a pulse wave signal detecting means each connected to a downstream position and having an exhaust adjustment valve at a distal end of the single conduit further downstream from the connecting position with the signal deriving pipe. Blood pressure and pulse wave movement, characterized in that the volume ratio of the large rubber bladder, the medium rubber bladder, and the small rubber bladder is set to a predetermined value in order to have a branch connection and to meet the purpose of detecting blood pressure and pulse wave transit time. A strap for measuring time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1032711A JPH02213324A (en) | 1989-02-14 | 1989-02-14 | Arm band for measuring blood pressure and pulse wave moving time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1032711A JPH02213324A (en) | 1989-02-14 | 1989-02-14 | Arm band for measuring blood pressure and pulse wave moving time |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02213324A JPH02213324A (en) | 1990-08-24 |
JPH0523771B2 true JPH0523771B2 (en) | 1993-04-05 |
Family
ID=12366425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1032711A Granted JPH02213324A (en) | 1989-02-14 | 1989-02-14 | Arm band for measuring blood pressure and pulse wave moving time |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02213324A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005927A (en) * | 2006-06-27 | 2008-01-17 | Terumo Corp | Cuff for sphygmomanometry, sphygmomanometer apparatus, and sphygmomanometry method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE132720T1 (en) * | 1990-07-18 | 1996-01-15 | Avl Medical Instr Ag | DEVICE AND METHOD FOR MEASURING BLOOD PRESSURE |
JP4764673B2 (en) * | 2005-08-11 | 2011-09-07 | 株式会社エー・アンド・デイ | Blood pressure pulse wave cuff |
JP4764674B2 (en) * | 2005-08-11 | 2011-09-07 | 株式会社エー・アンド・デイ | Blood pressure pulse wave inspection device |
JP4705821B2 (en) * | 2005-08-11 | 2011-06-22 | 株式会社エー・アンド・デイ | Blood pressure pulse wave inspection device |
JP4705824B2 (en) * | 2005-09-05 | 2011-06-22 | 株式会社エー・アンド・デイ | Fixed pulsation generator |
JP4795777B2 (en) * | 2005-11-04 | 2011-10-19 | テルモ株式会社 | Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method |
JP6761337B2 (en) | 2016-12-28 | 2020-09-23 | オムロン株式会社 | Pulse wave measuring device and pulse wave measuring method, and blood pressure measuring device |
JP6829599B2 (en) | 2016-12-28 | 2021-02-10 | オムロン株式会社 | Pulse wave measuring device and pulse wave measuring method, and blood pressure measuring device |
-
1989
- 1989-02-14 JP JP1032711A patent/JPH02213324A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008005927A (en) * | 2006-06-27 | 2008-01-17 | Terumo Corp | Cuff for sphygmomanometry, sphygmomanometer apparatus, and sphygmomanometry method |
Also Published As
Publication number | Publication date |
---|---|
JPH02213324A (en) | 1990-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3578724B2 (en) | Lower limb upper limb blood pressure index measurement device | |
JP3553919B2 (en) | Lower limb artery stenosis diagnostic device | |
JP3587837B2 (en) | Arterial stiffness evaluation device | |
US5423324A (en) | Apparatus for detecting and displaying blood circulatory information | |
RU2502463C2 (en) | Device for measuring information about blood pressure, capable of obtaining parameter for determining arteriosclerosis degree | |
TW491697B (en) | Blood-pressure measuring apparatus | |
KR20160129113A (en) | System and method of measuring changes in arterial volume of a limb segment | |
KR20130051992A (en) | Non-invasive blood pressure measuring apparatus and measuring method thereof | |
JP3363847B2 (en) | Blood pressure measurement device | |
KR100804454B1 (en) | Superior-and-inferior-limb blood-pressure index measuring apparatus | |
JPH02305545A (en) | Artery extensibility measuring device | |
JPH05288869A (en) | Multifunctional watch | |
JPH0523771B2 (en) | ||
KR20220106918A (en) | Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same | |
JP4943748B2 (en) | Blood pressure measurement device, measurement method thereof, and storage medium | |
KR102356200B1 (en) | Blood Pressure Meter And Method For Measuring Blood Pressure Using The Same | |
JP4819594B2 (en) | Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method | |
JPH01265941A (en) | Wrist blood pressure measuring instrument | |
JP3831899B2 (en) | Pulse wave velocity measuring device | |
JPS6216096B2 (en) | ||
JP2615858B2 (en) | Electronic sphygmomanometer | |
CN217548028U (en) | Three-channel pulse wave signal sensing bandage and pulse wave noninvasive blood pressure measuring device | |
WO2023197214A1 (en) | Method and device for non-invasive detection of central arterial pressure and other intraluminal large arterial pressure | |
US20240188839A1 (en) | Blood pressure estimation device and calibration method for blood pressure estimation device | |
CN111317453A (en) | Vascular endothelial function evaluation device |