JPH05237497A - Pure water preparation - Google Patents

Pure water preparation

Info

Publication number
JPH05237497A
JPH05237497A JP4037567A JP3756792A JPH05237497A JP H05237497 A JPH05237497 A JP H05237497A JP 4037567 A JP4037567 A JP 4037567A JP 3756792 A JP3756792 A JP 3756792A JP H05237497 A JPH05237497 A JP H05237497A
Authority
JP
Japan
Prior art keywords
water
treated
pure water
treatment
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037567A
Other languages
Japanese (ja)
Inventor
Masayoshi Ezawa
正義 江澤
Akira Misumi
明 三角
Shigeru Wakana
茂 若菜
Toshikazu Morishita
敏和 森下
Hiromi Kawagoe
弘美 川越
Sumiko Watanabe
澄子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4037567A priority Critical patent/JPH05237497A/en
Publication of JPH05237497A publication Critical patent/JPH05237497A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare pure water with high purity with which water soluble substances are removed efficiently and thus electronic devices are cleaned to high cleanness by carrying out sterilization for raw water, adjusting the pH, treating for flocculation and precipitation for the water, and then carrying out ion-exchange treatment. CONSTITUTION:Impurities in raw water such as surfacial flowing water, river water, underground water, or mixture of them are removed and thus pure water is prepared. At that time, to prepare pure water, chlorine agent is added to the raw water in the sterilization process 100 to sterilize the water. Then, the sterilized object water for treatment is adjusted to be pH 5.4-5.8 in the pH adjusting process 200. Next, a flocculant is added to the pH-adjusted object water for treatment to coprecipitate humic acid and the salts and remove them in the flocculation and precipitation process. Finally, the ions in the object water for treatment which is treated for flocculation and precipitation are removed in ion-exchange treatment process 400. As a result, water soluble substances, etc., are removed efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純水の製造方法に係
り、特に、表流水、河川水または地下水、あるいはそれ
らの混合水からなる原水から高純度のイオン交換純水を
得るための純水製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water, and more particularly, to a pure water for obtaining high-purity ion-exchanged pure water from surface water, river water or ground water, or raw water consisting of mixed water thereof. Water production method.

【0002】[0002]

【従来の技術】通常、純水製造用原水には地下水及び表
流水を用いている。すなわち、イオン交換純水を製造す
る際、原水には井水等の地下水,表流水,河川水あるい
はこれらの混合水から成る水を使用する場合が多い。こ
のような原水中には各種の不純物が含まれているため、
この不純物を各種の処理法で除去した処理水をイオン交
換処理して純水を製造している。
2. Description of the Related Art Normally, ground water and surface water are used as raw water for producing pure water. That is, when producing ion-exchanged pure water, the raw water often uses ground water such as well water, surface water, river water, or a mixture of these. Since such raw water contains various impurities,
The treated water from which these impurities have been removed by various treatment methods is subjected to ion exchange treatment to produce pure water.

【0003】従来、イオン交換を用いた純水の製造には
地下水または表流水を原水として用いている。前記原水
中の主要不純物除去の前処理には5ppmから10pp
mのポリ塩化アルミニウム塩類を添加して、被処理水の
pHを6.5から7.8として前記アルミニウムをその
水酸化物として沈殿させると同時に原水中の主要不純物
を凝集沈殿除去する共沈澱方法を用いている。
Conventionally, in the production of pure water using ion exchange, groundwater or surface water is used as raw water. 5ppm to 10pp for pretreatment to remove major impurities in the raw water
The method of coprecipitation in which the pH of the water to be treated is adjusted to 6.5 to 7.8 to precipitate the aluminum as its hydroxide and at the same time main impurities in the raw water are coagulated and removed by aggregation. Is used.

【0004】なお、このような従来の純水製造方法は周
知であるので、特に文献は挙げない。
Incidentally, since such a conventional method for producing pure water is well known, no reference is given thereto.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術では、イ
オン交換による純水製造用の原水に河川水及び表流水を
使用した場合に、前記原水中に含まれる各種不純物のう
ち、特に、フミン酸とその塩類等が多いと、これらの各
種不純物とそれを除去するための凝集剤として添加する
ポリ塩化アルミニウム塩類のアルミニウムとを水酸化物
として凝集沈澱させるだけでは、所望する量まで除去で
きない。
In the above prior art, when river water and surface water are used as raw water for producing pure water by ion exchange, among the various impurities contained in the raw water, particularly humic acid is used. When the amount of these impurities and their salts are large, the desired amount cannot be removed only by coagulating and precipitating these various impurities and aluminum, which is a polyaluminum chloride salt added as a coagulant for removing the impurities, as hydroxides.

【0006】すなわち、被処理水である原水中に含れる
各種不純物も凝集剤のアルミニウムも共に水酸化物とし
て十分に共沈除去されず、かつ、従来においては被処理
水の凝集沈澱時のpH値が6.5〜7.8と高いため、
生成した水酸化アルミニウムの沈殿物の一部が当該被処
理水中に溶解すると同時に微粒子化され、さらに、前記
の水酸化アルミニウム沈殿物の溶解で生成したアルミニ
ウムイオンと被処理水中に含れる不純物であるフミン酸
とが反応して後段の処理における逆浸透膜やイオン交換
樹脂で除去できない水可溶性物質を形成する。
That is, neither the various impurities contained in the raw water as the water to be treated nor the aluminum as the aggregating agent are sufficiently coprecipitated and removed as hydroxides, and in the past, the pH at the time of aggregating and precipitating the water to be treated was not increased. Since the value is as high as 6.5-7.8,
A part of the generated aluminum hydroxide precipitate is dissolved in the water to be treated and atomized at the same time, and further, aluminum ions generated by the dissolution of the aluminum hydroxide precipitate and impurities contained in the water to be treated. It reacts with humic acid to form a water-soluble substance that cannot be removed by the reverse osmosis membrane or the ion exchange resin in the subsequent treatment.

【0007】その結果、逆浸透膜やイオン交換樹脂に大
きな負荷がかかって、所望する水質の純水を製造するこ
とができないという問題があった。本発明の目的は、表
流水,河川水または地下水、あるいはこれらの混合水を
原水とした場合の上記従来技術の問題点を解消し、半導
体製造や陰極線管製造等の電子デバイスの製造に必要と
される所望の水質の純水を提供することにある。
As a result, there is a problem that the reverse osmosis membrane and the ion exchange resin are heavily loaded, and pure water having a desired water quality cannot be produced. The object of the present invention is to eliminate the problems of the above-mentioned conventional techniques when surface water, river water or ground water, or a mixed water thereof is used as raw water, and is required for manufacturing electronic devices such as semiconductor manufacturing and cathode ray tube manufacturing. It is to provide pure water of desired water quality.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、表流水、河川水または地下水、あるいは
それらの混合水からなる原水中の不純物を除去して純水
を得るための純水製造方法において、前記原水に塩素を
添加することにより滅菌処理する工程を含む滅菌処理段
100と、前記滅菌処理段100を経た被処理水のpH
値を5.4〜5.8に調節するpH調節段200と、前
記pH調節段200を経た被処理水に凝集剤を添加して
フミン酸とその塩類を共に共沈除去する凝集沈澱処理段
300およびイオン交換処理段400を、少なくとも含
むことを特徴とする。
To achieve the above object, the present invention provides a pure water for removing impurities in raw water consisting of surface water, river water or ground water, or a mixed water thereof. In the water manufacturing method, a sterilization stage 100 including a step of sterilizing the raw water by adding chlorine, and a pH of the water to be treated that has passed through the sterilization stage 100
PH adjusting stage 200 for adjusting the value to 5.4 to 5.8, and flocculating and precipitating stage for coprecipitating and removing humic acid and its salts together by adding a flocculant to the water to be treated which has passed through the pH controlling stage 200. It is characterized by including at least 300 and an ion exchange processing stage 400.

【0009】また、本発明は、地下水,表流水、あるい
はその混合水からなる原水中の不純物を除去して純水を
得るための純水製造方法において、前記原水に次亜塩素
酸ナトリウムの添加により滅菌処理した被処理水を得る
滅菌工程と、前記滅菌工程を経た被処理水に塩酸を添加
してそのpH値を5.4〜5.8に調節するpH調節工
程と、前記pH調節した被処理水に75ppb〜100
ppbのポリ塩化アルミニウムを添加して、前記被処理
水中のフミン酸とその塩類をアルミニウムの水酸化物と
して他の不純物と共に共沈除去する沈澱反応工程と、前
記沈澱反応工程を経た被処理水の上澄水を活性炭または
逆浸透膜の何れかあるいは双方を用いて吸着除去する吸
着工程と、前記吸着工程を経た被処理水中のプラスおよ
びマイナスのイオンをイオン交換樹脂により除去するイ
オン交換処理工程と、前記イオン交換処理工程を経た被
処理水を極微孔フィルタに通して微細異物を除去する微
細異物除去工程と、を少なくとも含むことを特徴とす
る。
Further, the present invention is a pure water production method for obtaining pure water by removing impurities in raw water consisting of ground water, surface water, or a mixed water thereof, in which sodium hypochlorite is added to the raw water. The sterilization step of obtaining the treated water sterilized by the method, the pH adjustment step of adding hydrochloric acid to the treated water that has undergone the sterilization step to adjust the pH value to 5.4 to 5.8, and the pH adjustment 75 ppb-100 for treated water
a precipitation reaction step of adding ppb polyaluminum chloride to co-precipitate and remove humic acid and salts thereof in the water to be treated together with other impurities as hydroxide of aluminum; and water to be treated after the precipitation reaction step An adsorption step of adsorbing and removing the supernatant water by using either or both of activated carbon and a reverse osmosis membrane, and an ion exchange treatment step of removing positive and negative ions in the water to be treated after the adsorption step by an ion exchange resin, A fine foreign matter removing step of removing fine foreign matter by passing the water to be treated after the ion exchange treatment through an ultrafine pore filter.

【0010】なお、前記沈澱反応工程の上澄水のpH値
を必要により再度5.4〜5.8の範囲に調節する他の
pH調節工程を有する構成も本発明の特徴である。さら
に、本発明は前記製造工程における前記微細異物除去工
程を通した純水中に含まれる極微量不純物のうち、N
a,Si,Al,Ca,Mg系の化合物及び前記元素と
有機物系との化合物の0.01μm〜0.1μm径の微
粒子が1mlあたり、10個〜50000個である純水
を製造することを特徴とする。
A feature of the present invention is a structure having another pH adjusting step of adjusting the pH value of the supernatant water in the precipitation reaction step to the range of 5.4 to 5.8 again if necessary. Further, the present invention is characterized in that N of the trace amount of impurities contained in the pure water that has passed through the step of removing the fine foreign matter in the manufacturing step.
It is intended to produce pure water in which 10 to 50,000 fine particles of 0.01 μm to 0.1 μm diameter of a, Si, Al, Ca, Mg-based compound and the compound of the element and the organic material-based are per 1 ml. Characterize.

【0011】[0011]

【作用】原水を滅菌した被処理水に75ppmから10
0ppmのポリ塩化アルミニウムを添加する前に、当該
被処理水のpH値を5.4〜5.8に調節して凝集剤と
してポリ塩化アルミニウムを添加し、必要により凝集助
剤としてN1(オルフロック(オルガノ社商品名))を
添加することにより凝集塊を大きくし、フミン酸と他の
不純物を水酸化アルミニウムの凝集塊として共に沈殿さ
せる。
[Function] From 75 ppm to 10% of treated water obtained by sterilizing raw water
Before adding 0 ppm of polyaluminum chloride, the pH value of the water to be treated is adjusted to 5.4 to 5.8, polyaluminum chloride is added as a coagulant, and if necessary, N1 (Olflock) is added as a coagulant aid. (Organo Co., Ltd. trade name) is added to increase the size of the agglomerates, and humic acid and other impurities are precipitated together as agglomerates of aluminum hydroxide.

【0012】前記凝集剤(および凝集助剤)は、被処理
水中の各種不純物の内、特にフミン酸を水不溶性のフミ
ン酸−アルミニウムの形態とし被処理水中のフミン酸含
有量の略々50%相当量を水酸化アルミニウムの沈殿粒
子と共沈除去する。その後、活性炭または逆浸透膜(R
OF)に被処理水を通し、さらにイオン交換樹脂により
プラスイオン(カチオン),マイナスイオン(アニオ
ン)をそれぞれ除去し、必要によりカチオン/アニオン
共除去処理する。
Among the various impurities in the water to be treated, the aggregating agent (and the coagulant aid), in particular, makes humic acid in the form of water-insoluble humic acid-aluminum, and the content of humic acid in the water to be treated is approximately 50%. A considerable amount is coprecipitated with the precipitated particles of aluminum hydroxide. Then, activated carbon or reverse osmosis membrane (R
The water to be treated is passed through OF), plus ions (cations) and minus ions (anions) are removed by an ion exchange resin, and if necessary, cation / anion co-removal treatment is performed.

【0013】最後に、ミリポアフィルタ(商品名)等の
極微孔フィルタを通すことにより、純水中に含まれる極
微量不純物のうち、Na,Si,Al,Ca,Mg系の
化合物及び前記元素と有機物系との化合物の0.01μ
m〜0.1μm径の微粒子が1mlあたり、10個〜5
0000個である純水を得ることができる。
Finally, by passing through a micropore filter such as a Millipore filter (trade name), Na, Si, Al, Ca, Mg-based compounds and the above-mentioned elements out of the trace impurities contained in pure water. 0.01μ of compounds with organic compounds
10 to 5 fine particles with a diameter of m to 0.1 μm per 1 ml
Pure water of 0000 can be obtained.

【0014】[0014]

【実施例】以下、本発明による純水製造方法の実施例に
つき、図面を参照して詳細に説明する。図1は本発明に
よる純水製造方法の一実施例を説明する要部処理段の模
式図であって、100は滅菌処理段、200はpH調整
段、300は凝集沈澱処理段、400はイオン交換処理
段である。
Embodiments of the method for producing pure water according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic view of a main processing stage for explaining an embodiment of the pure water producing method according to the present invention, in which 100 is a sterilization stage, 200 is a pH adjusting stage, 300 is a coagulating sedimentation stage, and 400 is an ion. It is an exchange processing stage.

【0015】本実施例では、滅菌処理段100におい
て、表流水、河川水または地下水、あるいはそれらの混
合水からなる原水に塩素剤として次亜塩素酸ナトリウム
(NaOCl)を添加し、 NaOCl+H2 O → NaOH+Cl2 で発生する塩素ガス(Cl2 )により、原水中のバクテ
リアを殺菌(または繁殖抑制)する。なお、原水として
公共水道水などの上水を利用する場合は、供給される原
水は、すでにこの滅菌処理がなされているので、この滅
菌処理は省略できる。
In this embodiment, in the sterilization stage 100, sodium hypochlorite (NaOCl) is added as a chlorinating agent to raw water consisting of surface water, river water or ground water, or mixed water thereof, and NaOCl + H 2 O → The chlorine gas (Cl 2 ) generated from NaOH + Cl 2 kills (or suppresses the reproduction of) bacteria in the raw water. When tap water such as public tap water is used as the raw water, the sterilization treatment can be omitted because the raw water supplied has already been sterilized.

【0016】前記滅菌処理段100を経た被処理水は、
pH調節段200でそのpH値を5.4〜5.8の範囲
に調節される。従来においては、この被処理水のpH値
は6.5〜7.8に調節されているため、水可溶性のフ
ミン酸−アルミニウム錯塩が生成されるためフミン酸の
除去量は原水中のフミン酸含有量の略々25%相当量に
留まり、イオン交換処理してもフミン酸−アルミニウム
錯塩が除去できず、所望とする水質のイオン交換純水が
得られない。
The water to be treated which has passed through the sterilization stage 100 is
The pH value is adjusted in the range of 5.4 to 5.8 by the pH adjusting stage 200. Conventionally, since the pH value of this treated water is adjusted to 6.5 to 7.8, a humic acid-water-soluble humic acid-aluminum complex salt is formed, so that the amount of humic acid removed is the amount of humic acid in the raw water. The amount of the humic acid-aluminum complex salt cannot be removed even by ion exchange treatment, and the desired amount of ion-exchanged pure water cannot be obtained.

【0017】次に、凝集沈澱処理段300において、前
記pH調節段200でpH値を5.4〜5.8の範囲に
調節された被処理水に、凝集剤としてPACすなわちポ
リ塩化アルミニウム((AlCl3 n :n=5〜1
5)を添加してフミン酸とその塩類を共に共沈除去す
る。このとき、必要に応じて、凝集助剤を添加すること
で、凝集塊を大きくする。
Next, in the coagulation-sedimentation treatment stage 300, the PAC, that is, polyaluminum chloride (((a), is added as a coagulant to the water to be treated whose pH value has been adjusted to the range of 5.4 to 5.8 by the pH control stage 200. AlCl 3) n: n = 5~1
5) is added to coprecipitate and remove humic acid and its salts together. At this time, if necessary, an agglomeration lump is enlarged by adding an aggregating aid.

【0018】イオン交換処理段400では、前記凝集沈
澱処理段300における沈澱槽の上澄水のイオンをイオ
ン交換樹脂で除去する。なお、このとき、必要により上
記上澄水のpHを5.4〜5.8に再調節する。上記各
処理段を経ることにより、所望とする水質の高品質の純
水の製造が可能となる。
In the ion exchange treatment stage 400, the ions in the supernatant water of the precipitation tank in the flocculation and precipitation treatment stage 300 are removed by an ion exchange resin. At this time, if necessary, the pH of the supernatant water is readjusted to 5.4 to 5.8. By passing through each of the treatment stages described above, it becomes possible to produce high-quality pure water having a desired water quality.

【0019】図2は本発明による純水製造方法の一実施
例を説明する全体工程図であって、1は原水、2は塩素
添加工程、3は滅菌した原水すなわち被処理水の貯蔵工
程、4はpH調節工程、5はPAC(凝集剤)添加工
程、5’は必要に応じて採用されるN1(凝集助剤)添
加工程、6は沈澱反応工程、7は上澄水貯蔵工程、7’
は必要に応じて追加される他のpH調節工程、8は吸着
工程、9はカチオン除去工程(プラスイオン除去工
程)、10はアニオン除去工程(マイナスイオン除去工
程)、11はカチオン/アニオン共除去工程、12は微
細異物除去工程、13は製造された純水である。図中、
図1と同一符号は同一部分に対応する。
FIG. 2 is an overall process diagram for explaining an embodiment of the pure water producing method according to the present invention, in which 1 is raw water, 2 is chlorine adding process, 3 is sterilized raw water, that is, process water is stored. 4 is a pH adjusting step, 5 is a PAC (aggregating agent) adding step, 5'is an N1 (aggregating auxiliary) adding step which is adopted as needed, 6 is a precipitation reaction step, 7 is a supernatant water storing step, 7 '
Is another pH adjusting step that is added as necessary, 8 is an adsorption step, 9 is a cation removal step (plus ion removal step), 10 is an anion removal step (minus ion removal step), 11 is cation / anion co-removal Step 12 is a fine foreign matter removing step, and 13 is manufactured pure water. In the figure,
The same reference numerals as in FIG. 1 correspond to the same parts.

【0020】なお、同図において、原水として公共上水
等を用いる場合は、滅菌工程2は省略できる。図3,図
4,図5は図2における微細異物除去工程に用いる極微
孔フィルタ(ミリポアフィルタ:商品名)上の濾過残渣
状態を示す説明図で、図2における処理条件別にそ製造
された純水の品質を示す。
In the figure, when public tap water or the like is used as raw water, the sterilization step 2 can be omitted. 3, 4 and 5 are explanatory views showing the filter residue state on the micropore filter (Millipore filter: product name) used in the step of removing fine foreign matter in FIG. 2, which is manufactured according to the processing conditions in FIG. Indicates the quality of pure water.

【0021】以下、図2の純水製造工程を図3〜図5を
参照して説明する。図2において、原水1は滅菌工程2
で塩素剤として次亜塩素酸ナトリウム(NaOCl)を
添加して滅菌する。滅菌した被処理水は貯蔵槽に一旦貯
蔵され(貯蔵工程3)、pH調節工程4においてそのp
H値が調整される。pH調節後の被処理水は、PAC工
程においてPAC((AlCl3 n :n=5〜15)
が添加されて、次の反応式により水酸化アルミニウムの
沈澱物として被処理水の一部の不純物と共に凝集沈澱す
る。 (AlCl3 n + H2 O→H2 O+3Cl2 +(OH- ) →〔Al3+(H2 O)3 (OH- 3 0 まず、図2の被処理水を滅菌工程2(図1の滅菌処理段
100に相当)で滅菌処理した被処理水のpH値を塩酸
の添加で6.5から7.8に調節後、凝集剤としてポリ
塩化アルミニウム5ppmから10ppm添加し、水酸
化アルミニウムの沈殿として被処理水の一部の不純物と
共沈除去後の上澄水を図2の吸着工程8→カチオン除去
工程9,アニオン除去工程10,カチオン/アニオン共
除去工程11からなるイオン交換処理段400で処理し
た場合、微細異物除去工程12のミリポアフィルタ(商
品名)の不純物付着状態は図3に示したように該ミリポ
アフィルタ(商品名)からなる極細孔フィルタ30の極
細孔31に目詰りを起こす異物32が残存し、所望とす
る水質の純水が得られない。
The pure water production process of FIG. 2 will be described below with reference to FIGS. In FIG. 2, raw water 1 is sterilization process 2
Then, sodium hypochlorite (NaOCl) is added as a chlorine agent to sterilize. The sterilized water to be treated is temporarily stored in the storage tank (storage step 3), and the pH is adjusted in the pH adjustment step 4.
The H value is adjusted. treated water after pH adjustment, PAC in PAC process ((AlCl 3) n: n = 5~15)
Is added to cause coagulation and precipitation together with some impurities of the water to be treated as a precipitate of aluminum hydroxide according to the following reaction formula. (AlCl 3 ) n + H 2 O → H 2 O + 3Cl 2 + (OH ) → [Al 3+ (H 2 O) 3 (OH ) 3 ] 0 First, the water to be treated in FIG. The pH value of the water to be treated that has been sterilized by the sterilization stage 100 in FIG. 1) is adjusted to 6.5 to 7.8 by addition of hydrochloric acid, and then 5 to 10 ppm of polyaluminum chloride is added as a coagulant, followed by hydroxylation. Ion exchange treatment consisting of adsorption step 8 → cation removal step 9, anion removal step 10 and cation / anion co-removal step 11 of FIG. When treated in the step 400, the state of impurities adhering to the Millipore filter (trade name) in the fine foreign matter removing step 12 is visually confirmed in the pores 31 of the pole pore filter 30 made of the Millipore filter (trade name) as shown in FIG. Clog Foreign matter 32 is left can not be obtained pure water quality to be desired.

【0022】そこで、図2のpH調節工程4で被処理水
のpH値を塩酸の添加により5.4〜5.8の範囲に調
節後、沈澱反応工程6で凝集剤としてポリ塩化アルミニ
ウム20ppm〜50ppmを添加して水酸化アルミニ
ウムの沈殿として処理水の一部の不純物と共沈除去後の
上澄水を同様の吸着工程8→カチオン除去工程9,アニ
オン除去工程10,カチオン/アニオン共除去工程11
からなるイオン交換処理段400で処理した場合、微細
異物除去工程12のミリポアフィルタ(商品名)からな
る極細孔フィルタの不純物付着状態は図4に示したよう
に該ミリポアフィルタ(商品名)からなる極細孔フィル
タ30の極細孔31に目詰りを起こす異物は少なくな
り、純水の水質が大巾に良くなる。しかし、極細孔フィ
ルタ30の細孔31を目詰りさせる異物33が依然とし
て残存している。
Then, in the pH adjusting step 4 of FIG. 2, the pH value of the water to be treated is adjusted to the range of 5.4 to 5.8 by adding hydrochloric acid, and then in the precipitation reaction step 6, 20 ppm of polyaluminum chloride as a coagulant is added. The same adsorption step 8 → cation removal step 9, anion removal step 10, cation / anion co-removal step 11 in which 50 ppm was added and the supernatant water after coprecipitation with removal of some impurities in the treated water as a precipitate of aluminum hydroxide was removed
When treated with the ion exchange treatment stage 400 consisting of, the state of impurities adhered to the very fine pore filter consisting of the Millipore filter (product name) in the fine foreign matter removing step 12 consists of the Millipore filter (product name) as shown in FIG. Foreign substances that cause clogging of the polar pores 31 of the polar pore filter 30 are reduced, and the quality of pure water is greatly improved. However, the foreign matter 33 that clogs the pores 31 of the extremely fine pore filter 30 still remains.

【0023】この極細孔フィルタ30の目詰りの起因と
なる異物を分析した結果、この異物は、処理水中の不純
物であるフミン酸と凝集剤として添加したポリ塩化アル
ミニウムとの水可溶性の反応生成物であるフミン酸−ア
ルミニウム錯塩と判った。この事実を踏まえ、前記分析
結果を基に、処理水のpH値を図2のpH調節工程4で
塩酸を添加して5.4〜5.8に調節後、凝集剤として
ポリ塩化アルミニウムを75ppm〜80ppm添加し
て水酸化アルミニウムの大きく,かつ、重い粒子の沈殿
を形成させると同時に、処理水中の不純物であるフミン
酸と凝集剤として添加したポリ塩化アルミニウムの反応
生成物であるフミン酸−アルミニウムを水不溶性物質と
して水酸化アルミニウムの沈殿と共沈除去した上澄水を
上記と同様の吸着工程8→カチオン除去工程9,アニオ
ン除去工程10,カチオン/アニオン共除去工程11か
らなるイオン交換処理段400で処理した場合、微細異
物除去工程12のミリポアフィルタ(商品名)からなる
極微細孔フィルタ30の不純物付着状態は図5に示した
ように該極微細孔フィルタ30の細孔31に目詰りを起
こす異物はなくなる。
As a result of analyzing the foreign matter that causes the clogging of the extra fine pore filter 30, the foreign matter is a water-soluble reaction product of humic acid which is an impurity in the treated water and polyaluminum chloride added as a coagulant. Humic acid-aluminum complex salt. Based on this fact, the pH value of the treated water was adjusted to 5.4 to 5.8 by adding hydrochloric acid in the pH adjusting step 4 of FIG. Humic acid-aluminum, which is a reaction product of humic acid which is an impurity in treated water and polyaluminum chloride added as a coagulant, at the same time to form a large and heavy particle precipitate of aluminum hydroxide by adding -80 ppm. The supernatant water obtained by coprecipitating and removing aluminum hydroxide as a water-insoluble substance is the same as the above adsorption step 8 → cation removal step 9, anion removal step 10, and cation / anion co-removal step 11 In the case where the treatment is carried out in accordance with FIG. Foreign matter will not cause clogging in the pores 31 of the polar microporous filter 30 as shown in.

【0024】これにより、上記pH調節工程4における
処理水のpH値を5.4〜5.8に調節することによっ
て、製造したイオン交換純水中の極微量不純物のうちの
Na,Si,Al,Ca,Mg系の化合物及び前記元素
と有機物系との化合物のうち、粒子径が0.01μmか
ら0.1μmの円形の粒子がイオン交換純水1mlあた
り10個から5万個以内である所望の純水を安定して製
造できる。
Thus, by adjusting the pH value of the treated water in the pH adjusting step 4 to 5.4 to 5.8, Na, Si, and Al among the trace impurities in the produced ion-exchanged pure water are adjusted. , Ca, Mg-based compounds and compounds of the above-mentioned elements and organic compounds, the number of circular particles having a particle diameter of 0.01 μm to 0.1 μm is 10 to 50,000 per 1 ml of ion-exchanged pure water. The pure water can be stably produced.

【0025】図6は被処理水のpH値と反応生成化学種
の関係を検証した説明図であって、図1の凝集沈澱反応
処理段でのフミン酸ーアルミニウムの生成を被処理水の
pH値と対応させて示す。同図に示したように、被処理
水のpH値が低くても、また高くてもAl3+の量が多く
なる。そして、同pH値が5.4〜5.8の範囲ではA
3+の量が最低値(20ppb)となり、除去率が9
9.2%に達する。
FIG. 6 is an explanatory view for verifying the relationship between the pH value of the water to be treated and the chemical species produced by the reaction. The production of aluminum humic acid-aluminum in the coagulation-sedimentation reaction treatment stage of FIG. It is shown in correspondence with the value. As shown in the figure, the amount of Al 3+ increases when the pH value of the water to be treated is low or high. When the pH value is in the range of 5.4 to 5.8, A
The amount of l 3+ becomes the minimum value (20 ppb) and the removal rate is 9
Reach 9.2%.

【0026】図7は被処理水のpH値と凝集沈澱反応に
よるフミン酸(TOC)除去量とアルミニウム残存量の
関係を示すグラフ図であって、pH値を5.4〜5.8
の範囲に選定することで、両者の最適残存量を設定でき
ることがわかる。図8は本発明による純水製造方法を実
施する純水製造装置の概略構成を示す説明図であって、
301は被処理水(ここでは公共水道から供給される上
水)の貯蔵槽、401はpH調節槽、601は沈澱反応
槽、701は上澄水貯留槽、801は活性炭または逆浸
透膜処理槽、901はカチオン除去塔、1001はアニ
オン除去塔、1101はカチオン/アニオン共除去塔、
1201はフィルタ槽、1301は純水貯蔵槽である。
FIG. 7 is a graph showing the relationship between the pH value of the water to be treated, the amount of humic acid (TOC) removed by the coagulation-precipitation reaction, and the amount of residual aluminum. The pH value is 5.4 to 5.8.
It is understood that the optimum remaining amount of both can be set by selecting the range of. FIG. 8 is an explanatory view showing a schematic configuration of a pure water production apparatus for carrying out the pure water production method according to the present invention,
301 is a storage tank for water to be treated (here, tap water supplied from public water supply), 401 is a pH adjusting tank, 601 is a precipitation reaction tank, 701 is a supernatant water storage tank, 801 is an activated carbon or reverse osmosis membrane treatment tank, 901 is a cation removal tower, 1001 is an anion removal tower, 1101 is a cation / anion co-removal tower,
Reference numeral 1201 is a filter tank, and 1301 is a pure water storage tank.

【0027】同図において、貯蔵槽301に受けた上水
のpH値を、pH調節槽401で塩酸を添加しpH5.
4〜5.8に調節する。pH5.4〜5.8に調節した
被処理水は沈澱反応槽601でPACを添加(必要に応
じてN1を添加)することで前記したフミン酸−アルミ
ニウムの凝集沈澱を行わせる。沈澱反応槽601の上澄
水は一旦上澄水貯蔵槽701に貯蔵される。
In the figure, the pH value of the tap water received in the storage tank 301 is adjusted to pH 5 by adding hydrochloric acid in the pH adjusting tank 401.
Adjust to 4-5.8. The water to be treated whose pH has been adjusted to 5.4 to 5.8 is added with PAC in the precipitation reaction tank 601 (N1 is added if necessary) to cause the humic acid-aluminum aggregation and precipitation described above. The supernatant water of the precipitation reaction tank 601 is temporarily stored in the supernatant water storage tank 701.

【0028】この上澄水は活性炭/RO膜処理槽801
で活性炭または逆浸透膜(RO膜)で不純物の吸着処理
が行われ、カチオン除去塔901に至る。カチオン除去
塔901ではイオン交換樹脂によるプラスイオンの除去
がなされ、次いでアニオン除去塔1001でマイナスイ
オンの除去がなされる。残留するプラスイオンとマイナ
スイオンはカチオン/アニオン共除去塔1101を通す
ことにより除去する。
This supernatant water is an activated carbon / RO membrane treatment tank 801.
At this point, the adsorption treatment of impurities is performed by the activated carbon or the reverse osmosis membrane (RO membrane), and the cation removal tower 901 is reached. The cation removing tower 901 removes positive ions with an ion exchange resin, and then the anion removing tower 1001 removes negative ions. The remaining positive ions and negative ions are removed by passing through a cation / anion co-removal column 1101.

【0029】イオン交換処理された被処理水は、ミリポ
アフィルタ(商品名)からなる極微フィルタを備えたフ
ィルタ槽1201で極微の異物除去の処理を施され、純
水貯蔵槽1301に純水製品として貯蔵される。純水貯
蔵槽1301に貯蔵された純水は、必要とされる電子デ
バイス等の製造部署に給水される。
The water to be treated which has been subjected to the ion exchange treatment is subjected to a treatment for removing minute foreign matters in a filter tank 1201 equipped with a minute filter consisting of a Millipore filter (trade name), and is then stored in a pure water storage tank 1301 as a pure water product. Stored. The pure water stored in the pure water storage tank 1301 is supplied to the manufacturing department of the required electronic device or the like.

【0030】このようにして製造した純水を、例えば電
子デバイス等の部品洗浄水として用いることにより、高
清浄度の清浄を行うことができる。
By using the pure water produced in this way as water for washing parts such as electronic devices, it is possible to perform cleaning with a high degree of cleanliness.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
製造した純水を半導体,陰極線管,その他の電子デバイ
スの製造における洗浄水として用いることで高清浄度の
洗浄を行うことができる。図9は本発明により製造した
純水による洗浄効果を従来技術により製造した純水によ
る洗浄効果と比較して示す洗浄部品のミクロ領域を拡大
した説明図であって、同図(a)は本発明により製造し
た純水により洗浄した部品表面、(b)は従来技術によ
り製造した純水により洗浄した部品表面をそれぞれ示
す。
As described above, according to the present invention,
Highly cleanliness can be achieved by using the produced pure water as washing water in the production of semiconductors, cathode ray tubes and other electronic devices. FIG. 9 is an explanatory view showing an enlarged micro region of a cleaning part showing the cleaning effect of pure water manufactured by the present invention in comparison with the cleaning effect of pure water manufactured by a conventional technique. The surface of the component cleaned with pure water manufactured according to the invention, and (b), the surface of the component cleaned with pure water manufactured by the prior art.

【0032】同図(a)と同図(b)とを比較して分か
るように、本発明により製造した純水で洗浄した部品表
面(a)には、同(b)に示された異物34は殆ど存在
しない。したがって、本発明により製造した純水を洗浄
水として使用することにより、浄部品表面の高清浄度を
確保でき、その部品を使用した半導体,陰極線管,その
他の電子製品等の大幅な高性能化及び高信頼性化を図る
ことできる。
As can be seen by comparing FIG. 11A and FIG. 11B, the surface of the component (a) washed with pure water manufactured according to the present invention has the foreign matter shown in FIG. 34 is almost nonexistent. Therefore, by using the pure water produced by the present invention as cleaning water, a high cleanliness of the surface of the cleaning component can be ensured, and the semiconductor, cathode ray tube, and other electronic products using the component can be significantly improved in performance. Also, high reliability can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による純水製造方法の一実施例の工程を
説明する要部処理段の模式図である。
FIG. 1 is a schematic view of a main processing stage for explaining a process of an embodiment of a pure water producing method according to the present invention.

【図2】本発明による純水製造方法の一実施例を説明す
る全体工程図である。
FIG. 2 is an overall process diagram illustrating an embodiment of the pure water production method according to the present invention.

【図3】純水製造工程における極微細異物除去工程に用
いる極微孔フィルタ上の濾過残渣状態を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing a filtration residue state on an ultrafine pore filter used in an ultrafine foreign matter removing step in a pure water producing step.

【図4】純水製造工程における微細異物除去工程に用い
る極微孔フィルタ上の他の濾過残渣状態を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing another filtration residue state on the micropore filter used in the step of removing fine foreign matter in the step of producing pure water.

【図5】本発明のよる純水製造工程における微細異物除
去工程に用いる極微孔フィルタ上の濾過残渣状態を示す
説明図である。
FIG. 5 is an explanatory diagram showing a filtration residue state on an ultrafine pore filter used in a step of removing fine foreign matter in the step of producing pure water according to the present invention.

【図6】被処理水のpH値と反応生成化学種の関係を検
証した説明図である。
FIG. 6 is an explanatory diagram for verifying the relationship between the pH value of the water to be treated and the reaction-produced chemical species.

【図7】被処理水のpH値と凝集沈澱反応によるフミン
酸(TOC)除去量とアルミニウム残存量の関係を示す
グラフ図である。
FIG. 7 is a graph showing the relationship between the pH value of water to be treated, the amount of humic acid (TOC) removed by the coagulation-precipitation reaction, and the amount of residual aluminum.

【図8】本発明による純水製造方法を実施する純水製造
装置の一例の概略構成を示す説明図である。
FIG. 8 is an explanatory diagram showing a schematic configuration of an example of a pure water production apparatus for carrying out the pure water production method according to the present invention.

【図9】本発明により製造した純水による洗浄効果を従
来技術により製造した純水による洗浄効果と比較して示
す洗浄部品のミクロ領域を拡大した説明図である。
FIG. 9 is an explanatory view showing an enlarged micro region of a cleaning component showing a cleaning effect of pure water manufactured by the present invention and a cleaning effect of pure water manufactured by a conventional technique.

【符号の説明】[Explanation of symbols]

100 滅菌処理段 200 pH調節段 300 凝集沈澱処理段 400 イオン交換処理段 1 原水 2 滅菌工程 3 彫像工程 4 pH調整工程 5 PAC添加工程 5’ N1添加工程 6 沈澱反応工程 7 上澄水貯蔵工程 7’ pH調節工程 8 吸着工程 9 カチオン除去工程 10 アニオン除去工程 11 カチオン/アニオン共除去工程 12 微細異物除去工程 13 純水 100 Sterilization stage 200 pH adjustment stage 300 Coagulation sedimentation treatment stage 400 Ion exchange treatment stage 1 Raw water 2 Sterilization process 3 Engraving process 4 pH adjustment process 5 PAC addition process 5'N1 addition process 6 Precipitation reaction process 7 Supernatant water storage process 7 ' pH adjustment step 8 Adsorption step 9 Cation removal step 10 Anion removal step 11 Cation / anion co-removal step 12 Fine foreign matter removal step 13 Pure water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/76 A 9045−4D // C02F 1/52 K 7824−4D (72)発明者 森下 敏和 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 川越 弘美 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内 (72)発明者 渡辺 澄子 千葉県茂原市早野3300番地 株式会社日立 製作所茂原工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C02F 1/76 A 9045-4D // C02F 1/52 K 7824-4D (72) Inventor Toshikazu Morishita 3300 Hayano, Mobara-shi, Chiba Hitachi Ltd. Mobara factory (72) Inventor Hiromi Kawagoe 3300, Hayano Mobara city, Chiba Prefecture Hitachi, Ltd. Mobara plant (72) Inventor Sumiko Watanabe 3300 Hayano Mobara, Chiba shares Hitachi, Ltd. Mobara factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表流水,河川水または地下水、あるいはそ
れらの混合水からなる原水中の不純物を除去して純水を
得るための純水製造方法において、 前記原水に塩素剤を添加して滅菌処理する滅菌処理段
と、 前記滅菌処理した被処理水のpH値を5.4〜5.8の
範囲に調節するpH調節段と、 前記pH調節した被処理水に凝集剤を添加してフミン酸
とその塩類を共沈除去する凝集沈澱処理段と、 前記凝集沈澱処理した被処理水のイオンを除去するイオ
ン交換処理段と、を製造処理中に有することを特徴とす
る純水製造方法。
1. A pure water production method for obtaining pure water by removing impurities in raw water consisting of surface water, river water or ground water, or mixed water thereof, and sterilizing by adding a chlorine agent to the raw water. A sterilization stage for treatment, a pH adjustment stage for adjusting the pH value of the sterilized water to be treated to a range of 5.4 to 5.8, and a humin by adding a coagulant to the pH-treated water. A method for producing pure water, comprising a coagulation-precipitation treatment stage for coprecipitating and removing an acid and salts thereof, and an ion exchange treatment stage for removing ions of the coagulation-precipitation-treated water to be treated.
【請求項2】表流水、河川水または地下水、あるいはそ
れらの混合水からなる原水中の不純物を除去して純水を
得るための純水製造方法において、 前記原水に次亜塩素酸ナトリウムを添加して滅菌工程
と、 前記滅菌処理した被処理水に、塩酸を添加してそのpH
値を5.4〜5.8の範囲に調節するpH調節工程と、 前記pH調節した被処理水に75ppb〜100ppb
のポリ塩化アルミニウムを添加して、前記被処理水中の
フミン酸とその塩類をアルミニウムの水酸化物として他
の不純物と共沈除去する沈澱反応工程と、 前記沈澱反応工程を経た被処理水の上澄水を活性炭また
は逆浸透膜の何れかあるいは双方を用いて除去する処理
工程と、 前記処理工程を経た被処理水中のプラスおよびマイナス
のイオンをイオン交換樹脂に通すことにより除去するイ
オン交換処理工程と、 前記イオン交換処理工程を経た被処理水を極微細孔フィ
ルタに通して微細異物を除去する微細異物除去工程と、
を製造工程中に有することを特徴とする純水製造方法。
2. A pure water producing method for obtaining pure water by removing impurities in raw water consisting of surface water, river water, ground water, or a mixed water thereof, wherein sodium hypochlorite is added to the raw water. Sterilization step, and adding pH to the sterilized water to be treated
PH adjusting step of adjusting the value in the range of 5.4 to 5.8, and 75 ppb to 100 ppb of the pH-adjusted water to be treated.
A precipitation reaction step of adding polyaluminum chloride to remove co-precipitate humic acid and its salts as aluminum hydroxide with other impurities in the water to be treated; A treatment step of removing clear water using either or both of activated carbon and a reverse osmosis membrane, and an ion exchange treatment step of removing positive and negative ions in the water to be treated after the treatment step through an ion exchange resin, A fine foreign matter removing step of removing fine foreign matter by passing the water to be treated through the ion exchange treatment step through an ultrafine pore filter,
A method for producing pure water, comprising:
JP4037567A 1992-02-25 1992-02-25 Pure water preparation Pending JPH05237497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037567A JPH05237497A (en) 1992-02-25 1992-02-25 Pure water preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037567A JPH05237497A (en) 1992-02-25 1992-02-25 Pure water preparation

Publications (1)

Publication Number Publication Date
JPH05237497A true JPH05237497A (en) 1993-09-17

Family

ID=12501109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037567A Pending JPH05237497A (en) 1992-02-25 1992-02-25 Pure water preparation

Country Status (1)

Country Link
JP (1) JPH05237497A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094038A1 (en) * 1999-10-22 2001-04-25 Koch Microelectronic Service Company, Inc. A process for treating water containing copper
JP2003164874A (en) * 2001-12-03 2003-06-10 Sanyo Aqua Technology Co Ltd Apparatus for removing object to be removed of fluid, apparatus for making pure water and method of making pure water
JP2008086966A (en) * 2006-10-05 2008-04-17 Nomura Micro Sci Co Ltd Method and apparatus for producing pure water
JP2008284469A (en) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd Pretreatment method for reverse osmosis membrane treatment
JP2015226866A (en) * 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
JP2017507013A (en) * 2013-12-30 2017-03-16 エコラブ ユーエスエイ インク How to reduce the use of industrial water
CN107986523A (en) * 2017-11-22 2018-05-04 苏州雷沃克环保科技有限公司 A kind of synthetic filter bactericidal purifying treatment process of industrial wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094038A1 (en) * 1999-10-22 2001-04-25 Koch Microelectronic Service Company, Inc. A process for treating water containing copper
JP2003164874A (en) * 2001-12-03 2003-06-10 Sanyo Aqua Technology Co Ltd Apparatus for removing object to be removed of fluid, apparatus for making pure water and method of making pure water
JP2008086966A (en) * 2006-10-05 2008-04-17 Nomura Micro Sci Co Ltd Method and apparatus for producing pure water
JP2008284469A (en) * 2007-05-18 2008-11-27 Hitachi Plant Technologies Ltd Pretreatment method for reverse osmosis membrane treatment
JP2017507013A (en) * 2013-12-30 2017-03-16 エコラブ ユーエスエイ インク How to reduce the use of industrial water
JP2015226866A (en) * 2014-05-30 2015-12-17 栗田工業株式会社 Evaluation method for ion exchange device feed water and driving control method therefor
CN107986523A (en) * 2017-11-22 2018-05-04 苏州雷沃克环保科技有限公司 A kind of synthetic filter bactericidal purifying treatment process of industrial wastewater

Similar Documents

Publication Publication Date Title
EP0421399B1 (en) Method of treating fluoride-containing water
JP2902511B2 (en) Ultrapure water production apparatus, production method, and production apparatus control method
JPH09192661A (en) Ultrapure water producing device
TW200911691A (en) Method for recovering iodine from waste fluid in polarizing film production
WO2015181999A1 (en) Water treatment device and water treatment method
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP3646900B2 (en) Apparatus and method for treating boron-containing water
US11220448B2 (en) Process and apparatus for enriching silicate in drinking water
WO2003008336A2 (en) Reverse osmosis pretreatment using low pressure filtration
EP2993159B1 (en) Water treatment device and water treatment method
JPH05237497A (en) Pure water preparation
JP2000254659A (en) Treatment of cmp waste liquid
JP3656458B2 (en) Pure water production method
JPH02157090A (en) Treatment of heavy metal-containing waste water
JPH0638953B2 (en) High-purity water manufacturing equipment
JPS6336890A (en) Apparatus for producing high-purity water
JP3319053B2 (en) Treatment method for fluoride-containing water
JP2009125708A (en) Method for treating cmp wastewater
JPH10314735A (en) Pure water preparation process
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JP2007090266A (en) Water treatment method and water treatment apparatus
JP3215277B2 (en) Method and apparatus for producing pure water or ultrapure water from which boron has been removed
JP3622407B2 (en) Water treatment method
JPH0697141A (en) Method and equipment for cleaning electronic device, and evaluating method for electronic device manufactured by employing silicon wafer or glass substrate thus cleaned and pure water employed therein