JPH0523700B2 - - Google Patents

Info

Publication number
JPH0523700B2
JPH0523700B2 JP13128386A JP13128386A JPH0523700B2 JP H0523700 B2 JPH0523700 B2 JP H0523700B2 JP 13128386 A JP13128386 A JP 13128386A JP 13128386 A JP13128386 A JP 13128386A JP H0523700 B2 JPH0523700 B2 JP H0523700B2
Authority
JP
Japan
Prior art keywords
light
detector
light source
measuring device
radiation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13128386A
Other languages
Japanese (ja)
Other versions
JPS62287123A (en
Inventor
Isao Hishikari
Toshihiko Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP13128386A priority Critical patent/JPS62287123A/en
Publication of JPS62287123A publication Critical patent/JPS62287123A/en
Publication of JPH0523700B2 publication Critical patent/JPH0523700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鋼板等の測定対象(物)の放射率
および温度の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for measuring the emissivity and temperature of an object (object) to be measured such as a steel plate.

[従来の技術] 出願人は、たとえば特開昭57−161521号公報に
あるように、比較熱板(補助熱源、放射源)と測
定対象との距離を変化させたときの放射検出器の
出力変化から測定対象の放射率を求める方法を提
案している。
[Prior Art] The applicant has proposed, for example, the output of a radiation detector when the distance between the comparison heat plate (auxiliary heat source, radiation source) and the measurement object is changed, as disclosed in Japanese Patent Application Laid-open No. 161521/1983. We have proposed a method to determine the emissivity of the measurement target from the change.

[この発明が解決しようとする問題点] しかしながら、この方法では、比較熱板を駆動
する装置が大型なものとなつてしまう等の問題点
を生じている。
[Problems to be Solved by the Invention] However, this method has problems such as the need for a large device for driving the comparative hot plate.

この発明の目的は、以上の点に鑑み、より簡便
に、対象の放射率および温度を測定する装置を提
供することである。
In view of the above points, an object of the present invention is to provide a device that more easily measures the emissivity and temperature of an object.

[問題点を解決するための手段] この発明は、測定対象の測定位置の法線に対し
少くとも2個以上の所定角度で投光または受光す
る光源および検出器と、この検出器による異つた
角度についての投光・受光による2つの検出信号
の各々と光源からの光が来ないときの検出信号と
の差の比である寄与率の比が寄与率の差と所定の
関係にあることに基いて放射率を求め、この放射
率から測定対象の温度を演算する演算手段とを備
えるようにした放射温度測定装置である。
[Means for Solving the Problems] The present invention includes a light source and a detector that emit or receive light at at least two or more predetermined angles with respect to the normal to a measurement position of a measurement object, and a light source and a detector that emit light or receive light at at least two predetermined angles with respect to the normal to a measurement position of a measurement object, and a The contribution rate ratio, which is the ratio of the difference between each of the two detection signals due to light emission and light reception with respect to angle and the detection signal when no light is coming from the light source, has a predetermined relationship with the contribution rate difference. This radiation temperature measuring device is equipped with a calculating means for determining emissivity based on the emissivity and calculating the temperature of the object to be measured from this emissivity.

[実施例] 第1図は、この発明の第1の一実施例を示す構
成説明図である。
[Embodiment] FIG. 1 is a configuration explanatory diagram showing a first embodiment of the present invention.

図において、1は、測定対象、21,22は、
測定対象1に光を投光する光源、3は、光源2
1,22からの光が測定対象1で反射した光等を
受光する光電素子のような検出器、4は、検出器
3からの検出信号により所定の演算を行うアナロ
グ回路、マイクロコンピユータ、パーソナルコン
ピユータ等の演算手段である。測定対象1の測定
位置Pの法線lに対し、光源21は角度θ1、光源
22は角度θ2の所定角度で投光し、検出器3は角
度θ0の所定角度で受光する。また、光源21,2
2は、スイツチ手段S1、S2により電源Eをオン・
オフすることにより点灯・消灯の制御がされ、視
野を限定するロツドレンズ、マイクロレンズ等の
視野限定手段L1,L2,L3が光源21,22、検
出器3に設けられている。なお、たとえば演算手
段4で、スイツチ手段S1、S2の制御を行うように
する。
In the figure, 1 is the measurement target, 21 and 22 are
A light source that emits light to measurement object 1, 3 is light source 2
A detector such as a photoelectric element that receives light reflected by the measurement object 1 from 1 and 22; 4 is an analog circuit, a microcomputer, and a personal computer that performs predetermined calculations based on the detection signal from the detector 3; It is a calculation means such as. The light source 21 emits light at a predetermined angle θ 1 , the light source 22 emits light at a predetermined angle θ 2 , and the detector 3 receives the light at a predetermined angle θ 0 with respect to the normal l to the measurement position P of the measurement object 1 . In addition, the light sources 21, 2
2 turns on the power supply E by the switch means S 1 and S 2 .
The light sources 21 and 22 and the detector 3 are provided with visual field limiting means L 1 , L 2 , L 3 such as rod lenses and microlenses, which are controlled to turn on and off by turning them off. Note that, for example, the calculation means 4 controls the switch means S 1 and S 2 .

測定対象1の温度をT、放射率をε、光源2
1,22の放射エネルギーをEr、検出器3の出
力信号をEi、周囲温度をTa、温度Tの黒体相当
の放射エネルギーをE(T)とする。
Temperature of measurement object 1 is T, emissivity is ε, light source 2
Let Er be the radiant energy of 1 and 22, Ei be the output signal of the detector 3, Ta be the ambient temperature, and E(T) be the radiant energy equivalent to a black body at temperature T.

スイツチ手段S1、S2の両方がオフで光源21,
22が消灯し、測定対象1からの放射エネルギー
のみを検出する状態、スイツチ手段S1がオンで光
源21が点灯の状態、スイツチ手段S2がオンで光
源22が点灯の状態の各々の状態での検出器3の
出力信号E0、E1、E2は次のようになる。
When both the switch means S 1 and S 2 are off, the light source 21,
22 is off and only the radiant energy from the measurement object 1 is detected; switch means S 1 is on and the light source 21 is on; and switch S 2 is on and the light source 22 is on. The output signals E 0 , E 1 , E 2 of the detector 3 are as follows.

E0=εE(T)+(1−ε)E(Ta) ……(1) E1=εE(T)+g1(1−ε)Er +(1−g1)(1−ε)E(Ta) ……(2) E2=εE(T)+g2(1−ε)Er +(1−g2)(1−ε)E(Ta) ……(3) ここで、g1、g2は、光源2からの放射エネルギ
ーが測定対象1で乱反射されて検出器3に入射す
る割合である。
E 0 = εE(T) + (1-ε) E (Ta) ...(1) E 1 = εE(T) + g 1 (1-ε) Er + (1-g 1 ) (1-ε) E (Ta) ……(2) E 2 =εE(T)+g 2 (1−ε)Er +(1−g 2 )(1−ε)E(Ta)……(3) Here, g 1 , g 2 is the rate at which the radiant energy from the light source 2 is diffusely reflected by the measurement object 1 and enters the detector 3.

つまり、光源21,22からの光が来ないとき
の(1)式右辺第1項は測定対象1自体からの放射エ
ネルギー、第2項は図示しない壁面等の周囲の温
度Taによる放射エネルギーの寄与分である。(2)、
(3)式右辺第2項は光源21または22からの寄与
分、第3項は周囲からの寄与分である。
In other words, when no light comes from the light sources 21 and 22, the first term on the right side of equation (1) is the radiant energy from the measurement object 1 itself, and the second term is the contribution of the radiant energy due to the ambient temperature Ta of the wall surface (not shown), etc. It's a minute. (2),
The second term on the right side of equation (3) is the contribution from the light source 21 or 22, and the third term is the contribution from the surroundings.

(2)式から(1)式を減算し、(3)式から(1)式を減算す
ると次式が得られる。
By subtracting equation (1) from equation (2) and subtracting equation (1) from equation (3), the following equation is obtained.

E1−E0=g1(1−ε)Er −g1(1−ε)E(ta) E2−E0=g2(1−E)Er −g2(1−ε)E(Ta) その比Rをとると次式が得られる。E 1 −E 0 =g 1 (1−ε)Er −g 1 (1−ε)E(ta) E 2 −E 0 =g 2 (1−E)Er −g 2 (1−ε)E( Ta) Taking the ratio R, the following formula is obtained.

R=(E2−E0)/(E1−E0) =g2/g1 ……(4) また、(2)、(3)式を辺々差し引くと次式が得られ
る。
R=(E 2 −E 0 )/(E 1 −E 0 )=g 2 /g 1 (4) Further, by subtracting equations (2) and (3), the following equation is obtained.

E1−E2=(g1−g2)(1−ε) {Er−E(Ta)} これより、放射率εは、次式となる。E 1 −E 2 =(g 1 −g 2 )(1−ε) {Er−E(Ta)} From this, the emissivity ε becomes the following formula.

ε=1−(E1−E2)/[(g1−g2)・ {Er−E(Ta)}] ……(5) ここで、D=g1−g2と、R=g2/g1との関係
は、第2図で示すようにD=f(R)で、所定の関数
関係にあることが実験的に見い出された。つま
り、RからDを求めることができ、(5)式右辺のそ
の他の値は、測定等により求まるので、放射率ε
を求めることができる。
ε=1−(E 1 −E 2 )/[(g 1 −g 2 )・{Er−E(Ta)}] …(5) Here, D=g 1 −g 2 and R=g It has been experimentally found that the relationship with 2 /g 1 is D=f(R) as shown in FIG. 2, which is a predetermined functional relationship. In other words, D can be found from R, and the other values on the right side of equation (5) can be found through measurements, etc., so the emissivity ε
can be found.

そして、(1)式より E(T)={E0−(1−ε)E(Ta)}/ε……(6) であるから、この(6)式に、(5)式より求めた放射率
ε等を代入して、測定対象1の真温度が求まる。
Then, from equation (1), E(T) = {E 0 − (1-ε) E(Ta)}/ε...(6), so in equation (6), we can calculate from equation (5). By substituting the emissivity ε, etc., the true temperature of the measurement object 1 can be found.

つまり、測定前あらかじめ、第2図で示すよう
に、測定により求めたDとRとの関数関係D=f
(R)を演算手段4に記憶する。
In other words, before the measurement, as shown in FIG. 2, the functional relationship D=f between D and R obtained by measurement
(R) is stored in the calculation means 4.

次に、測定時、スイツチ手段S1、S2をオン、オ
フし、光源21,22の点灯、消灯の制御を行
い、(1)、(2)、(3)式のE0、E1、E2を検出器3で検
出し、また周囲の温度Tr、光源2の放射エネル
ギーErを図示しない温度検出器等で検出し、そ
れぞれ演算手段4に供給する。
Next, during measurement, the switch means S 1 and S 2 are turned on and off to control the lighting and extinguishment of the light sources 21 and 22, and E 0 and E 1 in equations (1), (2), and (3) are controlled. , E 2 are detected by the detector 3, and the ambient temperature Tr and the radiant energy Er of the light source 2 are detected by a temperature detector (not shown), etc., and are supplied to the calculation means 4, respectively.

演算手段4は、信号E0、E1、E2より、(4)式の
比Rを求め、これよりDを求め、また、信号Ta
よりE(Ta)を演算し、(5)式右辺の演算を行つて
放射線εを求める。また、放射率εを用いて(6)式
の演算を行つて測定対象1の温度Tを求めること
ができる。
The calculation means 4 calculates the ratio R of equation (4) from the signals E 0 , E 1 , and E 2 , calculates D from this, and calculates the signal Ta.
Then, calculate E(Ta) and calculate the right side of equation (5) to find the radiation ε. Furthermore, the temperature T of the measurement object 1 can be determined by calculating equation (6) using the emissivity ε.

第3図は、この発明の第2の一実施例を示す構
成説明図である。この例では、1個の光源2を法
線lに対して角度θ0で投光し、角度θ1、θ2で2個
の検出器31,32で受光している。スイツチS
をオン・オフし、光源2が点灯状態のときの検出
器31,32の出力E1、E2、光源2が消灯のと
きの検出器31,32のいずれかの出力E0を用
い、上記(1)〜(6)式により、同様にして測定対象1
の放射率ε、温度Tが求まる。
FIG. 3 is a configuration explanatory diagram showing a second embodiment of the present invention. In this example, one light source 2 emits light at an angle θ 0 with respect to the normal l, and the light is received by two detectors 31 and 32 at angles θ 1 and θ 2 . Switch S
on and off, and using the outputs E 1 and E 2 of the detectors 31 and 32 when the light source 2 is on, and the output E 0 of either of the detectors 31 and 32 when the light source 2 is off, the above Similarly, by equations (1) to (6), measurement target 1
The emissivity ε and temperature T are determined.

第4図は、第3の一実施例を示す構成説明図で
ある。この例では、第3図の第2の実施例におい
て、光源2の光を第5図のような切欠をもつチヨ
ツパ5により断続し、光フアイバ61を介し測定
対象1に投光し、再び光フアイバ62,63で集
光して検出器31,32で受光している。この場
合、光フアイバ61,62,63を用いているの
で、検出部は小型、無誘導化され、チヨツパ5に
より光源2を断続しているので光源2は安定とな
る。演算は、前述の実施例と同様である。また、
フアイバの先端に視野測定手段L1,L2,L3を設
けている。なお、この例では、光源2の法線に対
する投光角度θ0、検出器31の受光角度θ1は、ほ
ぼθ0=θ1=0で測定対象1の垂直方向から投光、
受光する例が図示してある。
FIG. 4 is a configuration explanatory diagram showing a third embodiment. In this example, in the second embodiment shown in FIG. 3, the light from the light source 2 is interrupted by a chopper 5 having a notch as shown in FIG. The light is collected by fibers 62 and 63 and received by detectors 31 and 32. In this case, since the optical fibers 61, 62, and 63 are used, the detection section is small and non-guided, and since the light source 2 is interrupted by the chopper 5, the light source 2 is stable. The calculations are similar to those in the previous embodiment. Also,
Visual field measuring means L 1 , L 2 , L 3 are provided at the tips of the fibers. In this example, the light projection angle θ 0 with respect to the normal line of the light source 2 and the light reception angle θ 1 of the detector 31 are approximately θ 01 =0, and the light is projected from the vertical direction of the measurement object 1.
An example of receiving light is shown.

第6図は、第4の実施例を示す構成説明図であ
る。この例は、第1図の例において、光源2の光
を第7図のような2種の開孔をもつチヨツパ5に
より断続し、光フアイバ61,62を介して測定
対象1に投光し、再び光フアイバ63を介して検
出器3で受光している。チヨツパ5の開孔51,
51により光フアイバ61より投光され、開光5
2,52により光フアイバ62より投光される。
FIG. 6 is a configuration explanatory diagram showing a fourth embodiment. In this example, in the example shown in FIG. 1, the light from the light source 2 is interrupted by a chopper 5 having two types of apertures as shown in FIG. , the light is again received by the detector 3 via the optical fiber 63. Opening hole 51 of Chiyotsupa 5,
51, the light is emitted from the optical fiber 61, and the light is opened 5
2 and 52, the light is emitted from the optical fiber 62.

また、多数の角度についての投光・受光が得ら
れるよう光源・検出器等を配置し、測定対象の表
面状態等により、適当な角度のものを選択して演
算するようにしてもよい。
Alternatively, light sources, detectors, etc. may be arranged so that light can be emitted and received at many angles, and an appropriate angle may be selected and calculated depending on the surface condition of the object to be measured.

[発明の効果] あらかじめ、寄与率の差が寄与率の比と所定の
関係にあることを用いて、放射率、温度を測定す
るようにしているので、簡単な構成で、放射率補
正された正しい測定対象の温度を測定することが
できる。特に熱源をもたないので発熱による検出
器等の劣化もなく、熱源を動かす大きな可動部等
はもたないので小型、コンパクトなものとなる。
また、光フアイバを用いることにより無誘導のも
のとなる。
[Effect of the invention] Since emissivity and temperature are measured in advance by using the fact that the difference in contribution rates has a predetermined relationship with the ratio of contribution rates, it is possible to measure emissivity and temperature with a simple configuration. It is possible to measure the temperature of the correct target. In particular, since it does not have a heat source, there is no deterioration of the detector etc. due to heat generation, and it does not have large moving parts that move the heat source, so it is small and compact.
Moreover, by using an optical fiber, it becomes non-inductive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図、第4図、第5図、第6図、第
7図は、この発明の一実施例を示す構成説明図、
第2図は、寄与率の差Dと比Rとの関係図であ
る。 1……測定対象、2,21,22……光源、
3,31,32……検出器、4……演算手段、5
……チヨツパ、61,62,63……光フアイ
バ、L1,L2,L3……視野限定手段。
FIG. 1, FIG. 3, FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are configuration explanatory diagrams showing one embodiment of the present invention;
FIG. 2 is a diagram showing the relationship between the contribution rate difference D and the ratio R. 1... Measurement object, 2, 21, 22... Light source,
3, 31, 32...Detector, 4...Calculating means, 5
...Chiyotsupa, 61, 62, 63...Optical fiber, L1 , L2 , L3 ...Visual field limiting means.

Claims (1)

【特許請求の範囲】 1 測定対象の測定位置の法線に対し2個以上の
所定角度で投光または受光する2個以上の同一放
射エネルギーの光源および1個の検出器または1
個の光源および2個以上の検出器と、検出器に異
つた角度についての投光・受光により測定対象を
反射して寄与率g1、g2でそれぞれ独立して入射
したときの2つの検出信号E1、E2の各々と光源
からの放射エネルギーがこないときの検出信号
E0との差の比R=(E2−E0)/(E1−E0)=g2/
g1を求め、この寄与率の比R=g2/g1と寄与率
の差D=(g1−g2)とのあらかじめ実験的に求め
た関係に基いて寄与率の差Dを求め、この寄与率
の差Dおよび温度検出器等で求めた周囲の温度や
光源の放射エネルギーを用いて測定対象の放射率
を求め、この放射率から測定対象の温度を求める
演算手段とを備えたことを特徴とする放射温度測
定装置。 2 1個の光源および1個の検出器の法線に対す
る投光する角度および受光する角度を一致させる
場合を含む特許請求の範囲第1項記載の放射温度
測定装置。 3 光源および検出器の法線に対する投光する角
度および受光する角度をほぼ0度としたことを特
徴とする特許請求の範囲第2項記載の放射温度測
定装置。 4 光フアイバを用い投光または受光することを
特徴とする特許請求の範囲第1項から第3項のい
ずれかに記載の放射温度測定装置。 5 光源または検出器に、屈折率分布形ロツドレ
ンズ、マイクロレンズ等の視野限定手段を設けた
ことを特徴とする特許請求の範囲第1項から第4
項のいずれかに記載の放射温度測定装置。 6 チヨツパにより光源の光を断続して投光しな
い状態とすることを特徴とする特許請求の範囲第
1項から第5項のいずれかに記載の放射温度測定
装置。
[Claims] 1. Two or more light sources of the same radiant energy that emit or receive light at two or more predetermined angles with respect to the normal to the measurement position of the measurement object, and one detector or one
Two light sources and two or more detectors, and two detection signals E1 when reflected from the measurement target by light emitting and receiving light at different angles and incident independently on the detector with contribution rates g1 and g2, respectively. , E2 and the detection signal when there is no radiant energy from the light source.
Ratio of difference from E0 = (E2 - E0) / (E1 - E0) = g2 /
g1 is calculated, and the difference D in the contribution rate is calculated based on the relationship experimentally determined in advance between the ratio of contribution rates R = g2 / g1 and the difference in contribution rates D = (g1 - g2). It is characterized by comprising a calculation means for determining the emissivity of the object to be measured using the difference D, the ambient temperature determined by a temperature detector, etc., and the radiant energy of the light source, and calculating the temperature of the object to be measured from this emissivity. Radiation temperature measurement device. 2. The radiation temperature measuring device according to claim 1, which includes a case where the light emitting angle and the light receiving angle with respect to the normal line of one light source and one detector are made to match. 3. The radiation temperature measuring device according to claim 2, wherein the light emitting angle and the light receiving angle with respect to the normal line of the light source and the detector are approximately 0 degrees. 4. The radiation temperature measuring device according to any one of claims 1 to 3, characterized in that it emits or receives light using an optical fiber. 5. Claims 1 to 4, characterized in that the light source or the detector is provided with field-of-view limiting means such as a gradient index rod lens or a microlens.
The radiation temperature measuring device according to any one of paragraphs. 6. The radiation temperature measuring device according to any one of claims 1 to 5, characterized in that the light from the light source is intermittent by a chopper so that the light is not emitted.
JP13128386A 1986-06-06 1986-06-06 Radiation temperature measuring instrument Granted JPS62287123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13128386A JPS62287123A (en) 1986-06-06 1986-06-06 Radiation temperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13128386A JPS62287123A (en) 1986-06-06 1986-06-06 Radiation temperature measuring instrument

Publications (2)

Publication Number Publication Date
JPS62287123A JPS62287123A (en) 1987-12-14
JPH0523700B2 true JPH0523700B2 (en) 1993-04-05

Family

ID=15054326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13128386A Granted JPS62287123A (en) 1986-06-06 1986-06-06 Radiation temperature measuring instrument

Country Status (1)

Country Link
JP (1) JPS62287123A (en)

Also Published As

Publication number Publication date
JPS62287123A (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US5039217A (en) Optical transceiver apparatus for detecting distance between two cars
US4647775A (en) Pyrometer 1
JPH0617826B2 (en) Pyrometer
US7809182B2 (en) Method and device for suppressing electromagnetic background radiation in an image
JP2604754B2 (en) Spectrophotometer
JPH0523700B2 (en)
JP2002323315A (en) Adjusting device for range finder
US5883719A (en) Displacement measurement apparatus and method
JP2613655B2 (en) Photoelectric switch
JPH0523701B2 (en)
SE512549C2 (en) System for virtual alignment of optical axes
JPH0521412B2 (en)
JPH0523702B2 (en)
JPH0521491B2 (en)
JPS63266410A (en) Distance measuring device for camera
JPH0523703B2 (en)
JP2568457Y2 (en) Camera ranging device
KR200267446Y1 (en) Portable thickness or width measuring device
JPH0433382B2 (en)
RU2046303C1 (en) Optical pyrometer
SU842060A1 (en) Device for control of glass mass heating
RU2053489C1 (en) Radiation pyrometer
JPH0534437A (en) Laser distance measuring apparatus
JPS5852483Y2 (en) Attitude angle detection device
JPH09126720A (en) Position detector