JPH05236938A - Method for separating cell from culture solution - Google Patents

Method for separating cell from culture solution

Info

Publication number
JPH05236938A
JPH05236938A JP35933791A JP35933791A JPH05236938A JP H05236938 A JPH05236938 A JP H05236938A JP 35933791 A JP35933791 A JP 35933791A JP 35933791 A JP35933791 A JP 35933791A JP H05236938 A JPH05236938 A JP H05236938A
Authority
JP
Japan
Prior art keywords
membrane
culture solution
separating
fine particles
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35933791A
Other languages
Japanese (ja)
Inventor
Toshiyuki Baba
俊之 馬場
Takenori Tanaka
猛訓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP35933791A priority Critical patent/JPH05236938A/en
Publication of JPH05236938A publication Critical patent/JPH05236938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To completely separate cells by a high flux in separating cells from a culture solution by using a specific turntable-like membrane separating device by using a suspension prepared by adding water-insoluble fine particles having specific particle diameters to a culture solution to reduce viscosity of the culture solution. CONSTITUTION:In separating cells from a culture solution by using a turntable- like membrane separating device having a cell separating membrane made of ceramics, water-insoluble fine particles (preferably perlite) having 0.3-40mum (preferably 5-30mum) average particle diameter are added to the culture solution to give a suspension, which is used to carry out the objective cell separation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は効率的な培養液からの菌
体の分離方法に関する。さらに詳しくは、培養液から菌
体を完全かつ高透過流束で分離する菌体の分離方法に関
する。
FIELD OF THE INVENTION The present invention relates to an efficient method for separating bacterial cells from a culture solution. More specifically, it relates to a method for separating bacterial cells from a culture solution with complete and high permeation flux.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】回転板
状膜を用いた膜分離装置は、実開昭62−130703
号公報等に記載されており、さらに該装置を用いて菌体
を分離する方法は化学工学会第23回秋季大会講演要旨
集(1990年)に開示されている。しかし、この方法
では菌体は完全に分離できるものの、培養液中の高分子
物質等の閉塞要因物質が膜を閉塞させるため、培養液の
膜透過速度が低くなる場合が多い。また、一般的な方法
として、培養液に凝集剤を添加した後、該培養液を公知
の加圧濾過機、あるいは真空濾過機等で濾過した後、更
に精密濾過により菌体を分離する方法が知られている。
しかしながらこの方法では、膜透過流束の低下を改善し
つつ菌体を完全に分離できるが、複数の工程を経るため
時間がかかり、また工程が多いために培養液中の有用物
質の回収率が低下する等の問題があり、全工程の効率は
良いものといえない。
2. Description of the Related Art A membrane separator using a rotating plate membrane is disclosed in Japanese Utility Model Laid-Open No. 62-130703.
The method for separating bacterial cells using the apparatus is disclosed in the 23rd Autumn Meeting of the Chemical Engineering Society, Abstracts (1990). However, although the bacterial cells can be completely separated by this method, the membrane permeation rate of the culture solution is often low because the occluding factor such as a polymer substance in the culture solution blocks the membrane. In addition, as a general method, after adding a flocculant to the culture medium, the culture medium is filtered by a known pressure filter, a vacuum filter or the like, and then the cells are further separated by microfiltration. Are known.
However, in this method, although it is possible to completely separate the bacterial cells while improving the decrease in the membrane permeation flux, it takes time because it involves multiple steps, and the recovery rate of useful substances in the culture solution is high because there are many steps. There are problems such as deterioration, and the efficiency of the entire process cannot be said to be good.

【0003】以上のように、従来の培養液からの菌体分
離方法は、膜透過流束の低下や分離工程の複雑化のため
全分離工程の効率が十分とはいえず、当業界ではその改
善が強く望まれていた。本発明は、この様な課題を解決
すべくなされたものである。すなわち、本発明の目的は
分離対象となる培養液に水不溶性の微粒子を添加して懸
濁液とすることにより、懸濁液の菌体分離性を良くし、
次いで該懸濁液を前記のような回転板状膜を用いた分離
装置で処理して、高透過流束で菌体を培養液から効率的
に簡易かつ完全に分離する方法を提供することにある。
As described above, in the conventional method for separating bacterial cells from a culture solution, the efficiency of the whole separation process cannot be said to be sufficient due to the reduction of the membrane permeation flux and the complication of the separation process. Improvement was strongly desired. The present invention has been made to solve such problems. That is, the object of the present invention is to improve the microbial separation of the suspension by adding water-insoluble fine particles to the culture medium to be separated to form a suspension,
Then, the suspension is treated with a separation device using a rotating plate-like membrane as described above to provide a method for efficiently and simply separating bacteria from a culture solution at a high permeation flux. is there.

【0004】[0004]

【課題を解決するための手段】本発明者らは、培養液に
水不溶性の微粒子を添加して懸濁液とし、特定の膜分離
装置を用いてその懸濁液から菌体を分離することに着目
し、鋭意検討した結果、本発明を完成するに至った。
Means for Solving the Problems The present inventors have added water-insoluble fine particles to a culture solution to prepare a suspension, and separating cells from the suspension using a specific membrane separation device. As a result of intensive studies, the present invention has been completed.

【0005】即ち、本発明の要旨は、菌体分離膜を有す
る回転板状膜分離装置を用いて培養液から菌体を分離す
る方法において、平均粒径0.3〜40μmの水不溶性
微粒子を培養液に添加して得られる懸濁液を用いること
を特徴とする菌体の分離方法に関する。
That is, the gist of the present invention is to separate water-insoluble fine particles having an average particle size of 0.3 to 40 μm in a method for separating bacterial cells from a culture solution using a rotating plate membrane separator having a bacterial cell separation membrane. The present invention relates to a method for separating bacterial cells, which comprises using a suspension obtained by adding it to a culture solution.

【0006】本発明の分離方法の対象となる培養液は、
例えばバクテリア、酵母等の微生物を培養したものでも
よいし、動物あるいは植物細胞を培養したものでもよ
い。これらの培養液は、細胞の自己消化等により高分子
の分離阻害物質等を生成することが多く、この阻害物質
は、培養液から菌体を分離する際に分離媒体に付着ある
いは堆積するために前記の回転板状膜分離装置を用いて
も、十分な透過流束を得ることが困難な場合がある。
The culture medium which is the target of the separation method of the present invention is
For example, it may be a culture of microorganisms such as bacteria and yeast, or may be a culture of animal or plant cells. These culture solutions often produce polymeric separation inhibitors and the like due to cell self-digestion and the like, because these inhibitors adhere to or accumulate on the separation medium when cells are separated from the culture solution. It may be difficult to obtain a sufficient permeation flux even if the above rotary plate-shaped membrane separation device is used.

【0007】本発明では、このような培養液に予め水不
溶性微粒子を添加して懸濁液の状態とし、該懸濁液を用
いて菌体分離を行う。添加する微粒子は、水に不溶性で
あればその材質は特に限定されることはなく、例えばシ
リカ、アルミナ等から成る無機物質でもよく、セルロー
ス、プラスチック樹脂等の有機物質でもよい。これらの
うち入手の容易さ、取扱性、菌体を含む廃スラリーの処
理性等の点からシリカ、アルミナ等から成る無機物質が
好ましい。具体的な水不溶性粒子としては、パーライ
ト、ケイソー土が好ましい。
In the present invention, water-insoluble fine particles are added to such a culture solution in advance to form a suspension, and the suspension is used for cell separation. The material of the fine particles to be added is not particularly limited as long as it is insoluble in water, and may be, for example, an inorganic substance such as silica or alumina, or an organic substance such as cellulose or plastic resin. Among these, an inorganic substance composed of silica, alumina or the like is preferred from the viewpoints of easy availability, handleability, processability of waste slurry containing bacterial cells, and the like. As specific water-insoluble particles, perlite and kieselguhr are preferable.

【0008】用いられる水不溶性微粒子の平均粒径は、
通常0.3〜40μm、好ましくは1〜30μmであ
り、更に好ましくは5〜25μmである。平均粒径が
0.3μmより小さい場合は、回転板状膜の細孔に微粒
子自身が閉塞する危険性があり好ましくない。また、平
均粒径が40μmより大きいと微粒子の単位質量当たり
の表面積が減少し、分離阻害物質の吸着捕捉効果が減少
するので好ましくない。また粒径分布は特に限定される
ものでなく、単分散性であっても、広く粒径分布してい
るものでもよい。
The average particle size of the water-insoluble fine particles used is
It is usually 0.3 to 40 μm, preferably 1 to 30 μm, and more preferably 5 to 25 μm. If the average particle size is smaller than 0.3 μm, there is a risk that the fine particles themselves may be clogged in the pores of the rotary plate film, which is not preferable. Further, if the average particle diameter is larger than 40 μm, the surface area of the fine particles per unit mass is reduced, and the adsorption and trapping effect of the separation inhibitor is reduced, which is not preferable. The particle size distribution is not particularly limited, and may be monodisperse or have a wide particle size distribution.

【0009】用いられる水不溶性微粒子の形状も特に限
定されず、球状、角状あるいは不定形でも差し支えな
い。嵩密度は、通常0.02g/cc〜0.6g/cc
であるが、培養液によく懸濁する方が効果的であるの
で、できるだけ小さい方が望ましく、0.05g/cc
〜0.4g/ccが好ましい。水不溶性微粒子の添加濃
度は、分離対象となる懸濁液の通常0.05〜3.0重
量%であり、より好ましくは0.1〜2.0重量%であ
る。このとき、培養液の性状の悪さに応じて透過流束を
向上させる目的でその量を多くすることができる。ま
た、微粒子がよく懸濁するように濾過中は培養液を攪拌
する方が望ましく、同様の目的で添加の際に予め微粒子
を分散させた分散液等を用いてもよい。
The shape of the water-insoluble fine particles used is not particularly limited and may be spherical, angular or amorphous. Bulk density is usually 0.02 g / cc to 0.6 g / cc
However, it is more effective to suspend it well in the culture solution, so it is desirable that it is as small as possible, and it is 0.05 g / cc.
~ 0.4 g / cc is preferred. The concentration of the water-insoluble fine particles added is usually 0.05 to 3.0% by weight of the suspension to be separated, and more preferably 0.1 to 2.0% by weight. At this time, the amount can be increased for the purpose of improving the permeation flux depending on the poor properties of the culture solution. Further, it is desirable to stir the culture solution during filtration so that the fine particles are well suspended, and for the same purpose, a dispersion liquid in which the fine particles are previously dispersed may be used for the same purpose.

【0010】本発明で使用される菌体分離膜を有する回
転板状膜分離装置とは、回転板状膜を用いた膜分離装置
であって、例えば前記の実開昭62−130703号公
報に開示のものが挙げられる。この装置では、膜自身が
回転するため、膜面上に形成されたゲル層(膜閉塞物質
が堆積した層)を剥離させるための膜面流速と、膜透過
の推進力となる操作圧力を独立に制御できる。このよう
に独立制御が可能となったことにより、従来の中空糸モ
ジュール型等の膜分離装置では困難であった、培養液の
菌体分離がかなり良好に行えるようになった。即ち、従
来の中空糸モジュール型等の膜分離装置では、モジュー
ル内に培養液を循環させることにより膜面流速と膜間差
圧を得るので、膜面流速と膜間差圧は同時に上昇、低下
する。したがって、膜面流速をやみくもに上昇させて
も、モジュールの膜間差圧も上昇し、膜近傍でのゲル層
の圧密化が起こり、膜透過流束および培養液中の有用物
質の回収率が低下する。一方、膜間差圧を下げるために
膜面流速を落とすと、ゲル層の剥離効果が低下し、この
場合も膜透過流束および培養液中の有用物質の回収率が
低下する。また、本発明における回転板状膜分離装置で
は、中空糸モジュール型のように循環ポンプの吐出量を
上げて膜面流速を確保する必要がないのでポンプの機械
力による溶菌が生じにくく培養液の性状悪化にともなう
膜閉塞が起こらないという長所を有する。
The rotary plate-shaped membrane separator having a microbial cell separation membrane used in the present invention is a membrane separator using a rotary plate-shaped membrane, and is disclosed in, for example, Japanese Utility Model Publication No. 62-130703. The thing of a disclosure is mentioned. In this device, since the membrane itself rotates, the membrane surface flow velocity for separating the gel layer (layer where the membrane blocking substance is deposited) formed on the membrane surface and the operating pressure that is the driving force for membrane permeation are independent. Can be controlled. By enabling independent control in this way, it has become possible to perform microbial cell separation of the culture broth quite well, which was difficult with a conventional membrane separation device such as a hollow fiber module type. That is, in a conventional membrane separation device such as a hollow fiber module type, since the membrane surface flow velocity and the transmembrane pressure difference are obtained by circulating the culture solution in the module, the membrane surface flow velocity and the transmembrane pressure difference increase and decrease at the same time. To do. Therefore, even if the membrane surface velocity is blindly increased, the transmembrane pressure difference of the module is also increased, the gel layer is consolidated in the vicinity of the membrane, and the membrane permeation flux and the recovery rate of useful substances in the culture solution are increased. descend. On the other hand, when the flow velocity on the membrane surface is reduced to reduce the transmembrane pressure difference, the gel layer peeling effect is reduced, and in this case also, the membrane permeation flux and the recovery rate of useful substances in the culture solution are reduced. Further, in the rotary plate membrane separator according to the present invention, it is not necessary to increase the discharge rate of the circulation pump to secure the membrane surface flow rate as in the hollow fiber module type, so that the lysis due to the mechanical force of the pump is less likely to occur. It has the advantage that membrane occlusion due to deterioration of properties does not occur.

【0011】本発明における回転板状膜分離装置に用い
られる回転板状膜の孔径は、通常0.1〜0.8μmで
あり、好ましくは0.1〜0.3μmである。孔径が
0.1μmより小さいと膜透過流束が十分でなくなり、
0.8μmより大きいと菌体の分離能が十分でなくな
る。また、膜の材質は例えばアルミナ、チタニア、ジル
コニア等のセラミックが好ましい。セラミック膜は耐薬
品性、耐熱性に優れ、強力な膜洗浄を行うことができる
ため、膜再生が容易である。また、セラミックのような
強力な洗浄はできないが、使用可能な膜の材質としてポ
リオレフィン、ポリスルホン、ポリアクリロニトリル、
ポリエーテルスルホン等の有機膜が挙げられる。操作温
度は、通常0〜40℃であり、好ましくは5〜30℃で
ある。操作温度が0℃未満では培養液の粘度が大きくな
るため膜透過流束が低下し、また40℃を越えると培養
液の性状が悪化し、好ましくない。
The pore size of the rotary plate-shaped membrane used in the rotary plate-shaped membrane separator of the present invention is usually 0.1 to 0.8 μm, preferably 0.1 to 0.3 μm. If the pore size is smaller than 0.1 μm, the permeation flux of the membrane becomes insufficient,
If it is larger than 0.8 μm, the ability to separate cells will be insufficient. The material of the film is preferably ceramic such as alumina, titania, zirconia. Since the ceramic membrane has excellent chemical resistance and heat resistance and can perform strong membrane cleaning, membrane regeneration is easy. Also, although it cannot be washed as strongly as with ceramics, it can be used as membrane materials such as polyolefin, polysulfone, polyacrylonitrile,
An organic film such as polyether sulfone may be used. The operating temperature is usually 0 to 40 ° C, preferably 5 to 30 ° C. If the operating temperature is lower than 0 ° C., the viscosity of the culture solution becomes large and the membrane permeation flux decreases, and if it exceeds 40 ° C., the property of the culture solution deteriorates, which is not preferable.

【0012】本発明における操作平均圧力は、通常3.
0kg/cm2 以下であり、好ましくは0.5〜2.0
kg/cm2 である。最低操作圧力は膜の回転による遠
心力に打ち勝って濾液を透過させるのに必要な値であ
り、該操作圧力は膜回転数によって決定される。また、
操作圧力が3.0kg/cm2 を越えると膜面でのゲル
層の圧密化等が生じ、これにより膜閉塞が生じて透過流
束が低下するので好ましくない。また、膜間差圧の与え
方は、原液側加圧式、透過液側減圧式あるいは両者の組
み合わせでも良い。回転板状膜の膜面速度は、膜回転数
により決定されるが、膜面外周部で0.5〜20m/s
が適当である。
The operating average pressure in the present invention is usually 3.
0 kg / cm 2 or less, preferably 0.5 to 2.0
It is kg / cm 2 . The minimum operating pressure is the value required to overcome the centrifugal force due to the rotation of the membrane and allow the filtrate to permeate, and the operating pressure is determined by the number of membrane rotations. Also,
When the operating pressure exceeds 3.0 kg / cm 2 , the gel layer is densified on the membrane surface, which causes membrane clogging and lowers the permeation flux, which is not preferable. Further, the method of applying the transmembrane pressure difference may be a stock solution side pressure type, a permeate side pressure reducing type, or a combination of both. The film surface speed of the rotating plate-like film is determined by the film rotation speed, but is 0.5 to 20 m / s at the outer peripheral part of the film surface.
Is appropriate.

【0013】[0013]

【実施例】以下、実施例および比較例により本発明をさ
らに詳しく説明するが、本発明はこれらの実施例等によ
りなんら限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0014】実施例1 以下の条件でバチルス属の菌株を培養し、該培養液から
本発明の方法により菌体を分離した(組成は重量%)。
培地は、肉エキス(OXOID社)3%、酵母エキス
(DIFCO社)0.05%、KH2 PO4 0.1%、
KCl1%、グルコース0.5%、フラクトース0.5
%、Na2 CO3 0.5%を混合溶解して調製した。3
0リットル培養槽にこの培地を18リットル仕込み、2
4時間振とうした種培養液180ミリリットルを添加し
た。培養は、温度33℃、給気空気流量9Nリットル/
分、攪拌速度400rpmの条件で30時間保持するこ
とにより行った。培養後の菌体濃度は、培養液の波長6
00nmでの濁度で測定したところ、その値は吸光度で
40であった。
Example 1 A strain of the genus Bacillus was cultured under the following conditions, and the bacterial cells were separated from the culture broth by the method of the present invention (composition: wt%).
The medium is 3% meat extract (OXOID), 0.05% yeast extract (DIFCO), 0.1% KH 2 PO 4 ,
KCl 1%, glucose 0.5%, fructose 0.5
% And Na 2 CO 3 0.5% were mixed and dissolved. Three
Charge 18 liters of this medium into a 0 liter culture tank, and
180 ml of the seed culture solution that had been shaken for 4 hours was added. Cultivation is performed at a temperature of 33 ° C. and a supply air flow rate of 9 Nl /
It was carried out by holding for 30 minutes under the conditions of a minute and a stirring speed of 400 rpm. The cell concentration after culturing is the wavelength 6 of the culture solution.
When measured by turbidity at 00 nm, the value was 40 in terms of absorbance.

【0015】上記の方法により得た培養液10リットル
を容器に入れ、平均粒径17μmのパーライトを0.5
%の濃度になるように添加して懸濁液を調製した。用い
た膜分離装置の構造を図1により以下に説明する。回転
板状膜9は、直径230mm、有効膜面積708c
2 、公称孔径0.1μmのセラミック製の円盤型膜で
ある。回転板状膜9を設置する液槽1は、ステンレス製
で内容積は1.1リットルである。回転板状膜9は、膜
回転用モーター12にベルト13を介して連動される中
空の回転軸10と一体化するように取り付けられてお
り、膜回転数は0〜1000rpmまで連続的に変える
ことができる。中空の回転軸10には、減圧ポンプ14
が接続さており、5〜760Torrの減圧が可能であ
る。上記の回転板状膜9を透過した溶液は、回転軸10
の中空部11に導入され、中空部11と減圧ポンプ14
の途中に接続されたガラス製の集液容器15に集液され
る。
10 liters of the culture solution obtained by the above method was placed in a container and 0.5% of perlite having an average particle size of 17 μm was added.
A suspension was prepared by adding so as to have a concentration of%. The structure of the membrane separator used will be described below with reference to FIG. The rotating plate-shaped film 9 has a diameter of 230 mm and an effective film area 708c.
It is a disc-shaped membrane made of ceramics having a nominal pore diameter of 0.1 μm and a m 2 . The liquid tank 1 in which the rotating plate-shaped film 9 is installed is made of stainless steel and has an internal volume of 1.1 liter. The rotating plate-shaped membrane 9 is attached to the membrane rotating motor 12 so as to be integrated with the hollow rotating shaft 10 that is interlocked via the belt 13, and the membrane rotation speed can be continuously changed from 0 to 1000 rpm. You can The hollow rotary shaft 10 has a pressure reducing pump 14
Is connected, and the pressure can be reduced to 5 to 760 Torr. The solution that has passed through the rotating plate-shaped membrane 9 is rotated by the rotating shaft 10.
Is introduced into the hollow portion 11 of the
Liquid is collected in a glass-made collecting container 15 connected midway.

【0016】以上の膜分離装置を用いて、上記の懸濁液
10リットルを膜分離装置の液槽にローラーポンプにて
導入し、循環を行った。懸濁液は氷冷し15℃に保っ
た。続いて膜回転数を600rpm(膜外周部の膜面速
度は7.2m/s)に設定し、透過側を380Torr
に減圧して(膜間差圧0.5kg/cm2 )分離操作を
行い透過液8リットルを得た。このとき、透過液の流量
を測定し、またコロニーカウント法により透過液中の菌
体の有無を調べた。
Using the above membrane separator, 10 liters of the above suspension was introduced into the liquid tank of the membrane separator by a roller pump and circulated. The suspension was ice-cooled and kept at 15 ° C. Subsequently, the film rotation speed was set to 600 rpm (the film surface speed of the film outer peripheral portion was 7.2 m / s), and the permeation side was set to 380 Torr.
The pressure was reduced to (differential membrane pressure 0.5 kg / cm 2 ) and separation operation was performed to obtain 8 liters of permeate. At this time, the flow rate of the permeate was measured and the presence or absence of bacterial cells in the permeate was examined by the colony counting method.

【0017】比較例1 パーライトを添加しない以外は実施例1と全く同じ操作
を行った。このとき、透過液の流量を測定し、またコロ
ニーカウント法により透過液中の菌体の有無を調べた。
Comparative Example 1 The same operation as in Example 1 was carried out except that pearlite was not added. At this time, the flow rate of the permeate was measured and the presence or absence of bacterial cells in the permeate was examined by the colony counting method.

【0018】以上の結果から、パーライトを添加した場
合および添加しない場合の平均透過流束を求めた。それ
を回転板状膜の単位膜面積当たりの透過液量に対して点
綴したものを図2に示す。図2から明らかなように実施
例1のようにパーライトを添加した場合は、比較例1の
ようにパーライトを添加しない場合に比べて平均透過流
束が飛躍的に向上した。また、コロニーカウント法によ
り透過液中の菌体の有無を調べたが、いずれも菌体は検
出されなかった。
From the above results, the average permeation flux with and without addition of perlite was determined. FIG. 2 shows the result obtained by stippling the permeated liquid amount per unit membrane area of the rotary plate-shaped membrane. As is clear from FIG. 2, when pearlite was added as in Example 1, the average permeation flux was dramatically improved as compared with the case where pearlite was not added as in Comparative Example 1. In addition, the presence or absence of bacterial cells in the permeated liquid was examined by the colony counting method, but no bacterial cells were detected.

【0019】[0019]

【発明の効果】本発明では、菌体分離に先立ち培養液に
前記の水不溶性微粒子を添加して懸濁液とすることによ
り培養液の粘度が低下し(該微粒子に分離阻害物質が吸
着捕捉されるものと考えられる)、また該微粒子がゲル
層に衝突して剥離させるため膜面にゲル層が形成されに
くい。このため、本発明における回転板状膜分離装置を
用いる事により、分離阻害物質が大量に存在する培養液
に対しても高透過流束で菌体を完全に分離することが可
能となる。その結果、装置のコンパクト化が可能とな
り、また培養液から1工程で菌体を分離することが可能
であるため、培養液中に存在する酵素等の有用物質の回
収効率も向上させることができる。
According to the present invention, the viscosity of the culture solution is lowered by adding the above-mentioned water-insoluble fine particles to the culture solution prior to the separation of the bacterial cells to form a suspension (the separation inhibitor is adsorbed and captured by the fine particles. It is considered that the fine particles collide with the gel layer and separate the fine particles, so that the gel layer is not easily formed on the film surface. Therefore, by using the rotating plate-shaped membrane separation device of the present invention, it becomes possible to completely separate the bacterial cells with a high permeation flux even in a culture solution containing a large amount of a separation inhibitor. As a result, the apparatus can be made compact, and the bacterial cells can be separated from the culture medium in one step, so that the recovery efficiency of useful substances such as enzymes present in the culture medium can be improved. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明における回転板状膜分離装置の
構成図の一例を示す。
FIG. 1 shows an example of a block diagram of a rotary plate membrane separator according to the present invention.

【図2】図2は実施例1および比較例1において得られ
た平均透過流束を、回転板状膜の単位面積当たりの透過
液量に対して点綴した結果を示す。
FIG. 2 shows the results of stippling the average permeation fluxes obtained in Example 1 and Comparative Example 1 with respect to the permeated liquid amount per unit area of the rotating plate-shaped membrane.

【符号の説明】[Explanation of symbols]

1 液槽 2 懸濁液 3 攪拌棒 4 攪拌モーター 5 循環ポンプ 6 懸濁液入口 7 懸濁液出口 8 回転板状膜設置用液槽 9 回転板状膜 10 回転軸 11 中空部 12 膜回転用モーター 13 ベルト 14 減圧ポンプ 15 集液容器 16 排気 17 表面緻密層 18 内部スポンジ層 1 Liquid Tank 2 Suspension 3 Stirring Rod 4 Stirring Motor 5 Circulation Pump 6 Suspension Inlet 7 Suspension Outlet 8 Liquid Tank for Rotating Plate Membrane 9 Rotating Plate Membrane 10 Rotating Shaft 11 Hollow Section 12 For Membrane Rotation Motor 13 Belt 14 Decompression pump 15 Liquid collection container 16 Exhaust 17 Surface dense layer 18 Internal sponge layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 菌体分離膜を有する回転板状膜分離装置
を用いて培養液から菌体を分離する方法において、平均
粒径0.3〜40μmの水不溶性微粒子を培養液に添加
して得られる懸濁液を用いることを特徴とする菌体の分
離方法。
1. A method for separating cells from a culture solution using a rotating plate membrane separator having a cell separation membrane, wherein water-insoluble fine particles having an average particle size of 0.3 to 40 μm are added to the culture solution. A method for separating bacterial cells, which comprises using the obtained suspension.
【請求項2】 菌体分離膜の材質がセラミックである請
求項1記載の菌体の分離方法。
2. The method for separating bacterial cells according to claim 1, wherein the material for the bacterial cell separation membrane is ceramic.
【請求項3】 水不溶性微粒子が平均粒径5〜30μm
のパーライトである請求項1記載の菌体の分離方法。
3. The water-insoluble fine particles have an average particle size of 5 to 30 μm.
2. The method for separating bacterial cells according to claim 1, which is perlite.
JP35933791A 1991-12-30 1991-12-30 Method for separating cell from culture solution Pending JPH05236938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35933791A JPH05236938A (en) 1991-12-30 1991-12-30 Method for separating cell from culture solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35933791A JPH05236938A (en) 1991-12-30 1991-12-30 Method for separating cell from culture solution

Publications (1)

Publication Number Publication Date
JPH05236938A true JPH05236938A (en) 1993-09-17

Family

ID=18463998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35933791A Pending JPH05236938A (en) 1991-12-30 1991-12-30 Method for separating cell from culture solution

Country Status (1)

Country Link
JP (1) JPH05236938A (en)

Similar Documents

Publication Publication Date Title
Liao et al. A review of membrane fouling and its control in algal-related membrane processes
CA2327659C (en) Rotary filtration device with flow-through inner member
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
Ye et al. Microalgal dewatering using a polyamide thin film composite forward osmosis membrane and fouling mitigation
US5221479A (en) Filtration system
CN105692875B (en) A kind of fouling membrane vibration control apparatus during rolling low pressure film process algae-containing water and the method using device control fouling membrane
CN207581525U (en) A kind of novel ultrafiltration apparatus
Zheng et al. Virus rejection with two model human enteric viruses in membrane bioreactor system
Caridis et al. Pressure effects in cross-flow microfiltration of suspensions of whole bacterial cells
JPH05236938A (en) Method for separating cell from culture solution
JPH08280391A (en) Recovery of fermentation product
JPH10118461A (en) Recovery of fermentation product
Su et al. Crossflow membrane filtration
Wang et al. Collection of microbial cells
WO2023140148A1 (en) Method for separating and purifying extracellular vesicles
JPH07102290B2 (en) Filtration method
CN107879506A (en) A kind of new ultrafiltration apparatus
Su et al. Crossflow membrane filtration
JPH05329339A (en) Filtering apparatus
McCarthy The filtration properties of a dimorphic yeast
JPH0557149A (en) Filter system
JPS62160103A (en) Filter separation device
JP3122050B2 (en) Culture and reaction method and apparatus for microorganisms, cells or immobilized enzymes
JPH09299769A (en) Method of recovering fermented products