JPH05234619A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05234619A
JPH05234619A JP4072799A JP7279992A JPH05234619A JP H05234619 A JPH05234619 A JP H05234619A JP 4072799 A JP4072799 A JP 4072799A JP 7279992 A JP7279992 A JP 7279992A JP H05234619 A JPH05234619 A JP H05234619A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
carbonate
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4072799A
Other languages
Japanese (ja)
Other versions
JP3245839B2 (en
Inventor
Kenichiro Ando
健一郎 安藤
Takayuki Yamahira
隆幸 山平
Masanori Anzai
政則 安斉
Yasunobu Koga
靖信 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP07279992A priority Critical patent/JP3245839B2/en
Publication of JPH05234619A publication Critical patent/JPH05234619A/en
Application granted granted Critical
Publication of JP3245839B2 publication Critical patent/JP3245839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve cycle life characteristics under heavy loading conditions, of nonaqueous electrolyte secondary battery in which special lithium compound is used as an active material for positive electrode and electrode materials capable of doping and undoping lithium is used for negative electrode. CONSTITUTION:A nonaqueous electrolyte secondary battery is composed of a positive electrode which contains LixMO2 (M represents more than one kind of transition metal and 0.05<=x<=1.10) as a positive electrode active material a negative, electrode which can dope and undope lithium, and nonaqueous electrolyte. A solvent consisting of three kinds of material, that is, propylene carbonate, ethylene carbonate, and diethyl carbonate is used as a solvent of the electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液二次電池
に関する。さらに詳しくは、この発明は、非水電解液の
溶媒として、炭酸プロピレンと炭酸エチレンと炭酸ジエ
チルとの3種混合溶媒を使用することによりサイクル特
性を向上させた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery having improved cycle characteristics by using a mixed solvent of propylene carbonate, ethylene carbonate and diethyl carbonate as a solvent for the non-aqueous electrolyte.

【0002】[0002]

【従来の技術】近年、ビデオカメラやラジカセ等のポー
タブル機器の普及に伴い、使い捨てとなる一次電池に代
わって、繰り返し使用できる二次電池に対する需要が高
まっている。
2. Description of the Related Art In recent years, with the spread of portable devices such as video cameras and radio-cassettes, there is an increasing demand for rechargeable secondary batteries in place of disposable primary batteries.

【0003】ところで、現在使用されている二次電池の
殆どはアルカリ電解液を用いたニッケルカドニウム電池
である。しかし、この電池の電圧は約1.2Vであるの
で、電池のエネルギー密度を向上させることが困難であ
る。また、常温での自己放電率が1か月で20%以上と
なり高いという欠点もある。
By the way, most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte. However, since the voltage of this battery is about 1.2V, it is difficult to improve the energy density of the battery. There is also a drawback that the self-discharge rate at room temperature is as high as 20% or more in one month.

【0004】そこで、電圧が3V以上となって高いエネ
ルギー密度を有し、しかも自己放電率も低い二次電池と
して、電解液に非水溶媒を使用し、負極に金属リチウム
等の軽金属を使用した非水電解液二次電池が検討されて
きた。しかし、このような非水電解液二次電池は、負極
に使用する金属リチウム等が充放電の繰り返しによりデ
ンドライト状に成長して正極と接触し、その結果、電池
内部において短絡が生じやすいという欠点を有する。そ
のため、実用化が困難となっている。
Therefore, as a secondary battery having a voltage of 3 V or higher and a high energy density and a low self-discharge rate, a nonaqueous solvent is used as an electrolyte and a light metal such as metallic lithium is used as a negative electrode. Non-aqueous electrolyte secondary batteries have been investigated. However, such a non-aqueous electrolyte secondary battery has a drawback that metallic lithium or the like used for the negative electrode grows in a dendrite shape by repeated charging and discharging and contacts the positive electrode, and as a result, a short circuit easily occurs inside the battery. Have. Therefore, practical application is difficult.

【0005】そこで、リチウム等を他の金属と合金化
し、この合金を負極に使用した非水電解液が検討され
た。しかし、このような合金は充放電を繰り返すと粒子
化し易いため、やはり実用化が困難となっている。
Therefore, a non-aqueous electrolytic solution in which lithium or the like is alloyed with another metal and this alloy is used for the negative electrode has been studied. However, since such an alloy is likely to be granulated when charging and discharging are repeated, it is still difficult to put it into practical use.

【0006】これに対して、リチウムをドープ、脱ドー
プし得る、コークス等の炭素質材料を負極活物質として
使用する非水電解液二次電池(特開昭62−90863
号公報等)が提案された。この非水電解液二次電池は、
負極が上述のような欠点を有していないのでサイクル寿
命特性がある程度改善されたものとなっている。
On the other hand, a non-aqueous electrolyte secondary battery using a carbonaceous material, such as coke, which can be doped or dedoped with lithium, as a negative electrode active material (JP-A-62-90863).
No. Gazette) was proposed. This non-aqueous electrolyte secondary battery,
Since the negative electrode does not have the above-mentioned drawbacks, the cycle life characteristics are improved to some extent.

【0007】一方、非水電解液二次電池の正極活物質と
しては、LiMO(但し、Mは1種以上の遷移金属
を表し、0.05≦x≦1.10である)が、電池容量
が向上し、高エネルギー密度が得られる活物質として提
案されている(特願昭63−135099号明細書)。
On the other hand, Li x MO 2 (where M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.10) is used as the positive electrode active material of the non-aqueous electrolyte secondary battery. , Which has been proposed as an active material capable of improving battery capacity and obtaining high energy density (Japanese Patent Application No. 63-135099).

【0008】また炭素−リチウム層間化合物を使用した
非水電解液二次電池の電解液としては、LiPF等の
電解質を有機溶媒に溶解したものが使用されるが、その
ような溶媒としては炭酸プロピレンと炭酸ジエチルとの
混合溶媒系が高温環境下におけるサイクル特性を改善で
き、好ましいとされている(特願平2−312481
号)。
Further, as an electrolytic solution for a non-aqueous electrolytic solution secondary battery using a carbon-lithium intercalation compound, a solution obtained by dissolving an electrolyte such as LiPF 6 in an organic solvent is used. A mixed solvent system of propylene and diethyl carbonate is said to be preferable because it can improve the cycle characteristics under a high temperature environment (Japanese Patent Application No. 2-312481).
issue).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、正極活
物質としてLiMO(但し、Mは1種以上の遷移金
属を表し、0.05≦x≦1.10である)を使用し、
負極にリチウムをドープ、脱ドープし得る電極材料を使
用し、さらに電解液の溶媒として上述のような炭酸プロ
ピレンと炭酸ジエチルとの混合溶媒系を使用しても、高
電圧の重負荷放電条件におけるサイクル特性を十分に向
上させることはできないという問題があった。
However, Li x MO 2 (where M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.10) is used as the positive electrode active material,
Doping lithium with the negative electrode, using an electrode material that can be dedoped, and even using a mixed solvent system of propylene carbonate and diethyl carbonate as the solvent of the electrolytic solution described above, under high voltage heavy load discharge conditions There is a problem that the cycle characteristics cannot be improved sufficiently.

【0010】この発明は、このような従来技術の課題を
解決しようとするものであり、正極活物質としてLi
MO(但し、Mは1種以上の遷移金属を表し、0.0
5≦x≦1.10である)を使用し、負極にリチウムを
ドープ、脱ドープし得る電極材料を使用した非水電解液
二次電池において、重負荷条件でのサイクル寿命特性を
向上させることを目的としている。
The present invention is intended to solve the problems of the prior art, and Li x is used as a positive electrode active material.
MO 2 (wherein M represents one or more kinds of transition metals, 0.0
5 ≦ x ≦ 1.10) and improve the cycle life characteristics under heavy load condition in a non-aqueous electrolyte secondary battery using an electrode material capable of doping and dedoping lithium in the negative electrode. It is an object.

【0011】[0011]

【課題を解決するための手段】この発明の発明者は、上
記の目的を達成するために種々の検討を重ねた結果、炭
素−リチウム層間化合物を使用した非水電解液二次電池
において、電解液として従来最適であるとされていた、
LiPFを炭酸プロピレンと炭酸ジエチルとの混合溶
媒系に溶解したものは、正極にLiMOを使用し、
負極に炭素質材料を使用した電池においては必ずしも最
適とはいえず、このような電池の電解液の溶媒としては
炭酸プロピレンと炭酸ジエチルにさらに高誘電率である
炭酸エチレンを加えた3成分系の溶媒が最適であり、重
負荷条件でのサイクル寿命特性を向上させられることを
見出し、この発明を完成するに至った。
The inventor of the present invention has conducted various studies in order to achieve the above-mentioned object, and as a result, in a non-aqueous electrolyte secondary battery using a carbon-lithium intercalation compound, electrolysis was performed. It was previously said that it was optimal as a liquid,
The LiPF 6 that was dissolved in a mixed solvent system of propylene carbonate and diethyl carbonate, using the Li x MO 2 in the positive electrode,
It is not always optimal for a battery using a carbonaceous material for the negative electrode, and as a solvent for the electrolyte of such a battery, a three-component system in which ethylene carbonate having a higher dielectric constant is added to propylene carbonate and diethyl carbonate is used. The inventors have found that the solvent is optimal and can improve the cycle life characteristics under heavy load conditions, and completed the present invention.

【0012】すなわち、この発明は、正極活物質として
LiMO(但し、Mは1種以上の遷移金属を表し、
0.05≦x≦1.10である)を含有してなる正極
と、リチウムをドープ、脱ドープし得る負極と、非水電
解液とからなる非水電解液二次電池において、該非水電
解液の溶媒が、炭酸プロピレンと炭酸エチレンと炭酸ジ
エチルとの3種混合溶媒からなることを特徴とする非水
電解液二次電池を提供する。
That is, according to the present invention, as the positive electrode active material, Li x MO 2 (wherein M represents one or more transition metals,
0.05 ≦ x ≦ 1.10), a negative electrode that can be doped with lithium and dedoped, and a non-aqueous electrolyte secondary battery, the non-aqueous electrolysis solution comprising: Provided is a non-aqueous electrolyte secondary battery characterized in that a solvent of the liquid is a mixed solvent of three kinds of propylene carbonate, ethylene carbonate and diethyl carbonate.

【0013】このようにこの発明の非水電解液二次電池
は、非水電解液の溶媒として、炭酸プロピレンと炭酸ジ
エチルの他に高誘電率の炭酸エチレンも加えた3種混合
溶媒を使用することを特徴としている。この場合、溶媒
の配合割合は、炭酸エチレンを体積比で3〜60%とす
ることが好ましい。この場合、炭酸プロピレンと炭酸ジ
エチルの配合量は特に限定されないが、好ましくは炭酸
プロピレンが10〜60容積%、炭酸ジエチルが10〜
60容積%であり、より好ましくは炭酸プロピレンと炭
酸エチレンと炭酸ジエチルとの体積配合比を3:3:4
あるいは2.5:2.5:5あるいは1:1:1とす
る。
As described above, the non-aqueous electrolyte secondary battery of the present invention uses, as a solvent of the non-aqueous electrolyte, a mixed solvent of three kinds in which ethylene carbonate having a high dielectric constant is added in addition to propylene carbonate and diethyl carbonate. It is characterized by In this case, the mixing ratio of the solvent is preferably 3 to 60% by volume of ethylene carbonate. In this case, the blending amounts of propylene carbonate and diethyl carbonate are not particularly limited, but propylene carbonate is preferably 10 to 60% by volume and diethyl carbonate is 10 to 10% by volume.
It is 60% by volume, and more preferably the volume mixing ratio of propylene carbonate, ethylene carbonate and diethyl carbonate is 3: 3: 4.
Alternatively, it is 2.5: 2.5: 5 or 1: 1: 1.

【0014】なお、一般に高誘電率の溶媒としてはN−
メチルホルムアミド、ホルムアミドなどの有機溶媒や水
をあげることができるが、これらはリチウムと反応する
ので非水電界液の溶媒としては使用することができな
い。
Generally, N-is used as a solvent having a high dielectric constant.
Organic solvents such as methylformamide and formamide, and water can be used, but they cannot be used as a solvent for a nonaqueous electrolytic solution because they react with lithium.

【0015】この発明の非水電解液二次電池は、上記の
ように非水電解液の溶媒として炭酸プロピレンと炭酸エ
チレンと炭酸ジエチルとの3種混合溶媒を使用する限
り、他の構成については正極活物質としてLiMO
を使用し、負極にリチウムをドープ、脱ドープし得る電
極材料を使用した従来の非水電解液二次電池と同様にす
ることができる。
As long as the non-aqueous electrolyte secondary battery of the present invention uses a mixed solvent of propylene carbonate, ethylene carbonate and diethyl carbonate as a solvent for the non-aqueous electrolyte as described above, other configurations are Li x MO 2 as a positive electrode active material
Can be used in the same manner as a conventional non-aqueous electrolyte secondary battery using an electrode material capable of doping and dedoping lithium in the negative electrode.

【0016】すなわち非水電解液の電解質としては、例
えば過塩素酸リチウム、ホウフッ化リチウム、リンフッ
化リチウム、塩化アルミン酸リチウム、ハロゲン化リチ
ウム、トリフルオロメタンスルホン酸リチウム等を使用
することができる。
That is, as the electrolyte of the non-aqueous electrolyte, for example, lithium perchlorate, lithium borofluoride, lithium phosphorofluoride, lithium chloroaluminate, lithium halide, lithium trifluoromethanesulfonate and the like can be used.

【0017】また正極は、正極活物質としてLiMO
(但し、Mは1種以上の遷移金属を表し、0.05≦
x≦1.10である)を使用するが、この場合、正極活
物質を構成する遷移金属はCoまたはNiの少なくとも
1種とすることが好ましい。
The positive electrode is made of Li x MO as a positive electrode active material.
2 (However, M represents one or more kinds of transition metals, and 0.05 ≦
x ≦ 1.10) is used, and in this case, the transition metal constituting the positive electrode active material is preferably at least one of Co and Ni.

【0018】負極はリチウムをドープ、脱ドープし得
る、電極材料から構成するが、そのような電極材料とし
ては炭素質材料を使用することができ、より具体的に
は、熱分解炭素類、コークス類(ピッチコークス、ニー
ドルコークス、石油コークス等)、グラファイト類、ガ
ラス状炭素類、有機高分子化合物の焼成体(フェノール
樹脂、フラン樹脂等を焼成したもの)、炭素繊維、活性
炭等を用いることができる。
The negative electrode is composed of an electrode material which can be doped and dedoped with lithium. As such an electrode material, a carbonaceous material can be used, and more specifically, pyrolytic carbons and coke. It is possible to use materials (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc. fired), carbon fibers, activated carbon, etc. it can.

【0019】なお、電池の形状については特に制限はな
く、円筒形、角形、コイン形、ボタン形等種々の形状に
することができる。
The shape of the battery is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape can be used.

【0020】[0020]

【作用】この発明の非水電解液二次電池は、正極活物質
としてLiMO(但し、Mは1種以上の遷移金属を
表し、0.05≦x≦1.10である)を使用し、負極
にリチウムをドープ、脱ドープし得る電極材料を使用
し、さらにその電解液の溶媒として、炭酸プロピレン、
炭酸エチレンおよび高誘電率溶媒である炭酸ジエチルを
配合した3種混合溶媒を使用するので、エネルギー密度
が高く、かつ高電圧の重負荷放電条件におけるサイクル
特性が十分に向上したものとなる。
In the non-aqueous electrolyte secondary battery of the present invention, Li x MO 2 (where M represents one or more transition metals, and 0.05 ≦ x ≦ 1.10) is used as the positive electrode active material. Lithium is used for the negative electrode, and an electrode material that can be dedoped is used, and as a solvent for the electrolyte, propylene carbonate,
Since the three-type mixed solvent in which ethylene carbonate and diethyl carbonate, which is a high dielectric constant solvent, are mixed is used, the energy density is high, and the cycle characteristics under the heavy load discharge conditions of high voltage are sufficiently improved.

【0021】[0021]

【実施例】以下、この発明の実施例を図面に基づいて具
体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be specifically described below with reference to the drawings.

【0022】実施例1 図1に示したような、帯状正極1と帯状負極2をセパレ
ータ3を介して巻回して電池缶5に収容した円筒形の非
水電解液二次電池を次のように製造した。
Example 1 As shown in FIG. 1, a cylindrical non-aqueous electrolyte secondary battery in which a strip-shaped positive electrode 1 and a strip-shaped negative electrode 2 were wound around a separator 3 and accommodated in a battery can 5 was prepared as follows. Manufactured to.

【0023】帯状負極2を作成するにあたり、まず出発
原料として石油ピッチを用い、これに酸素を含む官能基
を10〜20%導入(所謂、酸素架橋)した後、不活性
ガス気流中1000℃で焼成して難黒鉛材料を得た。な
お、得られた難黒鉛材料のX線回折測定を行った結果、
(002)面の面間隔は3.76オングストロームで、
真比重は1.58であった。この難黒鉛材料を粉砕し、
平均粒径10μmの炭素材料粉末とした。そして、この
炭素材料粉末90重量部を、結着剤であるポリフッ化ビ
ニリデン10重量部と混合して負極混合物を調製し、こ
の負極混合物をN−メチル−2−ピロリドンに分散させ
てスラリー状にし、負極スラリーを調製した。
In producing the strip-shaped negative electrode 2, first, petroleum pitch is used as a starting material, and 10 to 20% of a functional group containing oxygen is introduced into this (so-called oxygen cross-linking), and then at 1000 ° C. in an inert gas stream. It was fired to obtain a non-graphite material. In addition, as a result of X-ray diffraction measurement of the obtained difficult-to-graphite material,
The spacing between (002) planes is 3.76 angstroms,
The true specific gravity was 1.58. Crush this difficult graphite material,
A carbon material powder having an average particle size of 10 μm was used. Then, 90 parts by weight of this carbon material powder is mixed with 10 parts by weight of polyvinylidene fluoride as a binder to prepare a negative electrode mixture, and this negative electrode mixture is dispersed in N-methyl-2-pyrrolidone to form a slurry. A negative electrode slurry was prepared.

【0024】このようにして得られた負極スラリーを、
負極集電体とする厚さ10μmの帯状銅箔の両面に均一
に塗布し、乾燥させ、ローラプレス機で圧縮成形し、帯
状負極2を作成した。
The negative electrode slurry thus obtained was
A strip-shaped negative electrode 2 was prepared by uniformly coating both sides of a strip-shaped copper foil having a thickness of 10 μm as a negative electrode current collector, drying it, and compression-molding it with a roller press.

【0025】一方、帯状正極1を作成するにあたって
は、まず炭酸リチウムと炭酸コバルトをモル比で0.5
対1モルの割合で混合し、900℃の空気中で5時間焼
成してLiCoOを得た。そして得られたLiCoO
91重量部、導電剤としてグラファイト6重量部、結
着剤としてポリフッ化ビニリデン3重量部を混合して正
極混合物を調製し、この正極混合物をN−メチル−2−
ピロリドンに分散させてスラリー状とし、正極スラリー
を調製した。
On the other hand, in producing the strip-shaped positive electrode 1, first, lithium carbonate and cobalt carbonate are added in a molar ratio of 0.5.
The mixture was mixed at a ratio of 1 mol and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . And the obtained LiCoO
2 91 parts by weight, 6 parts by weight of graphite as a conductive agent, a mixture of 3 parts by weight of polyvinylidene fluoride positive electrode mixture was prepared as a binder, the positive electrode mixture N- methyl-2-
A positive electrode slurry was prepared by dispersing in pyrrolidone to form a slurry.

【0026】このようにして得られた正極スラリーを、
正極集電体とする厚さ20μmの帯状アルミニウム箔の
両面に均一に塗布し、乾燥させ、ローラプレス機で圧縮
成形し、帯状正極1を作成した。
The positive electrode slurry thus obtained is
A strip-shaped positive electrode 1 was prepared by uniformly coating the both sides of a strip-shaped aluminum foil having a thickness of 20 μm as a positive electrode current collector, drying it, and compression-molding it with a roller press.

【0027】次いで、図1に示したように、帯状正極
1、帯状負極2および微多孔性ポリプロピレンフィルム
よりなるセパレータ3を、渦巻型に巻き回して渦巻式電
極4とした。この場合、渦巻式電極4が、外径13.8
mm、高さ51.8mmの電池缶5中に適切に納まるよ
うに、予め帯状正極1、帯状負極2およびセパレータ3
の長さや幅を調整した。
Then, as shown in FIG. 1, the strip-shaped positive electrode 1, the strip-shaped negative electrode 2, and the separator 3 made of a microporous polypropylene film were spirally wound to form a spiral electrode 4. In this case, the spiral electrode 4 has an outer diameter of 13.8.
mm, the height is 51.8 mm, and the strip-shaped positive electrode 1, the strip-shaped negative electrode 2, and the separator 3 are preliminarily set so as to be properly housed in the battery can 5.
I adjusted the length and width.

【0028】このようにして作成した渦巻式電極4を、
ニッケル鍍金を施した鉄製の電池缶5内に収納し、渦巻
式電極4の上下両面に絶縁板6を配設した。そして、正
極集電体1aからアルミニウム製の正極リード7を導出
して電池蓋8に溶接し、負極集電体2aからニッケル製
の負極リード9を導出して電池缶5に溶接した。
The spiral electrode 4 thus produced is
It was housed in a battery case 5 made of iron plated with nickel, and insulating plates 6 were arranged on both upper and lower surfaces of the spiral electrode 4. Then, the aluminum positive electrode lead 7 was led out from the positive electrode current collector 1a and welded to the battery lid 8, and the nickel negative electrode lead 9 was led out from the negative electrode current collector 2a and welded to the battery can 5.

【0029】電解液は、炭酸プロピレン48.5容量
%、炭酸ジエチル48.5容量%、炭酸エチレン3容量
%からなる混合溶媒に、LiPFを1モル/リットル
の割合で溶解させて調製した。そしてこの電解液を電池
缶5の中に注入し、アスファルトを塗布した絶縁封口ガ
スケット10を介して電池缶5の上部をかしめることに
よって電池蓋8を固定し、直径13.8mm、高さ5
1.8mmの円筒型の非水電解液二次電池を作成した。
The electrolytic solution was prepared by dissolving LiPF 6 in a mixed solvent of propylene carbonate 48.5% by volume, diethyl carbonate 48.5% by volume and ethylene carbonate 3% by volume at a ratio of 1 mol / liter. Then, the electrolytic solution is injected into the battery can 5, and the battery lid 8 is fixed by caulking the upper part of the battery can 5 through the insulating sealing gasket 10 coated with asphalt, and the diameter is 13.8 mm and the height is 5.
A 1.8 mm cylindrical non-aqueous electrolyte secondary battery was prepared.

【0030】実施例2〜10、比較例1〜2 電解液の組成を表1、表2のように変化させ、実施例1
と同様にして非水電解液二次電池を製造した。
Examples 2 to 10 and Comparative Examples 1 to 2 The composition of the electrolytic solution was changed as shown in Tables 1 and 2, and Example 1 was changed.
A non-aqueous electrolyte secondary battery was manufactured in the same manner as.

【0031】評価 以上のようにして作成した実施例1〜10および比較例
1〜2の電池について、サイクル特性を評価するため
に、それぞれ温度23℃で充放電を繰り返し行い、10
サイクル目の放電容量、100サイクル目の放電容量、
10サイクル目の放電容量に対する100サイクル目の
放電容量の比率(容量保持率%)を求めた。結果を表
1、表2に示した。なお、充電は、充電電圧を4.1V
に設定して1A定電流で2時間行い、また放電は600
mAの定電流で終止電圧2.75Vまで行った。
Evaluation In order to evaluate the cycle characteristics of the batteries of Examples 1 to 10 and Comparative Examples 1 and 2 produced as described above, charging and discharging were repeated at a temperature of 23 ° C. and 10
Cycle discharge capacity, 100 cycle discharge capacity,
The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 10th cycle (capacity retention rate%) was determined. The results are shown in Tables 1 and 2. The charging voltage is 4.1V.
Set to 1 A constant current for 2 hours and discharge 600
The final voltage was 2.75 V at a constant current of mA.

【0032】また、実施例6〜10の電池について、低
温(−10℃)で放電試験を行い放電容量(mAh)を
求めた。なお、この場合も充電は充電電圧を4.1Vに
設定して1A定電流で2時間行い、放電は600mAの
定電流で終止電圧2.75Vまで行った。得られた放電
容量(mAh)を表1に示した。
Further, the batteries of Examples 6 to 10 were subjected to a discharge test at a low temperature (-10 ° C) to determine the discharge capacity (mAh). In this case as well, charging was performed at a charging voltage of 4.1 V and a constant current of 1 A for 2 hours, and discharging was performed at a constant current of 600 mA up to a cutoff voltage of 2.75 V. The obtained discharge capacity (mAh) is shown in Table 1.

【0033】さらに、サイクル特性について、実施例1
〜5および比較例1〜2の結果から溶媒中の炭酸エチレ
ンの容積率と容量保持率との関係を図2にプロットし、
実施例6〜10の結果から炭酸プロピレンと炭酸ジエチ
ルの合計に対する炭酸プロピレンの比率と容量保持率と
の関係を図3にプロットした。また、低温(−10℃)
での放電試験の結果から、炭酸プロピレンと炭酸ジエチ
ルの合計に対する炭酸ジエチルの比率と放電容量との関
係を図4にプロットした。
Further, regarding the cycle characteristics, Example 1
~ 5 and the results of Comparative Examples 1-2, the relationship between the volume ratio and the capacity retention ratio of ethylene carbonate in the solvent is plotted in Fig. 2,
From the results of Examples 6 to 10, the relationship between the ratio of propylene carbonate to the total of propylene carbonate and diethyl carbonate and the capacity retention ratio was plotted in FIG. Also, low temperature (-10 ℃)
From the results of the discharge test in Fig. 4, the relationship between the ratio of diethyl carbonate to the total of propylene carbonate and diethyl carbonate and the discharge capacity was plotted in Fig. 4.

【0034】これらの結果から、サイクル特性に関して
は、炭酸エチレンの容積率は3〜60%が好ましく、炭
酸プロピレンと炭酸ジエチルとの混合比は20:80〜
90:10で効果があることがわかった。また、低温で
十分な放電特性を確保するためには、炭酸エチレンの容
積率は3〜50%、炭酸プロピレンと炭酸ジエチルとの
混合比は20:80〜60:40とするのが好ましいこ
とがわかった。
From these results, regarding the cycle characteristics, the volume ratio of ethylene carbonate is preferably 3 to 60%, and the mixing ratio of propylene carbonate and diethyl carbonate is 20:80 to.
It was found to be effective at 90:10. Further, in order to secure sufficient discharge characteristics at low temperature, it is preferable that the volume ratio of ethylene carbonate is 3 to 50% and the mixing ratio of propylene carbonate and diethyl carbonate is 20:80 to 60:40. all right.

【0035】[0035]

【表1】 実施例No. 1 2 3 4 5 電解液の溶媒(容量%) 炭酸プロピレン 48.5 40 35 30 20 炭酸ジエチル 48.5 40 35 30 20 炭酸エチレン 3 20 30 40 60 サイクル特性(容量Wh/l) 10サイクル目 146 140 153 155 141 100サイクル目 104 102 113 115 98 容量保持率(%) 71.2 72.7 74.4 74.2 69.7 低温放電容量(mAh) − − − − − 実施例No. 6 7 8 9 10 電解液の溶媒(容量%) 炭酸プロピレン 60 40 30 20 10 炭酸ジエチル 10 30 40 50 60 炭酸エチレン 30 30 30 30 30 サイクル特性(容量Wh/l) 10サイクル目 151 152 150 147 142 100サイクル目 109 112 111 105 97 容量保持率(%) 72.9 73.8 74.0 71.4 68.5 低温放電容量(mAh) 116 143 153 163 168[Table 1] Example No. 1 2 3 4 5 Electrolyte solvent (volume%) Propylene carbonate 48.5 40 35 30 20 Diethyl carbonate 48.5 40 35 30 20 Ethylene carbonate 3 20 30 40 60 Cycle characteristics (capacity Wh / l) 10th cycle 146 140 153 155 141 100th cycle 104 102 113 115 98 Capacity retention ratio (%) 71.2 72.7 74.4 74.2 69.7 Low temperature discharge capacity (mAh) − − − − − Example No. 6 7 8 9 10 Electrolyte solvent (volume%) Propylene carbonate 60 40 30 20 10 Diethyl carbonate 10 30 40 50 60 Ethylene carbonate 30 30 30 30 30 Cycle characteristics (capacity Wh / l) 10th cycle 151 152 150 147 142 100th cycle 109 112 111 105 97 Capacity retention (%) 72.9 73.8 74.0 71.4 68.5 Low temperature discharge capacity (mAh) 116 143 153 163 168

【0036】[0036]

【表2】 比較例No. 比較例1 比較例2 電解液の溶媒(容量%) 炭酸プロピレン 50 0 炭酸ジエチル 50 0 炭酸エチレン 0 100 サイクル特性(容量Wh/l) 10サイクル目 144 140 100サイクル目 100 92 容量保持率(%) 69.4 65.8 低温放電容量(mAh) − −[Table 2] Comparative example No. Comparative Example 1 Comparative Example 2 Solvent of electrolyte (volume%) Propylene carbonate 50 0 Diethyl carbonate 50 0 Ethylene carbonate 0 100 Cycle characteristics (capacity Wh / l) 10th cycle 144 140 100th cycle 100 92 Capacity retention (%) 69.4 65.8 Low temperature discharge capacity (mAh) − −

【0037】[0037]

【発明の効果】この発明によれば、正極活物質としてL
MO(但し、Mは1種以上の遷移金属を表し、
0.05≦x≦1.10である)を使用し、負極にリチ
ウムをドープ、脱ドープし得る電極材料を使用した非水
電解液二次電池において、重負荷条件でのサイクル寿命
特性を向上させることが可能となる。
According to the present invention, L is used as the positive electrode active material.
i x MO 2 (where M represents one or more transition metals,
0.05 ≦ x ≦ 1.10), and the cycle life characteristics under heavy load conditions are improved in a non-aqueous electrolyte secondary battery using an electrode material capable of doping and dedoping lithium in the negative electrode. It becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の電池の断面図である。FIG. 1 is a sectional view of a battery of an embodiment of the present invention.

【図2】炭酸エチレンの容積率と容量保持率との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the volume ratio of ethylene carbonate and the capacity retention ratio.

【図3】炭酸プロピレンと炭酸ジエチルの合計に対する
炭酸プロピレンの比率と容量保持率との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between the capacity retention and the ratio of propylene carbonate to the total of propylene carbonate and diethyl carbonate.

【図4】炭酸プロピレンと炭酸ジエチルの合計に対する
炭酸ジエチルイルの比率と放電容量との関係を示すグラ
フである。
FIG. 4 is a graph showing the relationship between the ratio of diethylyl carbonate to the total of propylene carbonate and diethyl carbonate and the discharge capacity.

【符号の説明】[Explanation of symbols]

1 帯状正極 2 帯状負極 3 セパレータ 4 渦巻式電極 5 電池缶 1 strip positive electrode 2 strip negative electrode 3 separator 4 spiral electrode 5 battery can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安斉 政則 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 (72)発明者 古賀 靖信 福島県郡山市日和田町高倉字下杉下1−1 株式会社ソニー・エナジー・テック郡山 工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masanori Anzai, Masanori Anzai 1-1, Shimosugishita, Takakura, Hiwata-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Co., Ltd. Koriyama Plant (72) Yasunobu Koga, Kuniyama-shi, Fukushima Prefecture 1-1 Shimo-Sugishita Takakura, Wada-machi Sony Energy Tech Koriyama Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質としてLiMO(但し、
Mは1種以上の遷移金属を表し、0.05≦x≦1.1
0である)を含有してなる正極と、リチウムをドープ、
脱ドープし得る負極と、非水電解液とからなる非水電解
液二次電池において、該非水電解液の溶媒が、炭酸プロ
ピレンと炭酸エチレンと炭酸ジエチルとの3種混合溶媒
からなることを特徴とする非水電解液二次電池。
1. A positive electrode active material comprising Li x MO 2 (provided that
M represents one or more kinds of transition metals, and 0.05 ≦ x ≦ 1.1
A positive electrode containing 0), and doped with lithium,
In a non-aqueous electrolyte secondary battery comprising a dedoped anode and a non-aqueous electrolyte, the solvent of the non-aqueous electrolyte is composed of a mixed solvent of three kinds of propylene carbonate, ethylene carbonate and diethyl carbonate. And a non-aqueous electrolyte secondary battery.
JP07279992A 1992-02-24 1992-02-24 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3245839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07279992A JP3245839B2 (en) 1992-02-24 1992-02-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07279992A JP3245839B2 (en) 1992-02-24 1992-02-24 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05234619A true JPH05234619A (en) 1993-09-10
JP3245839B2 JP3245839B2 (en) 2002-01-15

Family

ID=13499805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07279992A Expired - Fee Related JP3245839B2 (en) 1992-02-24 1992-02-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3245839B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte

Also Published As

Publication number Publication date
JP3245839B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP0486950B1 (en) Nonaqueous electrolyte secondary battery
JP2797390B2 (en) Non-aqueous electrolyte secondary battery
US5612155A (en) Lithium ion secondary battery
US7025907B2 (en) Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
EP0565273B1 (en) Secondary battery and manufacturing method therefor
JPH06318459A (en) Lithium secondary battery
JPH09213335A (en) Lithium secondary cell
JPH0785888A (en) Lithium secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH0541251A (en) Nonaqueous electrolyte secondary battery
JP3406843B2 (en) Lithium secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP3506386B2 (en) Non-aqueous electrolyte secondary battery
JP3245839B2 (en) Non-aqueous electrolyte secondary battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JP3163642B2 (en) Non-aqueous electrolyte secondary battery
JP2002313320A (en) Nonaqueous secondary battery
JPH07296848A (en) Nonaqueous electrolyte secondary battery
JP3278837B2 (en) Non-aqueous electrolyte secondary battery
JP3428034B2 (en) Non-aqueous electrolyte secondary battery
JP3029715B2 (en) Non-aqueous electrolyte secondary battery
JP2961745B2 (en) Non-aqueous electrolyte secondary battery
JPH1197015A (en) Nonaqueous electrolyte secondary cell
JPH0817468A (en) Non-aqueous electrolytic secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees