JPH0523412B2 - - Google Patents

Info

Publication number
JPH0523412B2
JPH0523412B2 JP21672084A JP21672084A JPH0523412B2 JP H0523412 B2 JPH0523412 B2 JP H0523412B2 JP 21672084 A JP21672084 A JP 21672084A JP 21672084 A JP21672084 A JP 21672084A JP H0523412 B2 JPH0523412 B2 JP H0523412B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
fundamental wave
optical
substrate
linbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21672084A
Other languages
Japanese (ja)
Other versions
JPS6194031A (en
Inventor
Tetsuo Yanai
Kazuhisa Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21672084A priority Critical patent/JPS6194031A/en
Publication of JPS6194031A publication Critical patent/JPS6194031A/en
Publication of JPH0523412B2 publication Critical patent/JPH0523412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、短波長の小型レーザ光源を実現する
ための半導体レーザを用いた光波長変換装置に関
するものであり、利用分野は、光メモリ、光デイ
スプレイ等の光情報処理分野である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical wavelength conversion device using a semiconductor laser to realize a short wavelength compact laser light source, and the field of application is optical memory, optical display, etc. This is the field of optical information processing.

従来例の構成とその問題点 安息香酸などを用いたイオン交換処理をほどこ
したLiNbO3単結晶は、Li+−H+置換により異常
光屈折率が0.12〜0.13増加することを利用して、
光導波路を形成することができる。そこで、光を
閉じ込めるために、アルミニユーム等をマスクに
用いて、横幅1〜5μm、厚み0.3〜3μm程度の3
次元光導波路が形成され、光変調装置、光波長変
換装置の研究が行なわれている。
Structure of conventional example and its problems LiNbO 3 single crystal subjected to ion exchange treatment using benzoic acid etc. takes advantage of the fact that the extraordinary refractive index increases by 0.12 to 0.13 due to Li + −H + substitution.
An optical waveguide can be formed. Therefore, in order to confine the light, aluminum or other material is used as a mask, and a mask with a width of 1 to 5 μm and a thickness of 0.3 to 3 μm is used.
Dimensional optical waveguides have been formed, and research on optical modulation devices and optical wavelength conversion devices is underway.

第1図は、このような方法で作られた光波長変
換装置の従来例(特願昭59−139889号)の構成図
であり、LiNbO3基板1の表面にイオン交換法に
より形成された光導波路2の端面に、半導体レー
ザ光3(波長λ1=0.84μm)を結合し、LiNbO3
板1の内部に第2高調波4(以下SH波と略す、
波長λ2=0.42μm)を放射させる光波長変換器で
ある。
Figure 1 is a block diagram of a conventional example of an optical wavelength conversion device manufactured by such a method (Japanese Patent Application No. 139889/1989), in which a light guide is formed on the surface of a LiNbO 3 substrate 1 by an ion exchange method. A semiconductor laser beam 3 (wavelength λ 1 =0.84 μm) is coupled to the end face of the wave path 2, and a second harmonic wave 4 (hereinafter abbreviated as SH wave) is generated inside the LiNbO 3 substrate 1.
This is an optical wavelength converter that emits wavelength λ 2 =0.42 μm).

しかしながら、この方法には次のような問題点
があつた。
However, this method has the following problems.

(i) イオン交換処理において、LiNbO3のY軸方
向にケミカルダメージ(結晶格子欠陥に寄因す
る)が生じ、3次元光導波路の側面が乱れるこ
とによる散乱が大きく、伝送損失が2〜3dB/
cmと大きい。
(i) In the ion exchange treatment, chemical damage (due to crystal lattice defects) occurs in the Y-axis direction of LiNbO 3 , and the side surfaces of the three-dimensional optical waveguide are disturbed, resulting in large scattering and transmission loss of 2 to 3 dB/
It is as large as cm.

(ii) 従つて、入力光パワーの2乗に比例して発生
するSH波の変換効率が小さい。
(ii) Therefore, the conversion efficiency of the SH wave generated is small in proportion to the square of the input optical power.

発明の目的 本発明の目的は、光導波路の伝送ロスを低減す
ることにより、高効率な高波長変換装置を提供す
ることにある。
OBJECT OF THE INVENTION An object of the present invention is to provide a highly efficient wavelength conversion device by reducing transmission loss in an optical waveguide.

発明の構成 従来例のように、マスクを通して厚み方向と横
方向に同時に進行するイオン交換法では、どちら
かの方向にケミカルダメージがはいりやすく低ロ
ス化が難しい。そこで本発明は、厚み方向の光の
閉じ込めはイオン交換法を用い、横方向の光の閉
じ込めは装荷型光導波構造(光ストリツプガイド
とも呼ぶ)を採用することにより、ケミカルダメ
ージを避け、低ロス化を実現した点を特徴とする
ものである。
Structure of the Invention In the conventional ion exchange method, which proceeds simultaneously in the thickness direction and the lateral direction through a mask, chemical damage tends to occur in either direction, making it difficult to reduce loss. Therefore, the present invention uses an ion exchange method to confine light in the thickness direction, and a loaded optical waveguide structure (also called an optical strip guide) to confine light in the lateral direction, thereby avoiding chemical damage and reducing loss. It is characterized by the fact that it has achieved the following.

実施例の説明 第2図は、本発明の第1実施例であり、
LiNbO3基板1の表面を240℃、13分安息香酸中
で処理することにより薄膜状屈折率増加部5を形
成し、その上面にSiO2を電子ビーム蒸着法によ
り、横幅2.0μm、厚み0.5μmの装荷部6を形成し
た。光は装荷部6の下の薄膜状屈折率増加部7に
主として閉じ込められて伝搬するために、半導体
レーザ光3の入射光は低ロスで伝搬し、高効率な
波長変換を行なうことができた。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a first embodiment of the present invention,
The surface of the LiNbO 3 substrate 1 is treated in benzoic acid at 240° C. for 13 minutes to form a thin film-like refractive index increasing portion 5, and SiO 2 is deposited on the upper surface by electron beam evaporation to a width of 2.0 μm and a thickness of 0.5 μm. A loading section 6 was formed. Since the light is mainly confined and propagated in the thin film-like refractive index increasing part 7 below the loading part 6, the incident light of the semiconductor laser beam 3 propagates with low loss, and highly efficient wavelength conversion can be performed. .

本発明による伝送ロスは0.5〜1dB/cmと従来
に比べかなり小さく、光波長変換効率も30〜50%
従来より改善できた。本実施例における光波長変
換の原理は、LiNbO3の最大の非線形光学定数d33
を用い、基本波の導波モードと高調波の基板放射
モードの間で位相整合をとるものであり、SH波
4はLiNbO3基板内に放射する。
The transmission loss according to the present invention is 0.5 to 1 dB/cm, much smaller than conventional methods, and the optical wavelength conversion efficiency is 30 to 50%.
It was improved compared to before. The principle of optical wavelength conversion in this example is based on the maximum nonlinear optical constant d 33 of LiNbO 3
is used to achieve phase matching between the fundamental wave guided mode and the harmonic substrate radiation mode, and the SH wave 4 is radiated into the LiNbO 3 substrate.

第3図は、本発明にかかる第2実施例の側面図
であり、基本波との結合効率を向上させるために
光入力部8としてイオン交換を2〜5μmと深く
行ない、光波長変換部9(厚みは0.4〜0.6μm)
となめらかにテーパ状に結合させ、半導体レーザ
10の光を高効率で波長変換を行なうものであ
る。
FIG. 3 is a side view of a second embodiment according to the present invention, in which ion exchange is performed as deep as 2 to 5 μm as the optical input section 8 in order to improve the coupling efficiency with the fundamental wave, and the optical wavelength conversion section 9 (Thickness is 0.4-0.6μm)
The light from the semiconductor laser 10 is coupled in a smooth tapered manner, and the wavelength of the light from the semiconductor laser 10 is converted with high efficiency.

発明の効果 イオン交換法は、大きな屈折率変化と耐光ダメ
ージ特性をもつた光導波路を形成することがで
き、光波長変換素子に有効であるが、3次元導波
路の伝送ロスが大きいという短所があつた。本発
明は、この短所を取り除くもので、ここで述べた
光波長変換装置以外にもイオン交換法を用いる光
変調器などのデバイスにも有効であることは言う
までもない。
Effects of the Invention The ion exchange method can form an optical waveguide with a large refractive index change and optical damage resistance, and is effective for optical wavelength conversion elements, but the disadvantage is that three-dimensional waveguides have large transmission losses. It was hot. The present invention eliminates this disadvantage, and it goes without saying that it is effective not only for the optical wavelength conversion device described here but also for devices such as optical modulators that use the ion exchange method.

光波長変換装置としては、基本波長より最適な
導波路サイズは異なるが、いずれの波長において
も本発明のイオン交換法と装荷型光導波構造の組
み合わせは有効であり、特に、基本波長が0.8〜
0.9μmの半導体レーザを使用する時に散乱ロスの
点で有効である。
As an optical wavelength conversion device, although the optimal waveguide size differs from the fundamental wavelength, the combination of the ion exchange method and the loaded optical waveguide structure of the present invention is effective for any wavelength, especially when the fundamental wavelength is 0.8~
This is effective in terms of scattering loss when using a 0.9 μm semiconductor laser.

イオン交換時の条件としては、安息香酸中で、
160〜250℃、5〜20分と目的に応じて処理すれば
良く、また、安息香酸以外にもリチウム安息香酸
なども使用可能である。
The conditions for ion exchange are: in benzoic acid;
The treatment may be carried out at 160 to 250°C for 5 to 20 minutes depending on the purpose. In addition to benzoic acid, lithium benzoic acid and the like can also be used.

装荷物体としては、SiO2以外にはAl2O3
Ta2O3の高周波スパツタ膜なども使用可能であ
る。
In addition to SiO 2 , Al 2 O 3 ,
A high frequency sputtered film of Ta 2 O 3 can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光波長変換装置の概略斜視構成
図、第2図は本発明の第1実施例の光波長変換装
置の概略斜視構成図、第3図は本発明の第2実施
例の光波長変換装置の概略断面図である。 1……LiNbO3結晶基板、3……半導体レーザ
光(基本波)、4……SH波、5……イオン交換法
により形成された薄膜状屈折率増加部、6……装
荷部、7……光が閉じ込められる部分、8……光
入射部、9……光波長変換部、10……半導体レ
ーザ。
FIG. 1 is a schematic perspective configuration diagram of a conventional optical wavelength conversion device, FIG. 2 is a schematic perspective configuration diagram of an optical wavelength conversion device according to a first embodiment of the present invention, and FIG. 3 is a schematic perspective configuration diagram of an optical wavelength conversion device according to a first embodiment of the present invention. FIG. 1 is a schematic cross-sectional view of an optical wavelength conversion device. DESCRIPTION OF SYMBOLS 1... LiNbO 3 crystal substrate, 3... Semiconductor laser light (fundamental wave), 4... SH wave, 5... Thin film-like refractive index increasing part formed by ion exchange method, 6... Loading part, 7... ... Portion where light is confined, 8 ... Light incidence section, 9 ... Optical wavelength conversion section, 10 ... Semiconductor laser.

Claims (1)

【特許請求の範囲】 1 基本波を放射する半導体レーザと、 LiNbO3単結晶基板と、 前記LiNbO3単結晶基板の一主面全面をイオン
交換して形成した薄膜状屈折率増加部と、 前記増加部上に形成したストライプ状の装荷部
とを備え、 前記半導体レーザから出射した基本波を、前記
装荷部直下の前記増加部端面に入射させ、前記基
本波を前記基板の厚み方向には前記増加部により
閉じ込め、横方向には前記装荷部により閉じ込
め、前記基板中に放射する高調波を取り出し、 前記高調波の取り出し方法が、前記基本波の導
波モードと前記高調波の基板への放射モードの実
効屈折率を一致させる位相整合法であることを特
徴とする光波長変換装置。 2 薄膜状屈折率増加部の基本波を入射させる端
部の厚みを増加させることを特徴とする特許請求
の範囲第1項記載の光波長変換装置。
[Scope of Claims] 1. A semiconductor laser that emits a fundamental wave; a LiNbO 3 single crystal substrate; a thin film-like refractive index increasing portion formed by ion-exchanging one entire principal surface of the LiNbO 3 single crystal substrate; a striped loading section formed on the increasing section, the fundamental wave emitted from the semiconductor laser is made incident on the end face of the increasing section directly below the loading section, and the fundamental wave is directed into the loading section in the thickness direction of the substrate. The harmonics that are confined by the increasing part and laterally confined by the loading part and radiated into the substrate are taken out. An optical wavelength conversion device characterized in that it uses a phase matching method to match the effective refractive indices of modes. 2. The optical wavelength conversion device according to claim 1, wherein the thickness of the end portion of the thin film-like refractive index increasing portion through which the fundamental wave is incident is increased.
JP21672084A 1984-10-16 1984-10-16 Optical wavelength converter Granted JPS6194031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21672084A JPS6194031A (en) 1984-10-16 1984-10-16 Optical wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21672084A JPS6194031A (en) 1984-10-16 1984-10-16 Optical wavelength converter

Publications (2)

Publication Number Publication Date
JPS6194031A JPS6194031A (en) 1986-05-12
JPH0523412B2 true JPH0523412B2 (en) 1993-04-02

Family

ID=16692862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21672084A Granted JPS6194031A (en) 1984-10-16 1984-10-16 Optical wavelength converter

Country Status (1)

Country Link
JP (1) JPS6194031A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782017B1 (en) 1995-12-28 2009-08-05 Panasonic Corporation Optical waveguide, optical wavelength conversion device, and methods for fabricating the same
JP4776589B2 (en) * 2007-06-19 2011-09-21 敏彦 仁科 Auxiliary container for drug use

Also Published As

Publication number Publication date
JPS6194031A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
US4705346A (en) Thin film type optical device
JPH01105220A (en) Optical wavelength converting element
JP3848093B2 (en) Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
US5032220A (en) Manufacturing method of frequency doubler
JPS60119522A (en) Optical waveguide
JPH0523410B2 (en)
JPH0523413B2 (en)
Suematsu et al. Optical second-harmonic generation due to guided-wave structure consisting of quartz and glass film
JPH0523412B2 (en)
JP4084460B2 (en) Optical waveguide, optical wavelength conversion element, short wavelength light generator and optical pickup using the optical waveguide
CN212009207U (en) Polarization mode converter
JPS62145227A (en) Optical wavelength converter
JPH01201609A (en) Optical device
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH0654369B2 (en) Optical wavelength converter
JPH0293625A (en) Optical frequency converting element
JPS6172222A (en) Optical wavelength converter
JP2002162658A (en) Optical waveguide element and optical wavelength converter
JP2855676B2 (en) Optical waveguide
JPH01134402A (en) Light guide
JPS60156039A (en) Manufacture of optical function element
JPH0421849B2 (en)
JPH02282233A (en) Waveguide type wavelength converting element