JPH05234074A - Manufacture of magnetic disk and the magnetic disk - Google Patents

Manufacture of magnetic disk and the magnetic disk

Info

Publication number
JPH05234074A
JPH05234074A JP4072584A JP7258492A JPH05234074A JP H05234074 A JPH05234074 A JP H05234074A JP 4072584 A JP4072584 A JP 4072584A JP 7258492 A JP7258492 A JP 7258492A JP H05234074 A JPH05234074 A JP H05234074A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic disk
magnetic field
coating film
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4072584A
Other languages
Japanese (ja)
Inventor
Junichi Sato
純一 佐藤
Keiji Koga
啓治 古賀
Akinori Nishizawa
明憲 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4072584A priority Critical patent/JPH05234074A/en
Priority to US08/013,395 priority patent/US5393584A/en
Publication of JPH05234074A publication Critical patent/JPH05234074A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide a coating type magnetic disk which is less at the differences in reproducing outputs and the overwriting characteristics between the inner peripheral part and the outer peripheral part, compared to the conventional one, since a magnetic layer with a uniform film thickness or with a thinner thickness at the inner peripheral side and a thickness at the outer peripheral side can be formed. CONSTITUTION:When a coating film is formed on a rigid substrate 102 with a magnetic coating material 104 incorporating fine magnetic particles and a binder, and it is oriented and cured and then the magnetic disk is produced, magnetic fields are impressed at the time of forming the coating film, and the impressed magnetic field strength in the inner peripheral side of the substrate is made lager than the magnetic field strength in the outer peripheral side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハードディスクタイプ
の磁気ディスクの製造方法と磁気ディスクとに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a hard disk type magnetic disk and a magnetic disk.

【0002】[0002]

【従来の技術】計算機等に用いられる磁気ディスク駆動
装置には、剛性基板上に磁性層を設置したハードタイプ
の磁気ディスクが用いられており、近年、これらの磁気
ディスクでは大容量化、小型化が急速に進展している。
これらのディスクは、通常磁性塗料をスピンコートした
後、配向、硬化等を行なって製造される。
2. Description of the Related Art A hard disk type magnetic disk having a magnetic layer provided on a rigid substrate is used in a magnetic disk driving device used in a computer or the like. In recent years, these magnetic disks have a large capacity and a small size. Is making rapid progress.
These disks are usually manufactured by spin-coating a magnetic coating material, and then orienting and curing the magnetic coating material.

【0003】このようにスピンコート法により作製され
た塗布型磁気ディスクの場合、遠心力により塗膜が内周
側で薄く、外周側で厚くなる。
In the case of the coating type magnetic disk produced by the spin coating method as described above, the coating film becomes thin on the inner peripheral side and thicker on the outer peripheral side due to centrifugal force.

【0004】他方、磁気ディスクに磁気記録を行う際、
同一周波数にて記録再生を行なうため、ディスクの内周
部と外周部では磁気ヘッドとの相対速度の差により、内
周部の方が外周部よりも記録波長が短くなり高密度記録
となる。このため磁性膜の厚さが均一な磁気ディスクの
場合でも、再生出力が内周部で小さく、外周部で大きく
なるという問題を生じる。
On the other hand, when performing magnetic recording on a magnetic disk,
Since recording and reproduction are performed at the same frequency, the recording wavelength in the inner peripheral portion is shorter than that in the outer peripheral portion due to the difference in relative speed between the inner peripheral portion and the outer peripheral portion of the disk and the magnetic head, resulting in high density recording. Therefore, even in the case of a magnetic disk in which the magnetic film has a uniform thickness, there arises a problem that the reproduction output is small at the inner peripheral portion and large at the outer peripheral portion.

【0005】従って、従来の塗布型磁気ディスクのよう
に内周部が薄く外周部が厚いディスクの場合には、さら
に再生出力の差は大きくなってしまう。
Therefore, in the case of a disk having a thin inner peripheral portion and a thick outer peripheral portion such as the conventional coating type magnetic disk, the difference in reproduction output is further increased.

【0006】また、相対速度が速いほど浮上型磁気ヘッ
ドの浮上量(ヘッドとディスクとの距離)は大きくなる
ため、ディスク外周部ほど浮上量が大きい。このためオ
ーバライト特性は外周部ほど不利になる。そして、オー
バライト特性は膜厚が厚いほど悪化するため、外周部ほ
ど記録層の厚い従来の塗布型磁気ディスクでは、外周部
のオーバーライト特性の点でさらに不利になる。
Further, the higher the relative speed, the larger the flying height of the flying magnetic head (distance between the head and the disk), and therefore the flying height increases toward the outer peripheral portion of the disk. Therefore, the overwrite characteristic becomes more disadvantageous toward the outer peripheral portion. Since the overwrite characteristic deteriorates as the film thickness increases, the conventional coating type magnetic disk having the recording layer thicker in the outer peripheral portion is further disadvantageous in terms of the overwrite characteristic in the outer peripheral portion.

【0007】このように従来の塗布型磁気ディスクは内
周部と外周部との再生出力、オーバーライト特性の差が
大きという問題が存在している。
As described above, the conventional coating type magnetic disk has a problem that there is a large difference in reproduction output and overwrite characteristics between the inner peripheral portion and the outer peripheral portion.

【0008】そして、14インチ、8インチ等から、5
インチ、3.5インチ、2.5インチへと磁気ディスク
の小型化が進むと、内径が相対的に大きくなり、外径と
内径の比が大きくなるため、スピンコート時のディスク
外周部と内周部の遠心力の差が大きくなり、塗膜厚の差
は大きくなる。また、記録再生時におけるヘッドとディ
スクの相対速度の比も大きくなるため、内外周の再生出
力およびオーバーライト特性の差はさらに大きなる。
Then, from 14 inches, 8 inches, etc., 5
As the size of the magnetic disk advances to 3.5 inches, 3.5 inches, and 2.5 inches, the inner diameter becomes relatively large, and the ratio of the outer diameter to the inner diameter becomes large. The difference in centrifugal force at the peripheral portion becomes large, and the difference in coating film thickness becomes large. Further, since the ratio of the relative speed between the head and the disk at the time of recording / reproducing also becomes large, the difference between the reproduction output at the inner and outer peripheries and the overwrite characteristic becomes even larger.

【0009】このような問題を解決する方法として、例
えば特公昭61−3545号公報には、ガスの吹き付け
により塗料の粘性を塗膜の位置により制御し、次いでス
ピンアウトする塗布方法が開示されている。この塗布方
法を用いれば、あらかじめ内周部の粘度を上げることに
より内周側で膜厚を厚くすることは可能であるが、0.
5μm 以下の塗膜厚では膜厚制御は困難となり、塗膜内
周部の角形比が低下する。
As a method for solving such a problem, for example, Japanese Patent Publication No. 61-3545 discloses a coating method in which the viscosity of the coating material is controlled by the position of the coating material by spraying a gas, and then spin-out is performed. There is. By using this coating method, it is possible to increase the viscosity of the inner peripheral portion in advance to increase the film thickness on the inner peripheral side.
When the coating film thickness is 5 μm or less, it becomes difficult to control the film thickness, and the squareness ratio of the inner peripheral portion of the coating film decreases.

【0010】またこのような問題の解決には、厚い磁性
層を一度形成し、その後外周部をより研磨して外周部の
膜厚を小さくすることもできる。しかし、この場合に
は、膜厚が0.3μm 以下になると、研磨による膜厚の
不均一性がや研磨傷などにより、記録・再生時のモジュ
レーションが大きくなってしまい、エラーが多発してし
まう。
In order to solve such a problem, it is possible to form a thick magnetic layer once and then further polish the outer peripheral portion to reduce the film thickness of the outer peripheral portion. However, in this case, when the film thickness is 0.3 μm or less, the unevenness of the film thickness due to polishing, polishing scratches, and the like increase modulation at the time of recording / reproducing, resulting in frequent errors. ..

【0011】[0011]

【発明が解決しようとする課題】本発明の主たる目的
は、内周部と外周部で膜厚が均一であるか、あるいはよ
り好ましくは、内周部の膜厚が厚く外周部の膜厚が薄い
磁性層を有する磁気ディスクの製造方法と、磁気ディス
クとを提供することにある。
The main object of the present invention is to provide a uniform film thickness at the inner and outer circumferences, or more preferably, at the inner and outer circumferences. It is to provide a method of manufacturing a magnetic disk having a thin magnetic layer, and a magnetic disk.

【0012】[0012]

【課題を解決するための手段】このような目的は、下記
(1)〜(4)の本発明により達成される。 (1) 剛性基板上に磁性微粒子とバインダーとを含有
する磁性塗料にて塗膜を形成し、配向、硬化する磁気デ
ィスクの製造方法において、塗膜の形成時に、磁界を印
加し、前記剛性基板の内周側における印加磁界強度を外
周側の磁界強度よりも大きくする磁気ディスクの製造方
法。
The above objects are achieved by the present invention described in (1) to (4) below. (1) In a method for producing a magnetic disk, in which a coating film is formed on a rigid substrate with a magnetic coating material containing magnetic fine particles and a binder, and oriented and cured, a magnetic field is applied at the time of forming the coating film, the rigid substrate A method of manufacturing a magnetic disk in which the applied magnetic field strength on the inner circumference side is larger than the magnetic field strength on the outer circumference side.

【0013】(2) 前記硬化後に研磨を行う上記
(1)の磁気ディスクの製造方法。
(2) The method of manufacturing a magnetic disk according to the above (1), wherein polishing is performed after the curing.

【0014】(3) 前記磁気ディスクの磁性層の厚さ
は、内周側の方が外周側よりも厚い上記(1)または
(2)の磁気ディスクの製造方法。
(3) The method for manufacturing a magnetic disk according to the above (1) or (2), wherein the magnetic layer of the magnetic disk is thicker on the inner peripheral side than on the outer peripheral side.

【0015】(4) 剛性基板上に磁性層を有し、この
磁性層の内周側の厚さは、外周側の厚さより厚い磁気デ
ィスク。
(4) A magnetic disk having a magnetic layer on a rigid substrate, the inner thickness of this magnetic layer being thicker than the outer thickness.

【0016】[0016]

【作用】本発明の磁気ディスクの製造方法では、ディス
クを回転させ磁性塗料を塗布し塗膜を形成しながら、磁
界を印加する。このとき、ディスク内周部の磁界強度が
外周部よりも大きい磁界を印加することによって、塗膜
に対して内周方向への磁気力を加え、磁性塗料を内周方
向へ移動させる。この結果、ディスクの内周部が厚く外
周部が薄い磁性層が形成できる。
In the method of manufacturing a magnetic disk according to the present invention, a magnetic field is applied while the disk is rotated to apply a magnetic coating material to form a coating film. At this time, by applying a magnetic field in which the magnetic field strength at the inner peripheral portion of the disk is larger than that at the outer peripheral portion, a magnetic force in the inner peripheral direction is applied to the coating film to move the magnetic paint in the inner peripheral direction. As a result, a magnetic layer having a thick inner peripheral portion and a thin outer peripheral portion can be formed.

【0017】このような磁気ディスクは内周部と外周部
との再生出力やオーバライト特性の差が小さい。
Such a magnetic disk has a small difference in reproduction output and overwrite characteristics between the inner peripheral portion and the outer peripheral portion.

【0018】また、印加磁界により表面の平滑性に優れ
た磁性塗膜を形成でき、しかも配向の直前まで磁性塗料
の乾燥を防止できるため、磁性微粒子を充分に配向でき
高い角形比が得られる。このためエラーが少なく、磁気
ヘッドの低浮上化が可能な磁気ディスクをえることがで
きる。
Further, since a magnetic coating film having excellent surface smoothness can be formed by an applied magnetic field and the magnetic coating material can be prevented from drying until just before orientation, magnetic fine particles can be sufficiently oriented and a high squareness ratio can be obtained. For this reason, it is possible to obtain a magnetic disk with few errors and capable of lowering the flying height of the magnetic head.

【0019】[0019]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。図1に、本発明の磁気ディスクの好適例を
示す。
[Specific Structure] The specific structure of the present invention will be described in detail below. FIG. 1 shows a preferred example of the magnetic disk of the present invention.

【0020】図1において、磁気ディスク101は、剛
性基板102上に塗布型の磁性層103を有する。本発
明は、剛性基板102の片面だけに磁性層103を有す
る片面記録型の磁気ディスクおよび剛性基板102の両
面に磁性層103を有する両面記録型の磁気ディスクの
いずれであってもよい。
In FIG. 1, a magnetic disk 101 has a coating type magnetic layer 103 on a rigid substrate 102. The present invention may be a single-sided recording type magnetic disk having the magnetic layer 103 on only one side of the rigid substrate 102 or a double-sided recording type magnetic disk having the magnetic layers 103 on both sides of the rigid substrate 102.

【0021】本発明に使用されるディスク状の剛性基板
102は、例えば、アルミニウム、アルミニウム合金等
の金属、ガラス、セラミックス、エンジニアリングプラ
スチックス等の各種非磁性材料により構成すればよい。
これらの中では、機械的剛性、加工性等が良好なアル
ミニウム、アルミニウム合金等を用いることが好まし
い。剛性基板の寸法は目的に応じて選定すればよいが、
通常、厚さ0.5〜1.9mm程度、直径40〜130mm
程度である。また、基板のRmax は0.005〜0.0
70μm 程度とする。
The disc-shaped rigid substrate 102 used in the present invention may be made of various non-magnetic materials such as metals such as aluminum and aluminum alloy, glass, ceramics and engineering plastics.
Among these, it is preferable to use aluminum, aluminum alloy, or the like, which has good mechanical rigidity and workability. The size of the rigid substrate may be selected according to the purpose,
Normally, the thickness is about 0.5 to 1.9 mm and the diameter is 40 to 130 mm.
It is a degree. The Rmax of the substrate is 0.005-0.0.
It is about 70 μm.

【0022】磁性層103は、磁性微粒子を含有する磁
性塗料を塗布して形成される。磁性層に用いる磁性微粒
子には特に制限はなく、各種酸化物磁性粉等も使用可能
であるが、強磁性金属微粒子または六方晶系酸化物微粒
子が好ましい。強磁性金属微粒子や六方晶系酸化物微粒
子を用いれば高い記録密度と、高い記録・再生感度が得
られる。用いる強磁性金属微粒子や六方晶系酸化物微粒
子には特に制限はないが、前記のような磁気特性が得ら
れるように選択することが好ましい。
The magnetic layer 103 is formed by applying a magnetic coating material containing magnetic fine particles. The magnetic fine particles used in the magnetic layer are not particularly limited, and various oxide magnetic powders can be used, but ferromagnetic metal fine particles or hexagonal oxide fine particles are preferable. If ferromagnetic metal particles or hexagonal oxide particles are used, high recording density and high recording / reproducing sensitivity can be obtained. The ferromagnetic metal fine particles and hexagonal oxide fine particles to be used are not particularly limited, but it is preferable to select them so as to obtain the above magnetic properties.

【0023】強磁性金属微粒子としては、Fe,Co,
Niの単体、これらの合金、またはこれらの単体および
合金に、Cr,Mn,Co,Ni,さらにはZn,C
u,Zr,Al,Ti,Bi,Ag,Pt等を添加した
強磁性金属微粒子が使用できる。また、これらの金属に
B,C,Si,P,Nなどの非金属元素を少量添加した
ものであってもよく、Fe4 N等、一部窒化されたもの
であってもよい。
The ferromagnetic metal fine particles include Fe, Co,
Ni simple substance, alloys thereof, or Cr, Mn, Co, Ni, and further Zn, C in addition to these simple substances and alloys.
Ferromagnetic metal fine particles to which u, Zr, Al, Ti, Bi, Ag, Pt, etc. are added can be used. Further, a small amount of a non-metal element such as B, C, Si, P or N may be added to these metals, or a partially nitrided material such as Fe 4 N may be used.

【0024】さらに、強磁性金属微粒子は、耐食性、耐
候性の向上のために、表面に酸化物の被膜を有するもの
であってもよい。 このような酸化物としては、強磁性
金属微粒子を構成する金属の酸化物、Al23 等の各
種セラミックスが好ましい。
Further, the ferromagnetic metal fine particles may have an oxide film on the surface in order to improve the corrosion resistance and weather resistance. As such oxides, oxides of metals forming ferromagnetic metal fine particles and various ceramics such as Al 2 O 3 are preferable.

【0025】強磁性微粒子の形状に特に制限はないが、
形状磁気異方性を利用できることから針状形態のものを
用いることが好ましい。また、強磁性金属微粒子の寸法
は目的とする磁性層の構成に応じて選定すればよいが、
通常、長径0.15〜0.30μm 程度、針状比6〜1
0程度のものを用いることが好ましい。なお、強磁性金
属微粒子を用いる場合は、α−FeOOH(Goethite)を
還元する方法など、公知の各種方法により製造すればよ
く、また、市販のものを用いてもよい。
The shape of the ferromagnetic fine particles is not particularly limited,
It is preferable to use a needle-shaped one because the shape magnetic anisotropy can be utilized. Further, the size of the ferromagnetic metal fine particles may be selected according to the intended structure of the magnetic layer,
Usually, the major axis is about 0.15 to 0.30 μm and the needle ratio is about 6 to 1.
It is preferable to use one of about 0. When the ferromagnetic metal fine particles are used, they may be produced by various known methods such as a method of reducing α-FeOOH (Goethite), or commercially available ones may be used.

【0026】六方晶系酸化物微粒子としては、バリウム
フェライト、ストロンチウムフェライト等の磁性微粒子
がある。この場合、六方晶系酸化物微粒子の寸法は、目
的とする磁性層の構成に応じて選定すればよいが、電磁
変換特性上、平均粒径が0.15μm 以下、特に0.0
2〜0.10μm 程度、板状比は2以上、特に3〜10
程度であるものが好ましい。ここで平均粒子とは、電子
顕微鏡写真によって、例えば六方晶系のバリウムフェラ
イト粒子50個程度を観察し、粒径についての測定値を
平均にしたものである。板状比とは、平均粒径/平均厚
みの値である。
The hexagonal oxide fine particles include magnetic fine particles such as barium ferrite and strontium ferrite. In this case, the size of the hexagonal oxide fine particles may be selected according to the intended constitution of the magnetic layer, but the average particle size is 0.15 μm or less, especially 0.0
2 to 0.10 μm, plate ratio is 2 or more, especially 3 to 10
Those having a degree are preferable. Here, the average particle is, for example, about 50 hexagonal barium ferrite particles observed by an electron micrograph, and the measured values of the particle size are averaged. The plate ratio is the value of average particle diameter / average thickness.

【0027】バリウムフェライトとしては、BaFe12
19等の六方晶系バリウムフェライトやバリウムフェラ
イトの一部をCa、Sr、Pb、Co、Ni、Ti、C
r、Zn、In、Mn、Cu、Ge、Nb、Zr、Sn
その他の金属から選ばれる1種以上で置換したもの等が
挙げられる。また、ストロンチウムフェライトとして
は、六方晶系ストロンチウムフェライトSrFe
1219、あるいはこれを上記に準じて置換したものであ
ってもよい。この場合、磁化量増大や温度特性改善のた
め、六方晶系フェライトの表面をスピネルフェライトで
変性した物でもよい。さらに、耐候性・分散性向上のた
めに、これらの粒子の表面に酸化物や有機化合物の被覆
を有するものであってもよい。
As barium ferrite, BaFe 12
Hexagonal barium ferrite such as O 19 or part of barium ferrite is Ca, Sr, Pb, Co, Ni, Ti, C
r, Zn, In, Mn, Cu, Ge, Nb, Zr, Sn
Examples include those substituted with one or more selected from other metals. As the strontium ferrite, hexagonal strontium ferrite SrFe
It may be 12 O 19 or one obtained by substituting it according to the above. In this case, the surface of hexagonal ferrite may be modified with spinel ferrite in order to increase the amount of magnetization and improve temperature characteristics. Furthermore, in order to improve weather resistance and dispersibility, the surface of these particles may be coated with an oxide or an organic compound.

【0028】バリウムフェライト等の製法としては、セ
ラミック法、共沈−焼成法、水熱合成法、フラックス
法、ガラス結晶化法、アルコキシド法、プラズマジェッ
ト法等があり、本発明ではいずれの方法を用いてもよ
い。
Examples of the method for producing barium ferrite and the like include a ceramic method, a coprecipitation-firing method, a hydrothermal synthesis method, a flux method, a glass crystallization method, an alkoxide method, a plasma jet method and the like, and any method is used in the present invention. You may use.

【0029】磁性層形成に用いる磁性塗料は、上記した
磁性微粒子とバインダと溶剤とを混練して調製される。
用いるバインダに特に制限はなく、熱硬化性樹脂、反応
型樹脂、放射線硬化性樹脂等から目的に応じて選択すれ
ばよいが、薄層で十分な膜強度を確保し、高い耐久性を
得る必要があることから熱硬化性樹脂あるいは放射線硬
化性樹脂を用いることが好ましい。
The magnetic coating material used for forming the magnetic layer is prepared by kneading the above-mentioned magnetic fine particles, a binder and a solvent.
The binder used is not particularly limited and may be selected from thermosetting resins, reactive resins, radiation curable resins, etc. according to the purpose, but it is necessary to secure sufficient film strength with a thin layer and obtain high durability. Therefore, it is preferable to use a thermosetting resin or a radiation curable resin.

【0030】熱硬化性樹脂としては、例えば、フェノー
ル樹脂、エポキシ樹脂、ビニル共重合系樹脂、ポリウレ
タン硬化型樹脂、尿素樹脂、ブチラール樹脂、ホルマー
ル樹脂、メラミン樹脂、アルキッド樹脂、シリコン樹
脂、アクリル系反応樹脂、ポリアミド樹脂、エポキシ−
ポリアミド樹脂、飽和ポリエステル樹脂、尿素ホルムア
ルデヒド樹脂などの縮重合系の樹脂あるいは高分子量ポ
リエステル樹脂とイソシアネートプレポリマーの混合
物、メタクリル酸塩共重合体とジイソシアネートプレポ
リマーの混合物、ポリエステルポリオールとポリイソシ
アネートの混合物、低分子量グリコール/高分子量ジオ
ール/トリフェニルメタントリイソシアネートの混合物
など、上記の縮重合系樹脂とイソシアネート化合物など
の架橋剤との混合物、ビニル共重合系樹脂と架橋剤との
混合物、ニトロセルロース、セルロースアセトブチレー
ト等の繊維素系樹脂と架橋剤との混合物、ブタジエン−
アクリロニトリル等の合成ゴム系と架橋剤との混合物、
さらにはこれらの混合物が好適である。
Examples of the thermosetting resin include phenol resin, epoxy resin, vinyl copolymer resin, polyurethane curable resin, urea resin, butyral resin, formal resin, melamine resin, alkyd resin, silicone resin and acrylic reaction. Resin, polyamide resin, epoxy-
Polyamide resin, saturated polyester resin, polycondensation resin such as urea formaldehyde resin or a mixture of high molecular weight polyester resin and isocyanate prepolymer, a mixture of methacrylate copolymer and diisocyanate prepolymer, a mixture of polyester polyol and polyisocyanate, Mixtures of the above-mentioned polycondensation resin and a crosslinking agent such as an isocyanate compound, such as a mixture of low molecular weight glycol / high molecular weight diol / triphenylmethane triisocyanate, a mixture of a vinyl copolymer resin and a crosslinking agent, nitrocellulose, cellulose A mixture of a fibrin-based resin such as acetobutyrate and a crosslinking agent, butadiene-
A mixture of a synthetic rubber system such as acrylonitrile and a crosslinking agent,
Furthermore, mixtures of these are preferred.

【0031】そして、特に、エポキシ樹脂とフェノール
樹脂との混合物、米国特許第3,058,844号に記
載のエポキシ樹脂とポリビニルメチルエーテルとメチロ
ールフェノールエーテルとの混合物、また特開昭49−
131101号に記載のビスフェノールA型エポキシ樹
脂とアクリル酸エステルまたはメタクリル酸エステル重
合体との混合物等が好ましい。
Particularly, a mixture of an epoxy resin and a phenol resin, a mixture of an epoxy resin described in US Pat. No. 3,058,844, a polyvinyl methyl ether and a methylol phenol ether, and JP-A-49-
A mixture of the bisphenol A type epoxy resin described in 131101 and an acrylic acid ester or methacrylic acid ester polymer is preferable.

【0032】放射線硬化性化合物の具体例としては、ラ
ジカル重合性を有する不飽和二重結合を示すアクリル
酸、メタクリル酸、あるいはそれらのエステル化合物の
ようなアクリル系二重結合、ジアリルフタレートのよう
なアリル系二重結合、マレイン酸、マレイン酸誘導体等
の不飽和結合等の放射線照射による架橋あるいは重合す
る基を熱可塑性樹脂の分子中に含有または導入した樹脂
である。 その他放射線照射により架橋重合する不飽和
二重結合を有する化合物であれば用いることができる。
Specific examples of the radiation curable compound include acrylic double bonds such as acrylic acid, methacrylic acid, or their ester compounds showing an unsaturated double bond having radical polymerizability, and diallyl phthalate. It is a resin in which a group of an allyl double bond, an unsaturated bond such as a maleic acid or a maleic acid derivative, which is crosslinked or polymerized by irradiation with radiation, is introduced or introduced into the molecule of the thermoplastic resin. In addition, any compound having an unsaturated double bond that undergoes cross-linking polymerization upon irradiation with radiation can be used.

【0033】放射線硬化性バインダーとして用いられる
樹脂としては、上記不飽和二重結合を樹脂の分子鎖中や
末端、側鎖に含有する飽和、不飽和ポリエステル樹脂、
ポリウレタン樹脂、塩化ビニル系樹脂、ポリビニルアル
コール系樹脂、ポリビニルブチラール系樹脂、エポキシ
樹脂、フェノキシ樹脂、繊維素系樹脂、アクリロニトリ
ル−ブタジエン共重合体、ポリブタジエン等が好適であ
る。
The resin used as the radiation-curable binder is a saturated or unsaturated polyester resin containing the above unsaturated double bond in the resin molecular chain, at the terminal or in the side chain,
Polyurethane resin, vinyl chloride resin, polyvinyl alcohol resin, polyvinyl butyral resin, epoxy resin, phenoxy resin, fibrin resin, acrylonitrile-butadiene copolymer, polybutadiene and the like are preferable.

【0034】さらに、オリゴマー、モノマーとして本発
明で用いられる放射線硬化性化合物としては、単官能ま
た多官能のトリアジン系アクリレート、多価アルコール
系アクリレート、ペンタエリスリトール系アクリレー
ト、エステル系アクリレート、ウレタン系アクリレート
および上記系の単官能または多官能のメタクリレート化
合物等が好適である。
Further, the radiation-curable compounds used in the present invention as oligomers and monomers include monofunctional or polyfunctional triazine acrylates, polyhydric alcohol acrylates, pentaerythritol acrylates, ester acrylates, urethane acrylates and A monofunctional or polyfunctional methacrylate compound of the above system is suitable.

【0035】磁性塗料中のバインダの含有量に特に制限
はないが、磁性微粒子100重量部に対し、10〜50
重量部程度とすることが好ましい。
The content of the binder in the magnetic paint is not particularly limited, but it is 10 to 50 per 100 parts by weight of the magnetic fine particles.
It is preferable that the amount is about parts by weight.

【0036】用いる溶剤に特に制限はなく、シクロヘキ
サノン、イソホロン等のケトン系、イソプロピルアルコ
ール、ブチルアルコール等のアルコール系、エチルセロ
ソルブ、酢酸セロソルブ等のセロソルブ系、トルエン等
の芳香族系等の各種溶剤を目的に応じて選択すればよ
い。
The solvent used is not particularly limited, and various solvents such as a ketone system such as cyclohexanone and isophorone, an alcohol system such as isopropyl alcohol and butyl alcohol, a cellosolve system such as ethyl cellosolve and a cellosolve acetate, and an aromatic system such as toluene. It may be selected according to the purpose.

【0037】磁性塗料中の溶剤の含有量に特に制限はな
いが、磁性微粒子100重量部に対し、400〜700
重量部程度とすることが好ましい。磁性塗料には、必要
に応じα−Al23 等の研磨剤、シリコーンオイル等
の潤滑剤、その他の各種添加物を添加してもよい。
The content of the solvent in the magnetic coating material is not particularly limited, but is 400 to 700 with respect to 100 parts by weight of the magnetic fine particles.
It is preferable that the amount is about parts by weight. If desired, an abrasive such as α-Al 2 O 3 or the like, a lubricant such as silicone oil, or other various additives may be added to the magnetic paint.

【0038】このような磁性塗料は、ポリッシングによ
り表面平滑化された剛性基板表面に塗布される。この場
合、剛性基板の表面は、アルマイト等の陽極酸化膜、ク
ロム酸等の酸化膜、Ni−P−Cu等の無電解メッキ
膜、カップリング剤、硬化性樹脂などで処理されていて
もよい。
Such a magnetic paint is applied to the surface of a rigid substrate whose surface is smoothed by polishing. In this case, the surface of the rigid substrate may be treated with an anodic oxide film such as alumite, an oxide film such as chromic acid, an electroless plating film such as Ni-P-Cu, a coupling agent, and a curable resin. ..

【0039】磁性塗料の塗布方法に特に制限はないが、
均一な塗布が容易にでき、本発明の効果が有効に実現で
きることから、スピンコート法を用いることが好まし
い。このスピンコートにより、磁性塗料にて塗膜を形成
しながら、基板を回転させたまま、内周側の方がより強
い磁界を印加する。この磁界により、塗膜に対し内周方
向へ磁気力が作用し、塗膜は内周側へ移動する。
The method of applying the magnetic paint is not particularly limited,
The spin coating method is preferably used because uniform coating can be easily performed and the effect of the present invention can be effectively realized. By this spin coating, a stronger magnetic field is applied to the inner circumference side while the substrate is rotated while forming a coating film with the magnetic paint. By this magnetic field, a magnetic force acts on the coating film in the inner peripheral direction, and the coating film moves to the inner peripheral side.

【0040】本発明では、用いる磁界印加装置に特に制
限はないが、好適例を図2に示し、以下図示例に従って
説明する。
In the present invention, the magnetic field applying device used is not particularly limited, but a preferred example is shown in FIG. 2 and will be described below with reference to the illustrated example.

【0041】磁性塗料を塗布した基板102には、磁界
が印加される。印加磁界の方向は通常基板102に垂直
であるが、多少の傾斜があってもよい。
A magnetic field is applied to the substrate 102 coated with the magnetic paint. The direction of the applied magnetic field is usually perpendicular to the substrate 102, but it may have some inclination.

【0042】また、この際の磁界強度は、最内周部の磁
性塗料104中にて100〜3000G、特に200〜
3000Gであることが好ましい。強度が小さすぎると
塗膜を動かすのに十分な力が生じないため、レベリング
効果が不十分となる。 大きすぎると塗膜の表面性が悪
化する。
The magnetic field strength at this time is 100 to 3000 G, especially 200 to 300 G in the innermost magnetic coating 104.
It is preferably 3000 G. If the strength is too low, sufficient force to move the coating film is not generated, and the leveling effect becomes insufficient. If it is too large, the surface properties of the coating film deteriorate.

【0043】この場合、印加磁界の強度は、基板102
の最内径部の磁性塗料中にて最大であり、外径部から内
径部にかけて連続的あるいは段階的に増加するものであ
る。このような磁界を印加するには図示例のように、主
面に着磁した1対の棒状の磁石203、204を用い、
これらを基板102を挟んで互いの異極同士を対向させ
て配置する。
In this case, the strength of the applied magnetic field depends on the substrate 102.
It is the largest in the magnetic coating material in the innermost diameter part, and increases continuously or stepwise from the outer diameter part to the inner diameter part. In order to apply such a magnetic field, a pair of rod-shaped magnets 203 and 204 magnetized to the main surface are used as shown in the figure,
These electrodes are arranged with the different poles facing each other with the substrate 102 sandwiched therebetween.

【0044】内周側の磁界強度を外周側よりも強くする
ためには、図2に示されるように、均一な磁束を有する
一対の磁石202、203を用い、内周側で対向間隙を
挟めるように1対の磁石203、204を近づけて、内
周側の磁化量を大きくしてもよい。あるいは、例えば磁
界強度の異なるセグメント磁石を連結して棒状の磁石と
し、この磁石を等間隔で平行に配置し、その内周側の磁
化量を大きくしてもよい。この他、軟磁性材料を磁石表
面に配置することによって磁束を調整することもでき
る。さらには、これらを組み合わせて用いてもよい。
In order to make the magnetic field strength on the inner circumference side stronger than that on the outer circumference side, as shown in FIG. 2, a pair of magnets 202 and 203 having a uniform magnetic flux are used, and a facing gap is sandwiched on the inner circumference side. As described above, the pair of magnets 203 and 204 may be brought close to each other to increase the amount of magnetization on the inner peripheral side. Alternatively, for example, segment magnets having different magnetic field strengths may be connected to form rod-shaped magnets, and the magnets may be arranged in parallel at equal intervals to increase the amount of magnetization on the inner peripheral side. In addition, the magnetic flux can be adjusted by disposing a soft magnetic material on the surface of the magnet. Furthermore, these may be used in combination.

【0045】用いる磁石は、永久磁石でも電磁石でもよ
く、また、用いる磁石の最大エネルギー積(BH)max やサ
イズ等は、基板の大きさ、印加磁界強度、基板と磁石間
の距離等に応じて適宜選択すればよい。通常、磁石の(B
H)max は16〜30MGOe程度、磁石と基板間の距離は5
〜20mm程度、磁極のサイズは10×65mm程度であ
る。なお、外周側の磁界強度を内周側の磁界強度で除し
た値は1.1以上、好ましくは1.5以上、より好まし
くは2以上とすることが好ましい。なお、最外周では磁
界強度0でもよい。
The magnet used may be a permanent magnet or an electromagnet, and the maximum energy product (BH) max and size of the magnet used depend on the size of the substrate, the applied magnetic field strength, the distance between the substrate and the magnet, etc. It may be selected appropriately. Normally, the (B
H) max is about 16 to 30 MGOe, and the distance between the magnet and the substrate is 5
Approximately 20 mm, and the size of the magnetic pole is approximately 10 × 65 mm. The value obtained by dividing the magnetic field strength on the outer peripheral side by the magnetic field strength on the inner peripheral side is 1.1 or more, preferably 1.5 or more, and more preferably 2 or more. The magnetic field strength may be zero at the outermost circumference.

【0046】また、これら対向磁石203、204は1
対のみでなく、2対〜6対程度設けてもよい。なお、磁
界印加方法は、前記の方法に限定されるものではなく、
例えば基板の片側にのみ磁極を配置して、垂直方向の磁
界を印加するなど種々の方法が可能である。
The opposing magnets 203 and 204 are 1
Not only pairs, but 2 to 6 pairs may be provided. The magnetic field applying method is not limited to the above method,
Various methods are possible, for example, by arranging magnetic poles only on one side of the substrate and applying a vertical magnetic field.

【0047】このような印加磁界により表面の平滑性に
優れた磁性塗膜を形成でき、しかも配向の直前まで磁性
塗料の乾燥を防止できるため、磁性微粒子を充分に配向
でき高い角形比が得られる。
A magnetic coating film having excellent surface smoothness can be formed by such an applied magnetic field, and moreover, the magnetic coating material can be prevented from drying until just before orientation, so that the magnetic fine particles can be sufficiently oriented and a high squareness ratio can be obtained. ..

【0048】塗膜の形成は、基本的には比較的低回転数
での塗布(2000rpm 以下、特に200〜2000rp
m 程度で1秒〜1分程度)、高回転数での振り切り(1
000rpm 以上、特に1000〜10000rpm 程度で
1秒〜3分程度)で構成され、その後配向処理を行う。
その際、塗膜形成後、配向前に、必要に応じて塗膜の平
滑化のための低回転数(200〜3000rpm 程度で1
秒〜5分程度)のレベリング工程等を導入してもよい。
塗膜形成に際しては、印加磁界を塗膜の形成の間常に一
定とする必要はなく、塗膜の形成の一部のみで行なわれ
てもよいし、途中で磁界分布を変化させてもよい。レベ
リング工程では、上記の磁界印加を継続して遠心力の影
響を軽減することが好ましいが、場合によっては均一磁
界を印加したり、無磁場中で行ってもよい。
Basically, the coating film is formed by coating at a relatively low rotational speed (2000 rpm or less, particularly 200 to 2000 rp).
About 1 second to 1 minute at m), shake off at high rotation speed (1
000 rpm or more, particularly about 1000 to 10000 rpm for about 1 second to 3 minutes), and then an alignment treatment is performed.
At that time, after forming the coating film and before orienting, if necessary, a low rotation speed (1 to about 200 to 3000 rpm for smoothing the coating film).
You may introduce the leveling process etc. of a second-5 minutes).
In forming the coating film, the applied magnetic field does not have to be constant during the formation of the coating film, and may be performed only in a part of the coating film formation, or the magnetic field distribution may be changed during the formation. In the leveling step, it is preferable to continue the application of the magnetic field to reduce the influence of the centrifugal force, but in some cases, a uniform magnetic field may be applied or it may be performed without a magnetic field.

【0049】本発明では、空気中に溶剤蒸気を溶存させ
た雰囲気中にて、塗膜形成中あるいはレベリング中の塗
膜に磁界を印加することもできる。用いる溶剤は、前記
磁性塗料を調整する際に使用可能な溶剤であれば、特に
制限はなく、そのいずれであってもよく、また、2種以
上を用いてもよい。この場合、雰囲気の温度は20〜5
0℃であってもよい。このようにすれば配向の直前まで
磁性塗膜の乾燥を防止できるため、磁性微粒子を十分に
配向させることができ、高い保磁力角形比Sを有する磁
性層を形成できる。
In the present invention, it is also possible to apply a magnetic field to the coating film during coating film formation or leveling in an atmosphere in which solvent vapor is dissolved in air. The solvent used is not particularly limited as long as it is a solvent that can be used when preparing the magnetic coating material, and any solvent may be used, or two or more kinds may be used. In this case, the temperature of the atmosphere is 20-5
It may be 0 ° C. By doing so, the magnetic coating film can be prevented from drying until just before the orientation, so that the magnetic fine particles can be oriented sufficiently and a magnetic layer having a high coercive force squareness ratio S can be formed.

【0050】磁性塗料を塗布し、塗膜形成およびレベリ
ングを行った後、磁性微粒子の配向を行なう。磁性塗料
は、その磁化容易軸がディスク周方向に向くように配向
されることが好ましい。このような配向を行なうために
は、磁性層を挟んで同極同士が対向するように一対の磁
石を設け、これらの磁石で磁気ディスクを回転させるこ
とが好ましい。
After applying a magnetic paint, forming a coating film and leveling, the magnetic fine particles are oriented. The magnetic paint is preferably oriented so that its easy axis of magnetization is oriented in the disk circumferential direction. In order to perform such an orientation, it is preferable to provide a pair of magnets so that the same poles face each other with the magnetic layer sandwiched therebetween, and rotate the magnetic disk with these magnets.

【0051】配向磁石の磁界は、塗膜中にて1000〜
10000G程度とし、配向磁石は、1対〜6対程度設
けてもよい。この際、回転数は100〜500rpm 程
度、時間は10秒〜10分程度とする。配向雰囲気には
溶剤蒸気を存在させても、させなくてもよい。
The magnetic field of the orienting magnet is 1000 to 1000 in the coating film.
About 10000G may be provided, and about 1 to 6 pairs of oriented magnets may be provided. At this time, the rotation speed is about 100 to 500 rpm, and the time is about 10 seconds to 10 minutes. A solvent vapor may or may not be present in the orientation atmosphere.

【0052】配向後、必要に応じ、塗料を乾燥させ、そ
の後磁性塗料硬化のために硬化処理を行なう。乾燥を行
うときには、100℃程度以下の温度とする。
After orientation, the coating material is dried, if necessary, and then a curing treatment is performed to cure the magnetic coating material. When performing drying, the temperature is set to about 100 ° C. or lower.

【0053】バインダが熱硬化性樹脂の場合、熱処理温
度、熱処理時間等の各種条件はバインダの種類に応じて
適宜設定すればよいが、通常150〜300℃程度にて
1〜5時間程度である。また、放射線硬化性樹脂の場合
には、常温において、3〜10Mradの線量に設定すれば
よい。硬化処理時の雰囲気は不活性ガス雰囲気中、特に
窒素雰囲気中であることが好ましい。このようにして、
膜厚が薄く、かつ均一であり、表面粗さが小さい磁性層
を形成できる。例えば、磁性塗膜硬化後の磁性層の膜厚
は、0.6μm 以下、特に0.3μm 以下とすることが
好ましい。この場合、再生出力やオーバーライト特性等
の点で内周部を外周部より厚くすることが好ましい。外
周部と内周部との膜厚差は40%以下とすることが好ま
しい。また、表面粗さはRmax が0.1μm 以下のもの
とすることができる。これらの結果、研磨工程は短縮さ
れ、量産性、生産性はより一層向上する。
When the binder is a thermosetting resin, various conditions such as heat treatment temperature and heat treatment time may be appropriately set according to the kind of the binder, but it is usually about 150 to 300 ° C. and about 1 to 5 hours. .. Further, in the case of a radiation curable resin, the dose may be set to 3 to 10 Mrad at room temperature. The atmosphere during the curing treatment is preferably an inert gas atmosphere, particularly a nitrogen atmosphere. In this way
It is possible to form a magnetic layer having a thin film thickness, a uniform thickness, and a small surface roughness. For example, the thickness of the magnetic layer after curing the magnetic coating film is preferably 0.6 μm or less, and particularly preferably 0.3 μm or less. In this case, it is preferable to make the inner peripheral portion thicker than the outer peripheral portion in terms of reproduction output and overwrite characteristics. The film thickness difference between the outer peripheral portion and the inner peripheral portion is preferably 40% or less. The surface roughness may be such that Rmax is 0.1 μm or less. As a result, the polishing process is shortened, and mass productivity and productivity are further improved.

【0054】磁性塗料の硬化後、磁性層表面のポリッシ
ングを行なうことが好ましい。 ポリッシングは研磨テ
ープ等の各種研磨材により行なえばよい。 このポリッ
シングにより磁性層の表面粗さを所望の値とすることが
でき、また、これにより磁性層の厚さを調整することも
もちろん可能である。なお、本発明では、硬化後のRma
x を前記のとおり小さくできるため、ポリッシングによ
る磁性層のRmax を0.1μm 程度以下、特に0.02
μm 以下、最低1nm程度とすることができる。
After the magnetic paint is cured, it is preferable to polish the surface of the magnetic layer. Polishing may be performed with various abrasives such as an abrasive tape. By this polishing, the surface roughness of the magnetic layer can be set to a desired value, and the thickness of the magnetic layer can be adjusted as a matter of course. In the present invention, after curing, Rma
Since x can be reduced as described above, the Rmax of the magnetic layer formed by polishing is about 0.1 μm or less, especially 0.02.
The thickness can be less than 1 μm and at least about 1 nm.

【0055】磁性層を研磨後、磁性層表面に液体潤滑剤
を塗布し、磁性層中に含浸させることが好ましい。用い
る液体潤滑剤に特に制限はないが、潤滑性が良好である
ことから、フッ素を含む有機化合物を含有する液体潤滑
剤を用いることが好ましい。液体潤滑剤の塗布方法に制
限はなく、例えば、ディップ法、スピンコート法等を用
いればよい。
After polishing the magnetic layer, it is preferable to apply a liquid lubricant to the surface of the magnetic layer to impregnate the magnetic layer. Although the liquid lubricant used is not particularly limited, it is preferable to use a liquid lubricant containing an organic compound containing fluorine because it has good lubricity. There is no limitation on the method of applying the liquid lubricant, and for example, a dipping method, a spin coating method or the like may be used.

【0056】液体潤滑剤の含浸後、バニッシングを行な
うことにより、磁気ディスク表面の平滑性をさらに向上
させることが好ましい。なお、このような液体潤滑剤
は、磁性塗料に含有させてもよい。
It is preferable to further improve the smoothness of the surface of the magnetic disk by performing burnishing after impregnation with the liquid lubricant. Note that such a liquid lubricant may be contained in the magnetic paint.

【0057】[0057]

【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。 実施例1 下記のとおり磁性塗料を調整した。 磁性粉 100重量部 組成:α−Fe 保磁力:1190 長径:0.25μm 針状比:8 α−Al23 10重量部 エポキシ樹脂 28重量部 (エピコート1004、シェル化学社製) フェノール樹脂 12重量部 (スミラックPC25、住友ベークライト社製) シリコーンオイル 0.4重量部 シクロヘキサノン/イソホロン(1/1混合溶剤) 5
70重量部 上記組成物をボールミル中にて140時間混合、分散さ
せた。塗料の粘度は660cps であった。
EXAMPLES The present invention will be described in more detail below by showing specific examples of the present invention. Example 1 A magnetic paint was prepared as follows. Magnetic powder 100 parts by weight Composition: α-Fe Coercive force: 1190 Major axis: 0.25 μm Needle ratio: 8 α-Al 2 O 3 10 parts by weight Epoxy resin 28 parts by weight (Epicoat 1004, Shell Chemical Co.) Phenolic resin 12 Parts by weight (Sumirac PC25, manufactured by Sumitomo Bakelite Co., Ltd.) Silicone oil 0.4 parts by weight Cyclohexanone / isophorone (1/1 mixed solvent) 5
70 parts by weight The above composition was mixed and dispersed in a ball mill for 140 hours. The viscosity of the paint was 660 cps.

【0058】次に、空気中にシクロヘキサノン蒸気を存
在させた雰囲気中にて、図2に示される棒状のNS対向
磁石を斜めに配したレベリング装置を用いてディスクを
回転させ、室温23℃にて塗膜形成と磁界処理を行っ
た。
Next, in an atmosphere in which cyclohexanone vapor was present in the air, the disc was rotated by using a leveling device having slanted rod-shaped NS facing magnets shown in FIG. 2 at room temperature of 23 ° C. Coating film formation and magnetic field treatment were performed.

【0059】塗膜の形成は得られた磁性塗料を3.5イ
ンチ系のディスク状アルミ基板の両面に塗布、回転数4
000rpm 、時間5秒にて振り切り、続いて回転数10
00rpm 、時間20秒でレベリング処理を行なった。磁
界の印加は塗膜の形成およびレベリングを通じて行なっ
た。塗膜中での磁界強度は表1に示されるとおりであ
る。
The coating film was formed by coating the obtained magnetic paint on both sides of a 3.5-inch disk-shaped aluminum substrate at a rotation speed of 4
Shake off at 000 rpm for 5 seconds, then rotate at 10
The leveling treatment was performed at 00 rpm for 20 seconds. The magnetic field was applied through formation of a coating film and leveling. The magnetic field strength in the coating film is as shown in Table 1.

【0060】次に、対向磁石を配した配向装置によりデ
ィスク円周方向に配向処理を行なった後、塗料を乾燥さ
せた。配向磁界は、塗料中にて3000Gで全体に均一
とし、回転数200rpm 、配向時間は45秒とした。
Next, after an orienting treatment was carried out in the disk circumferential direction by an orienting device having opposed magnets, the paint was dried. The orientation magnetic field was made uniform in the paint at 3000 G, the rotation speed was 200 rpm, and the orientation time was 45 seconds.

【0061】次に窒素気流中、200℃で3時間硬化処
理を行なった後、テープ研磨装置により研磨テープWA10
000 (日本ミクロコーティング社製)を用いて研磨量が
約0.01μm となるように研磨を行ない、磁性層の平
滑化処理を行った。
Next, after a curing treatment was carried out at 200 ° C. for 3 hours in a nitrogen stream, a polishing tape WA10 was prepared by a tape polishing device.
000 (manufactured by Nihon Micro Coating Co., Ltd.) was used to polish the polishing amount to about 0.01 μm to smooth the magnetic layer.

【0062】次いで、ディスクを洗浄し、濃度0.1%
のフルオロカーボン(KRITOX 143CZ:デュポン社製)の
フロン溶液をディップ法により塗布し、含浸させ、磁気
ディスクサンプルNo. 1を作製した。磁性層表面のRma
x は10nmであった。
Next, the disc is washed and the concentration is 0.1%.
A fluorocarbon (KRITOX 143CZ: manufactured by DuPont) fluorocarbon solution was applied by a dip method and impregnated to prepare a magnetic disk sample No. 1. Rma of the magnetic layer surface
x was 10 nm.

【0063】次に、塗膜形成およびレベリング時の磁界
処理を、対向磁石として、図3の磁界強度の異なる磁石
を用いた磁界印加装置にて行った以外は実施例と同様の
方法で比較サンプルNo. 2を作製した。塗膜中の磁界強
度は表1に示されるとおりである。
Next, a comparative sample was prepared in the same manner as in the example except that the magnetic field treatment at the time of coating film formation and leveling was performed by the magnetic field applying device using magnets having different magnetic field strengths as shown in FIG. No. 2 was produced. The magnetic field strength in the coating film is as shown in Table 1.

【0064】次に、塗膜形成およびレベリング時の磁界
処理を行なわない以外は実施例と同様の方法で比較サン
プルNo. 3を作製した。
Next, Comparative Sample No. 3 was prepared in the same manner as in Example except that the coating film formation and the magnetic field treatment during leveling were not performed.

【0065】これらの磁界印加装置における塗膜位置で
も磁界強度と各サンプルNo. 1〜3における塗膜厚さ、
再生出力、オーバーライトを、ディスクの内周部(ディ
スク中心より25mm)、中央(同32mm)、外周部(同
39mm)にて測定した。結果は表1に示されるとおりで
ある。
At the coating film position in these magnetic field applying devices, the magnetic field strength and the coating film thickness in each sample No. 1 to 3,
The reproduction output and the overwrite were measured at the inner peripheral portion (25 mm from the disc center), the center (the same 32 mm) and the outer peripheral portion (the same 39 mm) of the disc. The results are shown in Table 1.

【0066】[0066]

【表1】 [Table 1]

【0067】磁性層の厚さは、あらかじめ被測定ディス
クに磁性層の内領域を設け、触針式表面粗さ径(タリス
テップ)を用いてその場所の段差から求めた。再生出力
およびオーバーライト特性は、浮上型磁気ヘッドを磁気
ディスクサーティファイアを用いて測定した。測定に使
用した磁気ヘッドは、ギャップ長0.6μm のモノリシ
ックタイプのMIG型ヘッドで、記録・再生時のヘッド
浮上量は0.14μmとした。再生出力は記録周波数
3.3MHz とした際のP−P値である。なお、測定時の
ディスク回転数は3600rpm とした。
The thickness of the magnetic layer was determined from the level difference at that location using the stylus type surface roughness diameter (taly step) after the inner area of the magnetic layer was provided in advance on the disk to be measured. The reproduction output and overwrite characteristics were measured using a floating magnetic head and a magnetic disk certifier. The magnetic head used for the measurement was a monolithic MIG head with a gap length of 0.6 μm, and the flying height of the head during recording / reproduction was 0.14 μm. The reproduction output is the PP value when the recording frequency is 3.3 MHz. The disk rotation speed during measurement was 3600 rpm.

【0068】また、オーバーライト特性(O/W)は、
1F信号(1.65MHz )に2F信号(3.3MHz )を
重ね書きしたときの1F信号の減衰量で評価し、このれ
はスペクトラムアナライザ(ヒューレットパッカード社
製)で測定した。表1から本発明の効果は明らかであ
る。
The overwrite characteristic (O / W) is
The 1F signal (1.65 MHz) was overwritten with the 2F signal (3.3 MHz) to evaluate the attenuation of the 1F signal, and this was measured with a spectrum analyzer (manufactured by Hewlett-Packard Co.). The effect of the present invention is clear from Table 1.

【0069】[0069]

【発明の効果】本発明の磁気ディスクの製造方法によれ
ば、膜厚が均一、もしくは内周側で厚く外周側で薄い磁
性層が形成できる。このため、従来と比較して、内周部
と外周部で再生出力およびオーバーライト特性の差が少
ない塗布型磁気ディスクが提供できるようになった。
According to the method of manufacturing a magnetic disk of the present invention, it is possible to form a magnetic layer having a uniform film thickness or a thick magnetic film on the inner peripheral side and a thin film on the outer peripheral side. For this reason, it becomes possible to provide a coated magnetic disk in which the difference in reproduction output and overwrite characteristics between the inner peripheral portion and the outer peripheral portion is smaller than in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気ディスクの好適例を示す部分断面
図である。
FIG. 1 is a partial cross-sectional view showing a preferred example of a magnetic disk of the present invention.

【図2】本発明の磁気ディスクの製造方法緒を説明する
ための正面図である。
FIG. 2 is a front view for explaining the method of manufacturing the magnetic disk of the present invention.

【図3】本発明の磁気ディスクの製造方法の比較用の方
法を示す正面図である。
FIG. 3 is a front view showing a comparative method of the magnetic disk manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

101 磁気ディスク 102 剛性基板 103 磁性層 104 磁性塗料 201、301 容器 202、203、302、303 磁石 204、304 溶剤 205、305 回転軸 101 magnetic disk 102 rigid substrate 103 magnetic layer 104 magnetic paint 201, 301 container 202, 203, 302, 303 magnet 204, 304 solvent 205, 305 rotating shaft

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 剛性基板上に磁性微粒子とバインダーと
を含有する磁性塗料にて塗膜を形成し、配向、硬化する
磁気ディスクの製造方法において、 塗膜の形成時に、磁界を印加し、前記剛性基板の内周側
における印加磁界強度を外周側の磁界強度よりも大きく
する磁気ディスクの製造方法。
1. A method for producing a magnetic disk, comprising forming a coating film on a rigid substrate with a magnetic coating material containing magnetic fine particles and a binder, and orienting and curing the coating film. A method of manufacturing a magnetic disk, wherein an applied magnetic field strength on an inner peripheral side of a rigid substrate is made larger than an outer peripheral side magnetic field strength.
【請求項2】 前記硬化後に研磨を行う請求項1の磁気
ディスクの製造方法。
2. The method for manufacturing a magnetic disk according to claim 1, wherein polishing is performed after the curing.
【請求項3】 前記磁気ディスクの磁性層の厚さは、内
周側の方が外周側よりも厚い請求項1または2の磁気デ
ィスクの製造方法。
3. The method of manufacturing a magnetic disk according to claim 1, wherein the magnetic layer of the magnetic disk is thicker on the inner peripheral side than on the outer peripheral side.
【請求項4】 剛性基板上に磁性層を有し、この磁性層
の内周側の厚さは、外周側の厚さより厚い磁気ディス
ク。
4. A magnetic disk having a magnetic layer on a rigid substrate, the thickness of the inner side of the magnetic layer being thicker than the thickness of the outer side.
JP4072584A 1992-02-21 1992-02-21 Manufacture of magnetic disk and the magnetic disk Pending JPH05234074A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4072584A JPH05234074A (en) 1992-02-21 1992-02-21 Manufacture of magnetic disk and the magnetic disk
US08/013,395 US5393584A (en) 1992-02-21 1993-02-04 Magnetic disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4072584A JPH05234074A (en) 1992-02-21 1992-02-21 Manufacture of magnetic disk and the magnetic disk

Publications (1)

Publication Number Publication Date
JPH05234074A true JPH05234074A (en) 1993-09-10

Family

ID=13493575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4072584A Pending JPH05234074A (en) 1992-02-21 1992-02-21 Manufacture of magnetic disk and the magnetic disk

Country Status (2)

Country Link
US (1) US5393584A (en)
JP (1) JPH05234074A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5585989A (en) * 1993-11-30 1996-12-17 Sony Corporation Magnetic disc substrate and a magnetic disc using the same
US6716488B2 (en) * 2001-06-22 2004-04-06 Agere Systems Inc. Ferrite film formation method
US6808783B1 (en) * 2002-01-17 2004-10-26 Maxtor Corporation Storage media with non-uniform properties
US7592079B1 (en) * 2003-07-03 2009-09-22 Seagate Technology Llc Method to improve remanence-squareness-thickness-product and coercivity profiles in magnetic media

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910807C2 (en) * 1979-03-20 1982-07-15 Basf Ag, 6700 Ludwigshafen Polishing compound for polishing the surfaces of magnetic storage disks
JPS58114763A (en) * 1981-12-29 1983-07-08 Hitachi Ltd Method for forming thin film
US4551355A (en) * 1983-06-15 1985-11-05 Magnegic Peripherals High speed coating process for magnetic disks
US4587139A (en) * 1984-12-21 1986-05-06 International Business Machines Corporation Magnetic disk coating method and apparatus
US5166006A (en) * 1991-06-03 1992-11-24 Hmt Technology Corporation Textured thin-film substrate and method

Also Published As

Publication number Publication date
US5393584A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JPH0620254A (en) Magnetic recording medium and fabrication thereof
US4415630A (en) Process of making magnetic recording medium
JPS6366846B2 (en)
US5160761A (en) Method for making a magnetic disk
JPH05234074A (en) Manufacture of magnetic disk and the magnetic disk
JPH03157801A (en) Magnetic recording and reproducing method
US5182693A (en) Magnetic disk
JPH05314457A (en) Magnetic recording medium and manufacture thereof
JPH04113517A (en) Production of magnetic disk and magnetic disk
JPH05334666A (en) Production of magnetic disk and magnetic disk
JP3272789B2 (en) Method of manufacturing magnetic disk and method of manufacturing optical disk
JPH0673172B2 (en) Magnetic recording medium
JPH05334667A (en) Production of magnetic disk and magnetic disk
JP3288136B2 (en) Magnetic recording / reproducing method
JP2001084551A (en) Magnetic recording medium
JPH03224124A (en) Magnetic disk, production of magnetic disk and magnetic recording and reproducing method
JPH05258300A (en) Production of magnetic disk and magnetic disk
US5110680A (en) Magnetic recording medium
JPH04167224A (en) Magnetic recording medium
JPH06342515A (en) Magnetic recording and reproducing method
JPS6286531A (en) Magnetic sheet
JPH04310628A (en) Production of magnetic disk and magnetic disk
JPH05225562A (en) Production of magnetic disk and magnetic disk
JPS63153718A (en) Magnetic recording medium
JPH01104632A (en) Production of support for magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010410