JPH05232396A - Rotary polygonal mirror - Google Patents

Rotary polygonal mirror

Info

Publication number
JPH05232396A
JPH05232396A JP3305392A JP3305392A JPH05232396A JP H05232396 A JPH05232396 A JP H05232396A JP 3305392 A JP3305392 A JP 3305392A JP 3305392 A JP3305392 A JP 3305392A JP H05232396 A JPH05232396 A JP H05232396A
Authority
JP
Japan
Prior art keywords
polygon mirror
rotary
resin
accuracy
revolving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3305392A
Other languages
Japanese (ja)
Inventor
Nozomi Shinozaki
望 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3305392A priority Critical patent/JPH05232396A/en
Publication of JPH05232396A publication Critical patent/JPH05232396A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the rotary polygonal mirror which maintains practicable accuracy while its weight and size are reduced and its assembly is facilitated as the rotary polygonal mirror for an optical device having a laser beam scanning system, etc. CONSTITUTION:A symbol 1 is the reflection surface of the rotary polygonal mirror constituted by coating the surface of a polygonal base body 3 with a metallic reflection film and a transparent protective film. The polygonal base body 3 is constituted by combining a first member 31 made of a rigid material-reinforced resin to be joined to a revolving shaft 2 and a second member 32 made of a resin covering the outer peripheral surface of this member, by which the rotary polygonal mirror eliminating the change in the accuracy of the reflection surfaces by the centrifugal force at the time of high-speed rotation and the moisture absorption at the time of a high temp. and high humidity and having a high reflectivity is obtd. The revolving shaft 2 made of metal is integrally formed with the first member 31 in such a manner that the resin infiltrates to the groove 2a at its front end. The second member 32 is formed on the surface thereof with the revolving shaft as a reference axis and, therefore, the parallelism of the revolving shaft and the respective reflection surfaces 1 is provided with the high accuracy. The connection to a motor is facilitated by the tapered part 2c at the other end of the revolving shaft and a good plane tilt is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザー光走査系を有す
る光学装置などに使用される回転多面鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary polygon mirror used in an optical device having a laser beam scanning system.

【0002】[0002]

【従来の技術】回転多面鏡は、レーザー光走査系を有す
る光学装置、例えばレーザービームプリンターやデジタ
ル複写機に使用され、レーザービームを高速で印字ドラ
ム上に走査する機能を有する。
2. Description of the Related Art A rotary polygon mirror is used in an optical device having a laser beam scanning system, such as a laser beam printer or a digital copying machine, and has a function of scanning a laser beam onto a printing drum at a high speed.

【0003】かかる回転多面鏡の素材には、従来光学ガ
ラスもしくはアルミニウム合金がおもに使われてきた。
これらは研削あるいは切削により正多角形に成形された
後、前者の場合には研磨加工により、後者の場合にはダ
イアモンドバイトによる切削加工によって反射鏡面を形
成する方法が一般であった。
Conventionally, optical glass or aluminum alloy has been mainly used as a material for the rotary polygon mirror.
In general, these are formed into regular polygons by grinding or cutting, and then, in the former case, a polishing process is performed, and in the latter case, a reflecting mirror surface is formed by a cutting process with a diamond bite.

【0004】ガラス素材を研磨加工により鏡面を形成す
るには、熟練を要し同時に膨大な加工時間を必要とし
た。またアルミニウム合金をダイアモンドバイトで切削
加工する場合、5〜10枚重ね切削することによって加
工時間の短縮化がはかられているが、加工の自動化が難
しいこと、及び切り粉のかみこみによる鏡面の傷が発生
し易く、生産性がきわめて悪いものとなっていた。この
回転多面鏡がレーザー光走査系のコストの大きいウエイ
トを占めていた。
[0004] To form a mirror surface of a glass material by polishing, it required a great deal of skill and a huge amount of processing time. In addition, when cutting aluminum alloy with a diamond bite, it is possible to shorten the processing time by cutting 5 to 10 layers, but it is difficult to automate the processing and scratches on the mirror surface due to cutting chips. Were likely to occur and productivity was extremely poor. This rotating polygon mirror occupies the weight of the laser beam scanning system having a high cost.

【0005】従来の回転多面鏡の代表的な例を図7、及
び図8に示す。7は光学ガラスもしくはアルミニウム合
金であり、反射鏡面8は前述の手段にて鏡面加工され、
しかる後前者の場合には金属反射膜及び透明保護膜10
が、後者の場合には透明保護膜10が真空蒸着あるいは
スパッタリングなどの手段で被着される。透明保護膜1
0は例えばSiOなどの比較的硬い透明膜が2000オ
ングストローム前後被着される。
Typical examples of conventional rotary polygon mirrors are shown in FIG. 7 and FIG. 7 is optical glass or aluminum alloy, and the reflecting mirror surface 8 is mirror-finished by the above-mentioned means,
Thereafter, in the former case, the metal reflection film and the transparent protective film 10
However, in the latter case, the transparent protective film 10 is deposited by means such as vacuum deposition or sputtering. Transparent protective film 1
For 0, a relatively hard transparent film such as SiO 2 is deposited to about 2000 angstroms.

【0006】さらに中央部に穴9を有し、図示しないモ
ータのロータ部に当回転多面鏡の下端部を基準として挿
入され、上部よりバネ部材にて押圧固定される。回転多
面鏡の精度が印字品質に密接に関係するために、例えば
各鏡面の平面度はλ/4、各鏡面の面粗度は0.02μ
mRmax、相対面倒れは50秒程度を必要とする。
Further, it has a hole 9 in the center, is inserted into the rotor portion of a motor (not shown) with the lower end portion of the rotating polygon mirror as a reference, and is pressed and fixed from above by a spring member. Since the accuracy of the rotary polygon mirror is closely related to the printing quality, for example, the flatness of each mirror surface is λ / 4 and the surface roughness of each mirror surface is 0.02μ.
mRmax and relative tilting require about 50 seconds.

【0007】[0007]

【発明が解決しようとする課題】従来、上記精度を前述
の機械加工で達成するために、きわめて多くの工程と工
数を必要とし、コスト高の要因となっていた。
Conventionally, in order to achieve the above-mentioned accuracy by the above-mentioned machining, an extremely large number of steps and man-hours have been required, which has been a factor of high cost.

【0008】かかる従来の課題を解決するために、樹脂
もしくは樹脂を主体とする複合樹脂材料を金型によって
成形し、多角状基体を得てしかる後、各側面に金属反射
膜と透明保護膜を被着して回転多面鏡を得る工法はすで
にいくつか提案されている。
In order to solve such a conventional problem, a resin or a composite resin material mainly containing a resin is molded by a mold to obtain a polygonal substrate, and then a metal reflection film and a transparent protective film are provided on each side surface. Several methods have already been proposed for attaching and obtaining a rotary polygon mirror.

【0009】その一例として、特開昭61−19622
0号公報に提案されている回転多面鏡を図9に示す。1
1は例えばPMMA,ABS,ポリカーボネイト等の樹
脂、あるいはこれらの樹脂とガラスファイバー、カーボ
ンファイバー等の他の材料と複合した材料を金型によっ
て成形した多角状基体、12は基準面であり多角状基体
の成形時に必要な形状及び精度に成形されている。13
は増反射機能を有する例えば、Cu,Al,Ag等の金
属反射膜、14は金属反射膜13の保護を主目的とした
例えば、SiO,TiO2等の透明保護膜である。さら
に中央部に穴15を有し、図示しないモータのロータ部
に当回転多面鏡の下端部を基準として挿入され、上部よ
りバネ部材にて押圧固定される。この提案は、従来のア
ルミニウム基材の回転多面鏡をそのまま樹脂成形化した
ものであり下記の課題がある。
As an example, Japanese Patent Laid-Open No. 19622/1986
The rotating polygon mirror proposed in Japanese Patent No. 0 is shown in FIG. 1
Reference numeral 1 denotes a polygonal base body formed by molding a resin such as PMMA, ABS, polycarbonate or the like, or a composite material of these resins and another material such as glass fiber, carbon fiber or the like, and 12 is a reference surface and a polygonal base body. It is molded to the shape and accuracy required for molding. Thirteen
Is a metal reflective film of, for example, Cu, Al, Ag, or the like having an enhanced reflection function, and 14 is a transparent protective film of, for example, SiO, TiO 2 or the like whose main purpose is to protect the metal reflective film 13. Further, it has a hole 15 in the central portion, and is inserted into the rotor portion of a motor (not shown) with reference to the lower end portion of the rotating polygon mirror, and is pressed and fixed by a spring member from the upper portion. This proposal is a resin molding of a conventional rotary polygonal mirror of an aluminum base, and has the following problems.

【0010】(1)基準面12に対して各鏡面は直角で
あり、抜き勾配をつけることができないので、金型は割
型になり各鏡面と基準面とを同時に必要な精度に保つこ
とが難しい。
(1) Since each mirror surface is at a right angle to the reference surface 12 and no draft can be provided, the mold becomes a split mold, and each mirror surface and the reference surface can be maintained at the required accuracy at the same time. difficult.

【0011】(2)各鏡面からの肉厚が均一でないた
め、成形時ヒケがでやすく平面度の精度をあげることが
難しい。
(2) Since the thickness from each mirror surface is not uniform, sink marks are likely to occur during molding, and it is difficult to improve the accuracy of flatness.

【0012】(3)各鏡面からの肉厚が厚く均一でない
ため、高速回転時、平面度が変化する。
(3) Since the thickness from each mirror surface is thick and not uniform, the flatness changes at high speed rotation.

【0013】また、特開昭64−3619号公報には、
中心の穴部をボスとし、各鏡面の肉厚を薄くして、イン
ジェクション加圧成形する工法が開示されている。前述
の特開昭61−196220号公報における課題(2)
及び(3)は解消されるが、課題(1)は解消されず、
同時にこのボス部をモータに精度よく取り付けることが
難しい。
Further, Japanese Patent Application Laid-Open No. 64-3619 discloses that
A method is disclosed in which the central hole is used as a boss, the thickness of each mirror surface is reduced, and injection pressure molding is performed. Problem (2) in the above-mentioned JP-A-61-196220
And (3) are resolved, but issue (1) is not resolved,
At the same time, it is difficult to attach this boss to the motor accurately.

【0014】また、特開平1−180512号公報に
は、上記と同じく中心の穴部をボスとし、各鏡面の肉厚
を薄くし、同時に補剛材料により剛性を高めた樹脂から
なる基材と、加工精度の高い樹脂からなる反射面部材と
を一体成形する技術が開示されている。しかし、上記と
同様、課題(1)は解消されず、さらにボス部と反射面
部材とが異なる材料で構成されるため、面倒れ精度の維
持が困難である。
Further, in Japanese Patent Application Laid-Open No. 1-180512, a base material made of a resin in which the center hole is used as a boss and the thickness of each mirror surface is thinned and at the same time, the rigidity is increased by a stiffening material, , A technique of integrally molding a reflecting surface member made of resin with high processing accuracy is disclosed. However, similarly to the above, the problem (1) is not solved, and since the boss portion and the reflecting surface member are made of different materials, it is difficult to maintain the accuracy of surface tilt.

【0015】さらに、特開平3−24515号公報に
は、光硬化性樹脂の多角状基体をベースとした回転多面
鏡を、モータに連結した回転軸に光硬化で固着する技術
が開示されている。前述のごとく、各鏡面の面倒れは極
めて厳しい精度を必要とするので、加工済みの回転多面
鏡を軸に接着固定する工法では、一般的に精度維持が困
難である。
Further, Japanese Unexamined Patent Publication No. 3-24515 discloses a technique in which a rotary polygon mirror based on a polygonal base made of a photocurable resin is fixed to a rotary shaft connected to a motor by photocuring. .. As described above, since the surface tilt of each mirror surface requires extremely strict accuracy, it is generally difficult to maintain accuracy in the method of bonding and fixing the processed rotary polygon mirror to the shaft.

【0016】本発明は上述した従来技術の欠点を除去す
るものであり、その目的とするところは、樹脂成形をベ
ースとした回転多面鏡を高精度にかつ安価に提供するも
のである。特に樹脂成形をベースとした回転多面鏡は、
その下端面を基準として成形しようとすると、金型構成
上、その下端面と各鏡面の精度をともに維持することに
困難を伴う。従ってこのような下端面の基準を排し、同
時に成形性が良好で、かつモータとの連結が容易に高精
度にできる回転多面鏡を提供するものである。
The present invention eliminates the above-mentioned drawbacks of the prior art, and an object thereof is to provide a rotary polygon mirror based on resin molding with high accuracy and at low cost. Especially the rotary polygon mirror based on resin molding,
If the molding is performed with the lower end surface as a reference, it is difficult to maintain the accuracy of the lower end surface and each mirror surface because of the mold structure. Accordingly, it is an object of the present invention to provide a rotary polygon mirror which eliminates such a reference of the lower end surface, has good moldability at the same time, and can be easily and highly accurately connected to a motor.

【0017】さらに、樹脂成形をベースとした回転多面
鏡は、高速回転時の遠心力や高温高湿時の吸湿によって
各鏡面が変化するという課題があるが、本発明はかかる
場合においても、実用的な精度に維持できる回転多面鏡
を提供するものである。
Further, the rotary polygon mirror based on resin molding has a problem that each mirror surface changes due to centrifugal force during high-speed rotation and moisture absorption during high temperature and high humidity. However, the present invention is practical in such cases as well. The present invention provides a rotary polygon mirror that can be maintained at high accuracy.

【0018】[0018]

【課題を解決するための手段】この目的を達成するため
に本発明の回転多面鏡は、金属よりなる回転軸と、樹脂
よりなる多角状基体と、該多角状基体の外周面上に被着
された金属反射膜、及び透明保護膜より成り、前記多角
状基体は前記回転軸と成形手段で接合され、かつ前記回
転軸と接合される第1の部材と、少なくとも外周面を構
成する第2の部材とを複合して成ることをその概要とす
る。
In order to achieve this object, a rotary polygon mirror of the present invention has a rotary shaft made of metal, a polygonal base made of resin, and an outer peripheral surface of the polygonal base. A second member forming at least an outer peripheral surface of the polygonal substrate, the first substrate being joined to the rotating shaft by a molding means, and the first member being joined to the rotating shaft. The outline is that it is composed of the above-mentioned members.

【0019】より好ましい手段は、前記第1の部材は補
剛材にて強化された樹脂材料であり、前記第2の部材は
厚み1mm以下の略均等厚みにて、前記第1の部材の外周
面上及び回転軸延伸側とは反対側の端面に有するもので
あり、さらにより好ましい手段は、前記多角状基体は外
周面を構成する断面が軸方向厚みより小さくなる如く凹
部を構成し、該凹部は前記第1の部材にて各角と前記回
転軸を接合する円筒部とを結ぶ如く放射状リブを有する
こと、またさらにより好ましい手段は前記第2の部材の
外面が前記金属反射膜及び前記透明保護膜にて被覆され
ていることの構成を含んでいる。
More preferably, the first member is a resin material reinforced with a stiffening material, and the second member has a substantially uniform thickness of 1 mm or less, and the outer circumference of the first member is small. On the surface and on the end surface on the side opposite to the extending side of the rotation axis, an even more preferable means is such that the polygonal base body has a concave portion such that the cross-section constituting the outer peripheral surface is smaller than the axial thickness, The concave portion has a radial rib so as to connect each corner of the first member to a cylindrical portion that joins the rotation shaft, and an even more preferable means is that the outer surface of the second member is the metal reflection film and the metal reflection film. It includes a structure of being covered with a transparent protective film.

【0020】[0020]

【作用】回転多面鏡を樹脂もしくは樹脂を主体とする複
合材料で構成することにより、従来のガラスもしくは金
属に比べ、比重の低減による低慣性化が可能となる。さ
らに、回転軸と成形手段で接合されているので、従来の
下端面を基準面とする必要性がなく、回転軸を基準とし
ていわゆるインサート成形することにより、精度の良い
回転軸基準の各鏡面を有する回転多面鏡が実現できる。
When the rotary polygon mirror is made of resin or a composite material mainly made of resin, it is possible to reduce the inertia by reducing the specific gravity as compared with the conventional glass or metal. Further, since it is joined to the rotary shaft by the molding means, there is no need to use the conventional lower end surface as a reference surface, and by so-called insert molding with the rotary shaft as a reference, each mirror surface of the rotary shaft with high accuracy can be obtained. It is possible to realize a rotating polygon mirror having the same.

【0021】また、多角状基体は、前記回転軸と接合さ
れる第1の部材と、少なくとも外周面を構成する第2の
部材とを複合して構成され、前記第1の部材は補剛材に
て強化された樹脂材料であり、前記第2の部材は補剛材
を含まない樹脂材料にて厚み1mm以下の略均等厚みで第
1の部材の外周面上及び回転軸延伸側とは反対の端面に
有する如く構成されているので、高速回転時の遠心力や
高温高湿時の吸湿による面精度の変化がなく、かつ各鏡
面の反射率が良好な回転多面鏡を実現できる。
Further, the polygonal base body is formed by combining a first member joined to the rotating shaft and at least a second member forming an outer peripheral surface, and the first member is a stiffening member. The second member is made of a resin material that is reinforced with a stiffener, and the second member has a substantially uniform thickness of 1 mm or less and is opposite to the outer peripheral surface of the first member and the rotation axis extending side. Since it is configured to be provided on the end face, it is possible to realize a rotary polygon mirror in which the surface accuracy does not change due to centrifugal force during high-speed rotation or moisture absorption during high temperature and high humidity, and the reflectance of each mirror surface is good.

【0022】また、多角状基体は外周面を構成する断面
が軸方向厚みより小さく成るごとく凹部を有し、該凹部
は前記第1の部材にて、各角と前記回転軸を接合する円
筒部とを結ぶ放射状リブを有することにより、一層の低
慣性化と高速回転時の遠心力による面精度の変化のない
回転多面鏡を同時に実現できる。
Further, the polygonal base body has a concave portion such that the cross section constituting the outer peripheral surface is smaller than the axial thickness, and the concave portion is a cylindrical portion for joining each corner and the rotary shaft in the first member. By having the radial ribs that connect to each other, it is possible to simultaneously realize a rotary polygonal mirror in which the inertia is further reduced and the surface accuracy does not change due to centrifugal force during high-speed rotation.

【0023】さらに前記第2の部材は、前記金属反射膜
及び前記透明保護膜にて被覆されているので、第2の部
材として吸水率の大きい材料を使用しても、高温高湿時
の面精度の変化の少ない回転多面鏡が実現できる。
Further, since the second member is covered with the metal reflection film and the transparent protective film, even when a material having a high water absorption rate is used as the second member, the surface under high temperature and high humidity conditions is high. A rotary polygon mirror with little change in accuracy can be realized.

【0024】[0024]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0025】図1は本発明の一実施例における回転多面
鏡の断面図、図2は図1におけるA部の拡大図、図3は
裏面図であり、1は回転多面鏡の反射面、2はステンレ
スなど金属製の回転軸で、両端部近傍に溝2a及び2b
を有し、先端部にはテーパ部2cを有する。3は樹脂成
形された多角状基体であり、その表面に金属反射膜5、
及び透明保護膜6が被覆されている。多角状基体3は回
転軸と接合される第1の部材31と、外面を構成する第
2の部材32とを複合して構成されている。
FIG. 1 is a sectional view of a rotary polygon mirror in one embodiment of the present invention, FIG. 2 is an enlarged view of a portion A in FIG. 1, FIG. 3 is a rear view, 1 is a reflecting surface of the rotary polygon mirror, and 2 is a rear view. Is a rotating shaft made of metal such as stainless steel and has grooves 2a and 2b near both ends.
And has a tapered portion 2c at the tip. 3 is a resin-molded polygonal substrate, on the surface of which a metal reflection film 5,
And the transparent protective film 6 is covered. The polygonal base 3 is configured by combining a first member 31 joined to the rotating shaft and a second member 32 forming an outer surface.

【0026】回転軸2は予め第1の金型にセットされて
後、第1の部材31の樹脂が注入され一体成形される。
次に、この第1の部材と一体になった回転軸は第2の金
型にセットされ、第2の部材32と一体成形される。こ
の第2の金型は、回転軸2を基準として各反射面1の平
行度が必要な精度に確保できるよう、精密に仕上げられ
ている。いわゆる二色成形の手法により第1の部材と第
2の部材と一度に成形することも可能である。
The rotating shaft 2 is set in the first mold in advance, and then the resin of the first member 31 is injected to be integrally molded.
Next, the rotary shaft integrated with the first member is set in the second mold and integrally molded with the second member 32. This second mold is precisely finished so that the parallelism of each reflecting surface 1 can be ensured with the required accuracy with respect to the rotation axis 2. It is also possible to mold the first member and the second member at the same time by a so-called two-color molding method.

【0027】第1の部材31は、エポキシ系、ポリエス
テル系等の熱硬化性樹脂、またはポリカーボネイト、ポ
リアリレート、ポリエーテルサルホン、液晶ポリマーな
どの熱可塑性樹脂に、ガラスファイバー、無機フィラ
ー、各種ウィスカー等の補剛材を混入した材料が主に使
用される。特に機械的剛性が強いこと、クリープが少な
いこと、熱膨脹率が小さいこと、吸水率が小さいこと等
の条件により最適な材料が選定され、前述のとおり回転
軸と一体に加圧成形や射出成形等公知の手段で成形され
る。樹脂材料が回転軸の溝2aに回り込むことにより強
固に接合される。
The first member 31 is made of thermosetting resin such as epoxy type or polyester type, or thermoplastic resin such as polycarbonate, polyarylate, polyether sulfone, liquid crystal polymer, glass fiber, inorganic filler and various whiskers. A material mixed with stiffening material such as is mainly used. In particular, the optimum material is selected according to conditions such as high mechanical rigidity, low creep, low coefficient of thermal expansion, and low water absorption rate. It is molded by a known means. The resin material wraps around the groove 2a of the rotary shaft to be firmly bonded.

【0028】第2の部材32は、例えばPMMA,ポリ
カーボネイト,ポリアリレート等の成形性のよいナチュ
ラル材が主に使用され、前述のとおり第1の部材を被覆
するが如く一体成形される。第2の部材32の断面厚み
tは、全周略均一に1mm以下とし、好ましくは成形上可
能な範囲で薄く0.5mm程度に設定される。各鏡面を形
成する金型は、平面度及び面粗度を十分に確保し、加圧
圧縮成形等の手段にて金型への転写性最良になるよう成
形することによって、平面度λ/4、面粗度0.1μm
Rmax以下が実現できる。
The second member 32 is mainly made of a natural material having good moldability such as PMMA, polycarbonate, polyarylate, etc., and is integrally molded so as to cover the first member as described above. The cross-sectional thickness t of the second member 32 is set to be approximately 1 mm or less over the entire circumference, and is preferably set to be about 0.5 mm which is thin within a range that allows molding. The mold for forming each mirror surface has sufficient flatness and surface roughness, and is molded by a means such as pressure compression molding so as to have the best transferability to the mold, thereby obtaining a flatness λ / 4. , Surface roughness 0.1 μm
Rmax or less can be realized.

【0029】第1の部材と第2の部材は、本質的に同系
統の材料を選定することが好ましい。熱膨脹率の違いに
よる剥離の恐れがなく、密着性が良好となるからであ
る。例えば、第1の部材としてガラスファイバーを30
〜50wt%混入することにより強化されたポリカーボ
ネイト樹脂を、第2の部材として、ポリカーボネイト樹
脂のナチュラル材をそれぞれ選定することによって極め
て良好な結果が得られる。
For the first member and the second member, it is preferable to select materials of essentially the same system. This is because there is no fear of peeling due to the difference in the coefficient of thermal expansion, and the adhesion is good. For example, 30 glass fibers are used as the first member.
Very good results can be obtained by selecting a polycarbonate resin reinforced by mixing up to 50 wt% and a natural material of a polycarbonate resin as the second member.

【0030】第2の部材32の表面には、Ni,Cu,
Al,Ag等の金属反射膜5が、真空蒸着、スパッタリ
ングなどの公知の手段で1000オングストローム程度
被着される。好ましくは図示しないが、下地処理とし
て、第2の部材32と金属反射膜5との間にSiO2
の酸化物を介在させる。
On the surface of the second member 32, Ni, Cu,
A metal reflection film 5 of Al, Ag or the like is deposited by a known means such as vacuum deposition or sputtering to a thickness of about 1000 Å. Although not shown preferably, an oxide such as SiO 2 is interposed between the second member 32 and the metal reflection film 5 as a base treatment.

【0031】さらに金属反射膜5の表面には、例えばS
iO,TiO2,MgF2等の透明保護膜6が真空蒸着、
スパッタリングなどの公知の手段で、膜厚d=λ/2n
にて被着される。ここで、λは波長、nは屈折率であ
る。
Further, on the surface of the metal reflection film 5, for example, S
The transparent protective film 6 such as iO, TiO 2 or MgF 2 is vacuum deposited,
By a known means such as sputtering, the film thickness d = λ / 2n
Will be put on. Here, λ is the wavelength and n is the refractive index.

【0032】前述のように、成形金型を十分研磨し金型
への転写性良好なるよう成形することによって、多角状
基体3の面粗度は0.1μmRmax以下を得、金属反
射膜5、透明保護膜6を施すことによって、反射面1の
反射率は85%程度確保される。さらに好ましくは、前
記透明保護膜6として屈折率の異なる誘電体膜を2層も
しくは4層の多層体膜構成とすることによって、反射率
90%以上とすることが可能である。
As described above, the surface roughness of the polygonal substrate 3 is 0.1 μmRmax or less and the metal reflection film 5 is obtained by sufficiently polishing the molding die so that the transferability to the die is good. By applying the transparent protective film 6, the reflectance of the reflecting surface 1 is secured at about 85%. More preferably, the transparent protective film 6 can have a reflectance of 90% or more by using a dielectric film having a different refractive index as a multilayer film structure of two layers or four layers.

【0033】次に、本発明の第2の実施例を図4〜図6
に示す。図4は本発明の回転多面鏡の断面図、図5は図
4におけるB部の拡大図、図6は裏面図である。第1の
実施例と同一部材については同一符号とし、以下の説明
は省略する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
Shown in. 4 is a sectional view of the rotary polygon mirror of the present invention, FIG. 5 is an enlarged view of a portion B in FIG. 4, and FIG. 6 is a rear view. The same members as those in the first embodiment are designated by the same reference numerals, and the following description will be omitted.

【0034】多角状基体3を構成する第1の部材31は
回転軸2の延伸側に凹部4を有し、放射状リブ31aに
て各角部と円筒部31bが連結されている。各鏡面部の
断面厚みaは全周略均一で高さbより小さく設定してい
る。また、断面厚みaは第1の部材31の断面厚みt1
と第2の部材32の断面厚みt2とにより構成され、t
1≧t2と設定している。即ち多角状基体3は薄肉化さ
れた2層構成にて、回転軸と一体成形された第1の部材
31と、その表面を覆う如く構成された第2の部材32
とが一体成形されている。従って上記第1の実施例に比
べ、一層の軽量化が図られるとともに、均一薄肉化によ
り面精度を向上した回転多面鏡が実現できる。
The first member 31 forming the polygonal base 3 has a recess 4 on the extending side of the rotary shaft 2, and each corner is connected to a cylindrical part 31b by a radial rib 31a. The cross-sectional thickness a of each mirror surface portion is set to be substantially uniform over the entire circumference and smaller than the height b. Further, the sectional thickness a is the sectional thickness t1 of the first member 31.
And a sectional thickness t2 of the second member 32,
It is set as 1 ≧ t2. That is, the polygonal base body 3 has a thin two-layered structure and has a first member 31 integrally formed with the rotating shaft and a second member 32 configured to cover the surface thereof.
And are integrally molded. Therefore, as compared with the first embodiment, a further reduction in weight can be achieved and a rotary polygon mirror with improved surface accuracy can be realized by making the wall thickness uniform.

【0035】かくして回転軸と一体になった回転多面鏡
は、図示しないモータ部に連結される。モータ部の軸受
けに回転軸2を挿入し、溝2bに止め輪を挿入して固定
される。回転軸2の先端にはテーパ部2cを有するので
スムーズに挿入できる。なお当然のことながら、この回
転多面鏡を回転させるために、この回転多面鏡には、駆
動力を発生させるための多極磁石が、例えば接着、熱
着、一体成形等の手段で接合されロータ部となる。
The rotary polygon mirror thus integrated with the rotary shaft is connected to a motor unit (not shown). The rotary shaft 2 is inserted into the bearing of the motor unit, and the retaining ring is inserted into the groove 2b to be fixed. Since the rotary shaft 2 has the tapered portion 2c at the tip thereof, it can be smoothly inserted. Of course, in order to rotate the rotary polygon mirror, a multi-pole magnet for generating a driving force is joined to the rotary polygon mirror by means of, for example, bonding, heat welding, or integral molding. Become a part.

【0036】本発明は多角状基体の形状として正6角形
の場合を図示したが、これに限るものではなく各種正多
角形及び、例えば円筒形の側面の一部を平面にカットし
て反射面となした如き形状も含まれるものである。
The present invention illustrates the case where the shape of the polygonal base body is a regular hexagon, but the shape is not limited to this, and various regular polygons and, for example, a cylindrical side surface is partially cut into a flat surface to form a reflecting surface. The shape as described above is also included.

【0037】[0037]

【発明の効果】以上のように本発明は、回転多面鏡を樹
脂もしくは樹脂を主体とする複合材料で構成することに
より、従来のガラスもしくは金属に比べ、比重の低減に
よる低慣性化が可能となる。さらに、回転軸と成形手段
で接合されているので、従来の下端面を基準面とする必
要性がなく、回転軸を基準としていわゆるインサート成
形することにより、精度の良い回転軸基準の各鏡面を有
する回転多面鏡を実現できる。
As described above, according to the present invention, since the rotary polygon mirror is made of resin or a composite material mainly composed of resin, it is possible to lower the inertia by reducing the specific gravity as compared with the conventional glass or metal. Become. Further, since it is joined to the rotary shaft by the molding means, there is no need to use the conventional lower end surface as the reference surface, and so-called insert molding is performed with the rotary shaft as a reference, so that each mirror surface of the rotary shaft reference with high accuracy can be obtained. It is possible to realize a rotating polygon mirror having the same.

【0038】また、多角状基体は、回転軸と接合される
第1の部材と少なくとも外周面を構成する第2の部材と
を複合して構成されているので、高速回転時の遠心力や
高温高湿時の吸湿による面精度の変化がなく、かつ各鏡
面の反射率が良好な回転多面鏡を実現できる。
Further, since the polygonal base body is constructed by combining the first member joined to the rotary shaft and at least the second member constituting the outer peripheral surface, centrifugal force and high temperature during high-speed rotation are high. It is possible to realize a rotary polygon mirror in which the surface accuracy does not change due to moisture absorption at high humidity and the reflectance of each mirror surface is good.

【0039】また、多角状基体は、外周面を構成する断
面が軸方向厚みより小さく成るごとく凹部を有し、該凹
部は前記第1の部材にて、各角と前記回転軸を接合する
円筒部とを結ぶ如く放射状リブを有することにより、一
層の低慣性化と高速回転時の遠心力による面精度の変化
のない回転多面鏡を同時に実現できる。
Further, the polygonal base body has recesses such that the cross section constituting the outer peripheral surface is smaller than the axial thickness, and the recesses are cylinders for joining the respective corners and the rotary shaft by the first member. By providing the radial ribs so as to connect the parts to each other, it is possible to realize a rotary polygonal mirror at the same time in which the inertia is further reduced and the surface precision does not change due to centrifugal force during high-speed rotation.

【0040】また、前記第2の部材は金属反射膜及び透
明保護膜で被覆されているので、第2の部材として吸水
率の大きい材料を使用しても、高温高湿時の面精度の変
化の少ない回転多面鏡が実現できる。
Further, since the second member is covered with the metal reflection film and the transparent protective film, even if a material having a high water absorption rate is used as the second member, the change of the surface accuracy at the time of high temperature and high humidity is changed. It is possible to realize a rotating polygon mirror with less power consumption.

【0041】さらに、回転多面鏡を回転軸と一体にする
ことにより、モータへの接合が容易になり、かつモータ
への接合による面倒れの悪化が防止できる。
Further, by integrating the rotary polygon mirror with the rotary shaft, the joining to the motor becomes easy, and the deterioration of the surface collapse due to the joining to the motor can be prevented.

【0042】以上要約すると、軽量化、小型化、組立の
容易化を図りながら実用的な精度を維持した回転多面鏡
が得られるので、レーザー光走査系のコストの低減に大
いに効果がある。
In summary, since a rotary polygon mirror can be obtained that is light weight, small in size, and easy to assemble, while maintaining practical accuracy, it is very effective in reducing the cost of the laser beam scanning system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における回転多面鏡の断
面図
FIG. 1 is a sectional view of a rotary polygon mirror according to a first embodiment of the present invention.

【図2】図1におけるA部の拡大図FIG. 2 is an enlarged view of part A in FIG.

【図3】本発明の第1の実施例における回転多面鏡の裏
面図
FIG. 3 is a rear view of the rotary polygon mirror in the first embodiment of the present invention.

【図4】本発明の第2の実施例における回転多面鏡の断
面図
FIG. 4 is a sectional view of a rotary polygon mirror in a second embodiment of the present invention.

【図5】図4におけるB部の拡大図5 is an enlarged view of part B in FIG.

【図6】本発明の第2の実施例における回転多面鏡の裏
面図
FIG. 6 is a rear view of the rotary polygon mirror in the second embodiment of the present invention.

【図7】従来の回転多面鏡の一例を示す形状図(アルミ
ニウムの場合)
FIG. 7 is a shape diagram showing an example of a conventional rotary polygon mirror (in the case of aluminum).

【図8】図7における鏡面部断面図8 is a cross-sectional view of the mirror surface portion in FIG.

【図9】従来の回転多面鏡の他の一例における断面図
(樹脂の場合)
FIG. 9 is a sectional view of another example of a conventional rotary polygon mirror (in the case of resin).

【符号の説明】[Explanation of symbols]

1 反射面 2 回転軸 2a,2b 溝 2c テーパ部 3,11 多角状基体 4 凹部 5,13 金属反射膜 6,10,14 透明保護膜 7 アルミニウム合金 8 反射鏡面 9 中央部穴 12 基準面 15 中央部穴 31 第1の部材 31a リブ 31b 円筒部 32 第2の部材 1 Reflective Surface 2 Rotational Axis 2a, 2b Groove 2c Tapered Part 3,11 Polygonal Substrate 4 Recessed 5,13 Metal Reflective Film 6,10,14 Transparent Protective Film 7 Aluminum Alloy 8 Reflective Mirror Surface 9 Center Hole 12 Reference Surface 15 Center Part hole 31 First member 31a Rib 31b Cylindrical part 32 Second member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属よりなる回転軸と、樹脂よりなる多角
状基体と、該多角状基体の外周面上に被着された金属反
射膜及び透明保護膜より成り、前記多角状基体は前記回
転軸と成形手段で接合され、かつ前記回転軸と接合され
る第1の部材と、少なくとも外周面を構成する第2の部
材とを複合して成ることを特徴とする回転多面鏡。
1. A rotating shaft made of metal, a polygonal base made of resin, and a metal reflection film and a transparent protective film deposited on the outer peripheral surface of the polygonal base, the polygonal base being the rotating body. A rotary polygon mirror comprising a first member joined to a shaft by a molding means and joined to the rotary shaft, and a second member constituting at least an outer peripheral surface.
【請求項2】前記第1の部材は、補剛材にて強化された
樹脂材料であることを特徴とする請求項1記載の回転多
面鏡。
2. The rotary polygon mirror according to claim 1, wherein the first member is a resin material reinforced with a stiffening material.
【請求項3】前記第2の部材は、厚み1mm以下の略均等
厚みにて前記第1の部材の外周面上及び回転軸延伸側と
は反対側の端面に有することを特徴とする請求項1記載
の回転多面鏡。
3. The second member has a substantially uniform thickness of 1 mm or less on the outer peripheral surface of the first member and on the end surface opposite to the rotary shaft extending side. The rotating polygon mirror described in 1.
【請求項4】前記多角状基体は、外周面を構成する断面
が軸方向厚みより小さくなる如く凹部を構成し、該凹部
は前記第1の部材にて、各角と前記回転軸を接合する円
筒部とを結ぶ如く放射状リブを有することを特徴とする
請求項1記載のの回転多面鏡。
4. The polygonal base body is formed with a concave portion such that a cross-section forming an outer peripheral surface is smaller than an axial thickness, and the concave portion joins each corner and the rotary shaft with the first member. The rotary polygon mirror according to claim 1, wherein the rotary polygon mirror has radial ribs so as to connect to the cylindrical portion.
【請求項5】前記第2の部材は、前記金属反射膜及び前
記透明保護膜にて被覆されたことを特徴とする請求項1
記載の回転多面鏡。
5. The second member is covered with the metal reflective film and the transparent protective film.
The described rotating polygon mirror.
JP3305392A 1992-02-20 1992-02-20 Rotary polygonal mirror Pending JPH05232396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305392A JPH05232396A (en) 1992-02-20 1992-02-20 Rotary polygonal mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305392A JPH05232396A (en) 1992-02-20 1992-02-20 Rotary polygonal mirror

Publications (1)

Publication Number Publication Date
JPH05232396A true JPH05232396A (en) 1993-09-10

Family

ID=12376027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305392A Pending JPH05232396A (en) 1992-02-20 1992-02-20 Rotary polygonal mirror

Country Status (1)

Country Link
JP (1) JPH05232396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707871A (en) * 1996-02-07 1998-01-13 Thermo King Corporation Method and kit for testing polyolester lubricants used in refrigerant compressors
JP2002287071A (en) * 2001-03-23 2002-10-03 Ricoh Co Ltd Optical scanning method and optical scanner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707871A (en) * 1996-02-07 1998-01-13 Thermo King Corporation Method and kit for testing polyolester lubricants used in refrigerant compressors
JP2002287071A (en) * 2001-03-23 2002-10-03 Ricoh Co Ltd Optical scanning method and optical scanner
JP4653332B2 (en) * 2001-03-23 2011-03-16 株式会社リコー Optical scanning method and optical scanner

Similar Documents

Publication Publication Date Title
JP2969009B2 (en) Axial mirror deflector
US5668902A (en) Coupling structure between a semiconductor laser and an optical fiber and coupling method thereof
US4826271A (en) Rotational polygon mirror and method of manufacturing the same
US4902085A (en) Polygon mirror
JPH05232396A (en) Rotary polygonal mirror
JPH0234010B2 (en)
JPH05232395A (en) Rotary polygonal mirror
JPH07248407A (en) Rotary polygon mirror and manufacture thereof
US5517365A (en) Polygonal mirror
JP2674620B2 (en) Rotating polygon mirror
JPH06265706A (en) Rotary polyhedral mirror
JPS6234120A (en) Manufacture of rotary polygon mirror
JP3351126B2 (en) Synthetic resin polygon mirror and its injection mold
JPH0234009B2 (en)
JPH02287420A (en) Rotary polygon mirror
JPH06214181A (en) Mirror for optical scanner
JP2890377B2 (en) Cemented lens
CN212781316U (en) Multi-surface rotating reflector with optical glass reflector
JPS63135233A (en) Preparation of rotary multi-plane mirror made of synthetic resin
JPS63147137A (en) Reflecting mirror and its manufacture
JPH0655114U (en) Optical scanning device
JPS6159416A (en) Rotary polygon mirror and its manufacture
JPH07248459A (en) Polyhedral rotary mirror and its production
JPH0667108A (en) Rotating mirror and its production
JPS58215602A (en) Ceramic polygon rotating mirror