JP2969009B2 - Axial mirror deflector - Google Patents

Axial mirror deflector

Info

Publication number
JP2969009B2
JP2969009B2 JP2867191A JP2867191A JP2969009B2 JP 2969009 B2 JP2969009 B2 JP 2969009B2 JP 2867191 A JP2867191 A JP 2867191A JP 2867191 A JP2867191 A JP 2867191A JP 2969009 B2 JP2969009 B2 JP 2969009B2
Authority
JP
Japan
Prior art keywords
shaft
mirror
deflector
exterior body
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2867191A
Other languages
Japanese (ja)
Other versions
JPH04267214A (en
Inventor
岡 尚 亘 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2867191A priority Critical patent/JP2969009B2/en
Publication of JPH04267214A publication Critical patent/JPH04267214A/en
Application granted granted Critical
Publication of JP2969009B2 publication Critical patent/JP2969009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レ−ザビ−ムプリン
タ,デジタル複写機,レ−ザビ−ムファックス,バ−コ
−ドスキャナ等々に利用される光ビ−ム偏向器に関し、
特に軸状ミラ−偏向器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical beam deflector used for a laser beam printer, a digital copying machine, a laser beam fax machine, a bar code scanner and the like.
More particularly, it relates to an axial mirror deflector.

【0002】[0002]

【従来の技術】従来より、一般的な光ビ−ム偏向器とし
ては、ポリゴンスキャナ,ホログラムスキャナ及びガル
バノミラ−スキャナが知られている。また最近では、特
開昭64−7015号公報及び特開平1−283512
号公報に示されるように、よりコンパクトな軸状ミラ−
偏向器が提案されている。
2. Description of the Related Art Conventionally, a polygon scanner, a hologram scanner and a galvano mirror scanner have been known as general beam deflectors. More recently, Japanese Patent Application Laid-Open Nos. 64-7015 and 1-283512.
As shown in the publication, a more compact axial mirror
Deflectors have been proposed.

【0003】特開昭64−7015号公報は、モ−タの
ロ−タに軸状ミラーを設けた偏向器の基本的な構造を開
示している。また特開平1−283512号公報は、ビ
−ム整形アパ−チャをモ−タフランジに一体化して設け
たものを開示しており、該アパ−チャはモ−タフランジ
に対して静止し、ミラ−面に対して回転する。
Japanese Patent Application Laid-Open No. 64-7015 discloses a basic structure of a deflector having an axial mirror provided on a rotor of a motor. Japanese Patent Application Laid-Open No. 1-283512 discloses a beam shaping aperture which is provided integrally with a motor flange. The aperture is stationary with respect to the motor flange, and a mirror is provided. Rotate with respect to the plane.

【0004】一般的な軸状ミラ−偏向器の構造を図12
及び図13に示す。図12及び図13の偏向器は、とも
に面対向型のDCブラシレスモ−タのロ−タ上に丸軸状
のミラ−を軸の中心とロ−タ回転中心とを一致させて取
付けてある。図12の偏向器においては、光ビ−ムを軸
方向から入射させ、回転軸に対して45度傾斜させたミ
ラ−面でビ−ムを反射するので、ロ−タの回転に伴なっ
て反射ビ−ムは軸方向と直交する面内で偏向走査され
る。図13の偏向器においては、回転軸に2つのミラ−
面を互いに直角に設け、回転軸方向から入射した光ビ−
ムを入射面とは別の反射面によって回転軸方向に反射さ
せ、入射ビ−ムに対して静止した別のミラ−部材により
走査ビ−ムを形成するものである。
FIG. 12 shows the structure of a general axial mirror deflector.
And FIG. In the deflectors shown in FIGS. 12 and 13, a round shaft-shaped mirror is mounted on the rotor of a DC brushless motor of a surface facing type such that the center of the shaft coincides with the center of rotation of the rotor. . In the deflector shown in FIG. 12, an optical beam is incident from the axial direction, and the beam is reflected by a mirror surface inclined at 45 degrees to the rotation axis. The reflection beam is deflected and scanned in a plane perpendicular to the axial direction. In the deflector shown in FIG. 13, two mirrors are provided on the rotation axis.
The light beams incident from the direction of the rotation axis are provided at right angles to each other.
The beam is reflected in the direction of the rotation axis by a reflection surface different from the incident surface, and a scanning beam is formed by another mirror member which is stationary with respect to the incident beam.

【0005】[0005]

【発明が解決しようとする課題】図12及び図13の偏
向器においては、それぞれ、軸の1回転あたり1回及び
2回の走査を行なうことになる。ところが従来より利用
されるポリゴンスキャナの場合には、6〜10のミラ−
面を有するのが普通であり、軸の1回転あたり6〜10
回の走査を行なうことができる。つまり、図12の偏向
器でポリゴンスキャナと同じ性能を実現するためには、
6〜10倍の速度で軸を回転させる必要がある。図13
の構成でも3〜5倍の速度が必要になる。実際上は、軸
状ミラ−偏向器の場合、1〜5万rpmの高速回転が要
求される。
In the deflector shown in FIGS. 12 and 13, scanning is performed once and twice per rotation of the shaft, respectively. However, in the case of a conventionally used polygon scanner, 6 to 10 mirrors are used.
Surface, usually 6 to 10 per rotation of the shaft
Scans can be performed. In other words, in order to realize the same performance as the polygon scanner with the deflector of FIG.
It is necessary to rotate the shaft at a speed of 6 to 10 times. FIG.
With the configuration described above, a speed three to five times faster is required. In practice, a high-speed rotation of 10,000 to 50,000 rpm is required for an axial mirror deflector.

【0006】一方、部品コストを削減するために、部品
の材質として安価なガラスやプラスチックを使用するこ
とが望まれている。従って軸状ミラ−偏向器の場合に
も、例えばガラスやプラスチックで構成した軸の表面に
アルミ蒸着によって反射面を形成することが考えられ
る。ところが、前述のように軸状ミラ−偏向器は高速回
転するので、遠心力に対して大きな強度が要求される。
つまり、ガラスやプラスチックを軸状ミラ−偏向器に使
用すると強度不足になり、軸状ミラ−を破損したり、軸
でのたわみの発生により光ビ−ムの偏向位置にずれが生
じる恐れがある。この理由と、従来のポリゴンミラ−製
作技術の継承との関連から、従来の軸状ミラ−偏向器に
おいては、アルミニウムの棒材を切削することによって
鏡面が形成されている。
On the other hand, in order to reduce the cost of parts, it is desired to use inexpensive glass or plastic as the material of the parts. Therefore, even in the case of an axial mirror deflector, it is conceivable to form a reflection surface by aluminum evaporation on the surface of a shaft made of, for example, glass or plastic. However, since the axial mirror-deflector rotates at a high speed as described above, a large strength against centrifugal force is required.
In other words, if glass or plastic is used for the axial mirror deflector, the strength will be insufficient, the axial mirror may be damaged, and the deflection of the optical beam may be shifted due to the bending of the shaft. . For this reason and in connection with the succession of the conventional polygon mirror manufacturing technology, in the conventional axial mirror deflector, a mirror surface is formed by cutting an aluminum bar.

【0007】そこで本発明においては、軸状ミラ−偏向
器を、安価なもしくは加工が容易な材料を用いることに
よって低コスト化するとともに、軸が高速回転する場合
においても、軸状ミラ−の破損を防止することを第1の
課題とし、たわみ等の発生をなくして位置精度の高いビ
−ム偏向を可能にすることを第2の課題とする。
Therefore, in the present invention, the cost of the axial mirror deflector is reduced by using an inexpensive or easy-to-process material, and even when the shaft rotates at a high speed, the axial mirror may be damaged. The first problem is to prevent the occurrence of deflection, and the second problem is to enable beam deflection with high positional accuracy by eliminating the occurrence of deflection or the like.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、回転する軸状部材の少なくとも一端面
に少なくとも1つの反射面が形成された軸状ミラ−偏向
器において、前記軸状部材を、軸本体と該軸本体の材
料よりも縦弾性係数が大きく該軸本体の外周面を覆って
該軸本体と一体固着の外装体と、で構成する。
To solve the above Symbol challenges SUMMARY OF THE INVENTION In the present invention, at least one reflecting surface is formed axial Mila least one end face of the rotating shaft-like member - in deflector, The shaft-shaped member includes a shaft main body and a material of the shaft main body .
It covering the outer peripheral surface of the longitudinal elastic coefficient is larger shaft body than fees
The shaft body and an exterior body integrally fixed .

【0009】[0009]

【作用】例えば軸本体の材料にガラスを用いれば、材料
コストが小さく、形状の加工や端面への鏡面形成が容易
になるので、軸状ミラ−偏向器のコストを低減すること
ができる。また、軸本体の外周面が外装体で覆われるの
で、軸本体の材料として割れ易いガラスを用いる場合で
あっても、欠けや割れの発生を防止することができる。
For example, if glass is used as the material of the shaft main body, the material cost is small, and the processing of the shape and the formation of the mirror surface on the end face become easy, so that the cost of the axial mirror deflector can be reduced. In addition, since the outer peripheral surface of the shaft main body is covered with the exterior body, even when glass that is easily broken is used as the material of the shaft main body, occurrence of chipping or cracking can be prevented.

【0010】上記欠けや割れの防止は、外装体を用い
とできるが、その場合に軸本体と外装体の縦弾性係数が
共に比較的小さいと、高速回転時に遠心力によって軸に
たわみ等が生じ、偏向ビ−ムの位置がずれる可能性があ
る。
[0010] prevention of the chipping or cracking, Ru using the outer casing
Although wear between, in which case the shaft body and the outer body's modulus the Most both relatively small, of such deflection axis is caused by the centrifugal force during high-speed rotation, the deflection bi - there is a possibility that the position of the beam is shifted.

【0011】本発明においては、外装体を軸本体の材料
よりも縦弾性係数の大きい材料で構成する。例えば、外
装体を縦弾性係数の大きい鉄鋼類で構成すれば、比較的
板厚の薄いパイプ状の部材でそれを構成する場合であっ
ても、軸本体のたわみによる変形を小さくでき、位置精
度の高いビ−ム偏向が可能になる。
[0011] The present invention your information, composed of a material with a high modulus of longitudinal elasticity than the material of the shaft body exterior member. For example, if the exterior body is made of steel having a large longitudinal elastic modulus, even if it is made of a pipe-like member having a relatively small thickness, deformation due to deflection of the shaft main body can be reduced, and positional accuracy can be reduced. High beam deflection becomes possible.

【0012】本発明の他の目的及び特徴は、以下の、図
面を参照した実施例説明により明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0013】[0013]

【実施例】図1に第1実施例の軸状ミラ−偏向器を示
し、この軸状ミラ−偏向器の軸状部材Aの縦断面を図2
に示す。図1に示すように、この軸状ミラ−偏向器は、
軸状部材Aとそれを回転駆動する電気モ−タBで構成さ
れている。軸状部材Aは、図2に示すように円柱形状の
ミラ−母材1とその外周を覆う円筒形状の外装体2で構
成されている。ミラ−母材1の一端面1aは、軸方向に
対して45度の角度に傾斜した平面になっており、この
平面に反射ミラ−面MRが形成されている。この反射ミ
ラ−面MRは、ミラ−母材1の面1aに金属(例えばア
ルミニウムや銅)の反射皮膜を蒸着することによって形
成されている。この例では、ミラ−母材1はガラスで構
成してあり、外装体2はそれよりも縦弾性係数の大きい
鉄鋼類のパイプを加工して形成してある。外装体2によ
ってミラ−母材1を覆うのは、高速回転する時にミラ−
母材1が破損(欠け,割れ等)するのを防止するためで
あり、この実施例のように外装体2をミラ−母材1より
も縦弾性係数の大きい材料で構成する場合には、外装体
2の板厚を小さくしてもミラ−母材1の遠心力による変
形量を小さくし、偏向位置精度の低下を防止することが
できる。外装体2の外周には段部2aが形成されてお
り、基部2bは外径が小さくなっている。基部2bの外
径は電気モ−タBの駆動軸に結合されたロ−タ3の中央
に設けられた基準穴3aの径とほぼ一致している。従っ
て、基部2bをロ−タ3に嵌合させることによって、軸
状部材Aと電気モ−タBとが一体化される。基部2bと
ロ−タ3との接合は、この例では圧入により行なうが、
接着やカシメ等、別の方法に変更してもよい。またこの
例では、ミラ−母材1と外装体2との接合を焼きばめに
より行なっているが、例えばねじ止め,ラジアル方向へ
の加圧など、一般の軸ものに対する他の固定方法を利用
してもよい。また、ミラ−母材1の変形を抑える効果は
小さくなるが、外装体2の材質としてアルミニウムを用
いてもよい。また例えばミラ−母材1の材料としてプラ
スチックを用いる場合には、反射ミラ−面MRは金属の
蒸着により形成し、外装体2の材料としてはアルミニウ
ムや鉄鋼等の金属材料を用い、ミラ−母材1と外装体2
とはアウトサ−ト成形により一体にすればよい。更に、
ミラ−母材1はアルミニウムの棒材から形成してもよ
く、その場合には端面の研磨によって反射ミラ−面を形
成することができる。ミラ−母材1をアルミニウムとす
る場合には、外装体2は鉄鋼類で構成すればよい。
FIG. 1 shows an axial mirror-deflector according to a first embodiment. FIG. 2 shows a longitudinal section of an axial member A of the axial mirror-deflector.
Shown in As shown in FIG. 1, this axial mirror-deflector
It comprises a shaft member A and an electric motor B for driving the shaft member A to rotate. As shown in FIG. 2, the shaft-shaped member A is composed of a cylindrical mirror base material 1 and a cylindrical exterior body 2 covering the outer periphery thereof. One end surface 1a of the mirror base material 1 is a flat surface inclined at an angle of 45 degrees with respect to the axial direction, and a reflective mirror surface MR is formed on this flat surface. The reflection mirror surface MR is formed by depositing a metal (for example, aluminum or copper) reflection film on the surface 1a of the mirror base material 1. In this example, the mirror base material 1 is made of glass, and the exterior body 2 is formed by processing a steel pipe having a greater longitudinal elastic modulus. The mirror base material 1 is covered by the exterior body 2 when the mirror is rotated at a high speed.
This is to prevent the base material 1 from being broken (chipped, cracked, etc.). When the exterior body 2 is made of a material having a larger longitudinal elastic coefficient than the mirror base material 1 as in this embodiment, Even if the thickness of the exterior body 2 is reduced, the amount of deformation of the mirror base material 1 due to centrifugal force can be reduced, and a decrease in deflection position accuracy can be prevented. A step 2a is formed on the outer periphery of the exterior body 2, and the outer diameter of the base 2b is small. The outer diameter of the base 2b substantially matches the diameter of a reference hole 3a provided at the center of the rotor 3 connected to the drive shaft of the electric motor B. Therefore, by fitting the base 2b to the rotor 3, the shaft member A and the electric motor B are integrated. In this example, the base 2b and the rotor 3 are joined by press fitting.
You may change to another method, such as adhesion and caulking. Also, in this example, the mirror base material 1 and the exterior body 2 are joined by shrink fitting, but other fixing methods for general shafts such as screwing and pressing in the radial direction are used. May be. Although the effect of suppressing the deformation of the mirror base material 1 is reduced, aluminum may be used as the material of the exterior body 2. For example, when plastic is used as the material of the mirror base material 1, the reflection mirror surface MR is formed by vapor deposition of a metal, and as the material of the exterior body 2, a metal material such as aluminum or steel is used. Material 1 and exterior body 2
May be integrated by outsert molding. Furthermore,
The mirror base material 1 may be formed from an aluminum bar, and in that case, a reflective mirror surface can be formed by polishing the end face. When the mirror base material 1 is made of aluminum, the exterior body 2 may be made of steel.

【0014】図3は、第2実施例の軸状部材であり、前
記第1実施例の変形例である。即ち、図13の構成に本
発明を適用したものであり、ミラ−母材4の上面に2つ
の反射ミラ−面MR1,MR2が形成されている。5が
外装体である。
FIG. 3 shows a shaft member of the second embodiment, which is a modification of the first embodiment. That is, the present invention is applied to the configuration of FIG. 13, and two reflective mirror surfaces MR1 and MR2 are formed on the upper surface of the mirror base material 4. 5 is an exterior body.

【0015】図4及び図5は第3実施例の軸状部材を示
す。この例では、外装体2には第1実施例と同じものを
用いているが、ミラ−母材8は径をわずかに小さくし、
ミラ−母材8と外装体2の間に接着層7を設けてある。
つまり、接着剤によって両者を固定してある。また、ミ
ラ−母材の外周面には軸方向に沿って2つの溝8a,8
bが形成してある。これらの溝は、余剰接着剤の逃げ道
を形成するとともに、接着力の向上及び接着信頼性の向
上に寄与する。なお、これらの溝の代わりにロ−レット
形状を形成したり面の荒し等を行なっても同様の接着だ
まりとしての効果が得られる。接着剤としては、例えば
エポキシ系接着剤や紫外線硬化樹脂が利用できる。
FIGS. 4 and 5 show a shaft member according to a third embodiment. In this example, the same exterior body 2 as that of the first embodiment is used, but the diameter of the mirror base material 8 is slightly reduced.
An adhesive layer 7 is provided between the mirror base material 8 and the exterior body 2.
That is, both are fixed by the adhesive. Also, two grooves 8a and 8 are formed along the axial direction on the outer peripheral surface of the mirror base material.
b is formed. These grooves form an escape route for the surplus adhesive and contribute to the improvement of the adhesive strength and the reliability of the adhesive. It should be noted that the same effect as the adhesive pool can be obtained by forming a knurled shape or roughening the surface instead of these grooves. As the adhesive, for example, an epoxy adhesive or an ultraviolet curable resin can be used.

【0016】図6及び図7は第4実施例の軸状部材を示
す。この例では、ミラ−母材9をほぼ4角柱の形状に形
成してあり、外装体10の内空間もそれに一致するよう
に4角柱状に形成してある。また、ミラ−母材9の4角
柱の稜線部分9aには面取りを施してあり、それによっ
て接着だまりを形成してある。この実施例では、ミラ−
母材9が4角柱形状であるため、これを加工して反射ミ
ラ−面MRを形成するのが容易である。つまり、多数の
ミラ−母材9を互いの側面が接するように並べると全て
のミラ−面が同一の角度及び高さになるので、一度に全
てのミラ−面を加工することができる。また、仮に軸状
部材の外形が4角柱状であると、それが高速回転する際
に大きな風損が生じることになるが、この例では外装体
10の外形が円柱形状であるので、それを防止しうる。
なお、外装体10のミラ−母材の角部と接する部分は薄
肉になるので、その部分の外表面に補強のための肉盛り
が必要になる場合もある。その場合、外装体10の外形
が円形ではなくなるが、4角柱形状の場合よりは風損を
小さくしうる。
FIGS. 6 and 7 show a shaft member according to a fourth embodiment. In this example, the mirror base material 9 is formed in a substantially quadrangular prism shape, and the inner space of the exterior body 10 is also formed in a quadrangular prism shape so as to match the inner space. In addition, the ridgeline portion 9a of the quadrangular prism of the mirror base material 9 is chamfered, thereby forming an adhesive pool. In this embodiment, the mirror
Since the base material 9 has a quadrangular prism shape, it is easy to process the base material 9 to form the reflection mirror surface MR. That is, when a large number of mirror base materials 9 are arranged so that their side surfaces are in contact with each other, all the mirror surfaces have the same angle and height, so that all the mirror surfaces can be processed at once. Also, if the outer shape of the shaft-shaped member is a quadrangular prism shape, a large windage loss will occur when the shaft member rotates at high speed. In this example, since the outer shape of the exterior body 10 is a cylindrical shape, Can be prevented.
Since the portion of the exterior body 10 that is in contact with the corners of the mirror base material is thin, the outer surface of that portion may need to be overlaid for reinforcement. In that case, the outer shape of the exterior body 10 is no longer circular, but the windage loss can be smaller than in the case of a quadrangular prism shape.

【0017】図8及び図9は第5実施例の軸状部材を示
す。この実施例では、外装体100をミラ−母材101
の倍程度の長さに構成してあり、反射ミラ−面MRの位
置よりかなり上の方まで外装体がミラ−母材を覆ってい
る。このように構成すると、反射ミラ−面MRの位置に
おける外装体100の強度が他の例よりも大きくなり、
ミラ−母材101のたわみに対する防止効果が増大す
る。但し、反射光の通路に外装体100が位置するの
で、その部分には開口100aが形成してある。当然の
ことながら、開口100aの大きさは小さい方が外装体
100の強度低下も小さくなる。
FIGS. 8 and 9 show a shaft member according to a fifth embodiment. In this embodiment, the exterior body 100 is a mirror base material 101.
The exterior body covers the mirror base material to a position considerably higher than the position of the reflection mirror surface MR. With this configuration, the strength of the exterior body 100 at the position of the reflection mirror surface MR becomes larger than that of other examples,
The effect of preventing the deflection of the mirror base material 101 is increased. However, since the exterior body 100 is located in the path of the reflected light, an opening 100a is formed in that portion. As a matter of course, the smaller the size of the opening 100a, the smaller the strength reduction of the exterior body 100.

【0018】第5実施例の軸状部材を使用した軸状ミラ
−偏向器の全体の構成を図10に示す。この実施例で
は、軸状部材及びレ−ザ光源11を電気モ−タと一体に
なるように構成してある。外装体100の両端はそれぞ
れ軸受け13A及び13Bによって回動自在に支持され
ており、外装体100の下端には電気モ−タのロ−タシ
ャフト17が嵌合している。固定された電気コイル18
とマグネット15との間に作用する力によって、マグネ
ット15が固着されたロ−タ14が回動し、ロ−タ14
と結合された外装体100及びミラ−母材101が回動
する。12はモ−タハウジング(上)、16はモ−タハ
ウジング(下)、19はねじ、20は光ビ−ム、21は
Cリング、22はプリント基板である。なお、外装体1
00を更に延長し、その一部分がロ−タシャフト17を
兼ねるように構成すれば、特別にロ−タシャフトを設け
る必要はない。
FIG. 10 shows the entire structure of an axial mirror deflector using the axial member of the fifth embodiment. In this embodiment, the shaft member and the laser light source 11 are configured so as to be integrated with the electric motor. Both ends of the exterior body 100 are rotatably supported by bearings 13A and 13B, respectively, and a rotor shaft 17 of an electric motor is fitted to a lower end of the exterior body 100. Fixed electric coil 18
The rotor 14 to which the magnet 15 is fixed is rotated by the force acting between the
The exterior body 100 and the mirror base material 101 that are combined with each other rotate. 12 is a motor housing (upper), 16 is a motor housing (lower), 19 is a screw, 20 is an optical beam, 21 is a C-ring, and 22 is a printed circuit board. In addition, the exterior body 1
If 00 is further extended so that a part thereof also serves as the rotor shaft 17, there is no need to provide a special rotor shaft.

【0019】図11に第6実施例を示す。この実施例で
は、組立てや加工が容易になるように工夫してある。即
ち、外装体31には、ミラ−母材30を覆う筒状部31
aと板状部31bを設け、更に補強用のリブ31cを形
成してある。外装体31とロ−タ32とは、ねじ33に
よって固定されるので組立てが容易である。
FIG. 11 shows a sixth embodiment. In this embodiment, the assembly and processing are devised so as to be easy. That is, the exterior body 31 has a cylindrical portion 31 covering the mirror base material 30.
a and a plate-shaped portion 31b, and a reinforcing rib 31c is further formed. Since the exterior body 31 and the rotor 32 are fixed with the screws 33, assembly is easy.

【0020】[0020]

【発明の効果】以上のとおり本発明によれば、軸本体
(1,4,8,9,30,101)にそれより縦弾性係
数の大きい材料の外装体(2,5,10,31,10
0)を固着するので、例えば軸本体にガラスのように安
価なもしくは加工が容易な材料を用いることによって低
コスト化でき、軸が高速回転する場合においても、軸本
体の破損を防止することができる。
As described above, according to the present invention, the shaft body (1, 4, 8, 9, 30, 101) is provided with a longitudinal elasticity.
Outer body made of a large number of materials (2, 5, 10, 31, 10
0) is fixed , so that the cost can be reduced by using an inexpensive or easy-to-process material such as glass for the shaft body, and even if the shaft rotates at high speed, damage to the shaft body can be prevented. it can.

【0021】装体軸本体の材料よりも縦弾性係数の
大きい材料であるので、軸本体でのたわみ等の発生
位置精度の高いビ−ム偏向が得られる。
[0021] Since the outer Sokarada is a material with a high modulus of longitudinal elasticity than the material of the shaft body, the occurrence of deflection or the like of the axis body I
High have positional precision bi - beam deflection is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1実施例の軸状ミラ−偏向器を示す斜視図
である。
FIG. 1 is a perspective view showing an axial mirror-deflector of a first embodiment.

【図2】 図1の軸状部材Aを示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a shaft-shaped member A of FIG.

【図3】 図2の軸状部材Aの変形例を示す縦断面図で
ある。
FIG. 3 is a longitudinal sectional view showing a modification of the shaft-shaped member A of FIG.

【図4】 第3実施例の軸状部材を示す平面図である。FIG. 4 is a plan view showing a shaft-shaped member of a third embodiment.

【図5】 第3実施例の軸状部材を示す縦断面図であ
る。
FIG. 5 is a longitudinal sectional view showing a shaft-shaped member of a third embodiment.

【図6】 第4実施例の軸状部材を示す平面図である。FIG. 6 is a plan view showing a shaft-shaped member of a fourth embodiment.

【図7】 第4実施例の軸状部材を示す縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing a shaft-shaped member of a fourth embodiment.

【図8】 第5実施例の軸状部材を示す斜視図である。FIG. 8 is a perspective view showing a shaft member according to a fifth embodiment.

【図9】 第5実施例の軸状部材を示す縦断面図であ
る。
FIG. 9 is a longitudinal sectional view showing a shaft-shaped member of a fifth embodiment.

【図10】 第5実施例の軸状ミラ−偏向器全体を示す
縦断面図である。
FIG. 10 is a longitudinal sectional view showing the entire axial mirror-deflector of the fifth embodiment.

【図11】 第6実施例の軸状部材とロ−タを示す分解
斜視図である。
FIG. 11 is an exploded perspective view showing a shaft member and a rotor according to a sixth embodiment.

【図12】 従来例を示す斜視図である。FIG. 12 is a perspective view showing a conventional example.

【図13】 従来例を示す斜視図である。FIG. 13 is a perspective view showing a conventional example.

【符号の説明】[Explanation of symbols]

1,4,8,9,30,101:ミラ−母材(軸状部
材) 2,5,10,31,100:外装体 3:ロ−タ 8a,8b:溝 11:レ−
ザ光源 12:モ−タハウジング(上) 13A,13B,1
3C:軸受け 14,32:ロ−タ 15:マグネット 16:モ−
タハウジング(下) 17:ロ−タシャフト 18:電気コイル 19,3
3:ねじ 20:光ビ−ム 21:Cリング 22:プリ
ント基板 100a:開口 A:軸状部材 B:電気モ
−タ MR:反射ミラ−面
1, 4, 8, 9, 30, 101: Mirror base material (shaft member) 2, 5, 10, 31, 100: Outer body 3: Rotor 8a, 8b: Groove 11: Lay
The light source 12: Motor housing (upper) 13A, 13B, 1
3C: Bearing 14, 32: Rotor 15: Magnet 16: Mo
Housing 17 (bottom) 17: Rotor shaft 18: Electric coil 19,3
3: Screw 20: Optical beam 21: C-ring 22: Printed circuit board 100a: Opening A: Shaft member B: Electric motor MR: Reflection mirror surface

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転する軸状部材の少なくとも一端面に
少なくとも1つの反射面が形成された軸状ミラ−偏向器
において、 前記軸状部材を、軸本体と該軸本体の材料よりも縦弾
性係数が大きく該軸本体の外周面を覆って該軸本体と一
体固着の外装体と、で構成したことを特徴とする、軸状
ミラ−偏向器。
1. A shaft-shaped mirror-deflector having at least one reflecting surface formed on at least one end surface of a rotating shaft-like member, wherein the shaft-like member is made longer than a shaft body and a material of the shaft body. Bullet
Shaft body and one sex factor I covering the outer peripheral surface of the large shaft body
An axial mirror-deflector, comprising: a body-fixed exterior body.
【請求項2】 軸本体が多角柱形状に構成され、外装体
の外周形状が曲面状に構成された、請求項1記載の軸状
ミラ−偏向器。
Wherein the shaft body is configured in a polygonal column shape, the outer peripheral shape of the outer body is configured in a curved shape, shaft-like Mira Motomeko 1 wherein - deflector.
【請求項3】 外装体の一部分に、軸本体上の反射面で
反射した光ビ−ムを通す開口が形成された、請求項1又
は請求項2記載の軸状ミラ−偏向器。
A portion of wherein outer package, Hikaribi reflected by the reflecting surface of the shaft body - an opening through which beam is formed, and claim 1
3. The axial mirror deflector according to claim 2, wherein :
JP2867191A 1991-02-22 1991-02-22 Axial mirror deflector Expired - Fee Related JP2969009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2867191A JP2969009B2 (en) 1991-02-22 1991-02-22 Axial mirror deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2867191A JP2969009B2 (en) 1991-02-22 1991-02-22 Axial mirror deflector

Publications (2)

Publication Number Publication Date
JPH04267214A JPH04267214A (en) 1992-09-22
JP2969009B2 true JP2969009B2 (en) 1999-11-02

Family

ID=12254974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2867191A Expired - Fee Related JP2969009B2 (en) 1991-02-22 1991-02-22 Axial mirror deflector

Country Status (1)

Country Link
JP (1) JP2969009B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
DE102009010465B3 (en) 2009-02-13 2010-05-27 Faro Technologies, Inc., Lake Mary laser scanner
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009015920B4 (en) 2009-03-25 2014-11-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
DE102009055988B3 (en) 2009-11-20 2011-03-17 Faro Technologies, Inc., Lake Mary Device, particularly laser scanner, for optical scanning and measuring surrounding area, has light transmitter that transmits transmission light ray by rotor mirror
DE102009057101A1 (en) * 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Device for optically scanning and measuring an environment
DE102009055989B4 (en) 2009-11-20 2017-02-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
CN102713498B (en) 2010-01-20 2014-07-16 法罗技术股份有限公司 Mounting device for a coordinate measuring machine
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
DE102010020925B4 (en) 2010-05-10 2014-02-27 Faro Technologies, Inc. Method for optically scanning and measuring an environment
DE102010032723B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032726B3 (en) 2010-07-26 2011-11-24 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010032725B4 (en) 2010-07-26 2012-04-26 Faro Technologies, Inc. Device for optically scanning and measuring an environment
DE102010033561B3 (en) 2010-07-29 2011-12-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
DE102012100609A1 (en) 2012-01-25 2013-07-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
DE102012107544B3 (en) 2012-08-17 2013-05-23 Faro Technologies, Inc. Optical scanning device i.e. laser scanner, for evaluating environment, has planetary gears driven by motor over vertical motor shaft and rotating measuring head relative to foot, where motor shaft is arranged coaxial to vertical axle
DE102012109481A1 (en) 2012-10-05 2014-04-10 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
JP2016075857A (en) * 2014-10-08 2016-05-12 大日本印刷株式会社 Optical scanner, optical module, illumination device, and projection device
JP2016075858A (en) * 2014-10-08 2016-05-12 大日本印刷株式会社 Optical scanner, optical module, illumination device, and projection device
DE102015122844A1 (en) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D measuring device with battery pack
JP6748648B2 (en) * 2016-12-22 2020-09-02 アドバンスド オプティカル テクノロジーズ,インク. Polarimeter with multiple independent adjustable channels and method for classifying and recognizing substances and objects

Also Published As

Publication number Publication date
JPH04267214A (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JP2969009B2 (en) Axial mirror deflector
US5671193A (en) Rotary polygonal mirror and method of manufacturing the same
JP4441553B2 (en) Polygon mirror processing method, polygon scanner, and optical scanning device
JP2003177346A (en) Polygon scanner, optical scanner using the polygon scanner, and processing method for the polygon scanner
KR100561480B1 (en) Polygonal mirror apparatus
JP3282306B2 (en) Rotary drive
US20010036001A1 (en) Method of fixing polygon mirror and polygon scanner motor
JPH1090626A (en) Rotary polygon mirror
JPH09303383A (en) Rotary device and light deflecting device
US20040246552A1 (en) Polygon mirror, deflecting apparatus, image forming apparatus and method of manufacturing the polygon mirror
KR100334461B1 (en) Polygon scanning motor, jig for processing rotary polygon mirror used for the polygon scanning motor, and processing method of the rotary polygon mirror using the jig
JPH04244768A (en) Optical scanner
KR20050098536A (en) Polygonal mirror apparatus
CN221551003U (en) Galvanometer structure, galvanometer motor and laser radar
JP2974514B2 (en) Scanning optical device
JPH05232395A (en) Rotary polygonal mirror
JP4105813B2 (en) Dynamic pressure air bearing type optical deflector
EP0780716B1 (en) Drive motor for rotating multi-faceted mirror
US7133175B2 (en) Light beam deflecting device
JPH01180512A (en) Rotary polygon mirror
KR100311661B1 (en) Polygon scanning motor
JP2002365580A (en) Rotating polygon mirror, and working equipment and method
JPS641768B2 (en)
JPH0324514A (en) Polygonal mirror
JPH0643377A (en) Rotary mirror and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees