JPH05232330A - Production of plastic optical fiber - Google Patents

Production of plastic optical fiber

Info

Publication number
JPH05232330A
JPH05232330A JP4073502A JP7350292A JPH05232330A JP H05232330 A JPH05232330 A JP H05232330A JP 4073502 A JP4073502 A JP 4073502A JP 7350292 A JP7350292 A JP 7350292A JP H05232330 A JPH05232330 A JP H05232330A
Authority
JP
Japan
Prior art keywords
core material
clad
plasma
core
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4073502A
Other languages
Japanese (ja)
Inventor
Takafumi Kuboki
尚文 久保木
Eiichi Taguchi
栄一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4073502A priority Critical patent/JPH05232330A/en
Publication of JPH05232330A publication Critical patent/JPH05232330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To intensify the adhesive strength between a core and a clad and to lessen an increase in transmission loss by subjecting the surface of a core material after drawing to a plasma treatment. CONSTITUTION:After the core material 1 is drawn, the surface of the core material 1 is subjected to the plasma treatment and thereafter, the clad material is applied and stuck thereto. Transmittable plastics, such as PMMA(polymethyl methacrylate), polycarbonate and polystyrene, are used for the core material and silicone resins and fluororesins having the refractive index smaller than the refractive index of the core material 1 are used for the clad material in order to impart flexibility to the plastic optical fiber in such a case. Since the objective is the treatment of the surface of the core material 1, the generation of plasma in a microregion is simply necessitated and, therefore, the atm. plasma treatment which uses He for a carrier gas and generates the plasma by the glow discharge generated by an electrode 2 under an atm. pressure is suitable. Even more, this atm. plasma treatment does not require the pressure reduction in a chamber and is, therefore, convenient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えば工場内等で数m〜
30m程度の短距離を光信号伝送する場合の光信号伝送
路として使用される光ファイバ、具体的にはFA(ファ
クトリーオートメーション)の分野、特にロボットのア
−ムの関節部分のように繰返し屈曲する部分や、工場内
の一部で熱履歴が加わる箇所に敷設して使用される光フ
ァイバの製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention is for example a few meters in a factory.
An optical fiber used as an optical signal transmission line for transmitting an optical signal over a short distance of about 30 m, specifically, in the field of FA (Factory Automation), particularly, it is repeatedly bent like a joint part of an arm of a robot. The present invention relates to a method for manufacturing an optical fiber which is laid and used in a part or a part in a factory where heat history is applied.

【0002】[0002]

【従来の技術】FA分野においては工作ロボット等をよ
り高速に、かつ精密に制御することが進んでおり、それ
に伴って同分野では、より高速で大容量の信号を扱うよ
うになっている。しかし、それに伴って電磁ノイズによ
り工作ロボット等が誤動作するという問題が発生してい
る。
2. Description of the Related Art In the FA field, control of machine robots and the like is progressing at higher speed and more precisely, and accordingly, in the field, higher speed and large capacity signals are handled. However, there is a problem that the electromagnetic noise causes the work robot and the like to malfunction.

【0003】信号伝送路に光ファイバを使用すれば伝送
路からの電磁ノイズの影響を回避することが可能であ
る。このため短距離の信号伝送に石英系光ファイバのよ
うに折れたりすることがないプラスチック光ファイバが
使用されるようになってきた。
If an optical fiber is used for the signal transmission line, the influence of electromagnetic noise from the transmission line can be avoided. For this reason, plastic optical fibers that are not broken like silica optical fibers have been used for short-distance signal transmission.

【0004】[0004]

【発明が解決しようとする課題】プラスチック光ファイ
バ(ステップインデックス型マルチモ−ドプラスチック
光ファイバ)は、ロット延伸法、コ−テイング法、
溶融複合紡糸法等により製造されるが、これらの方法
で製造されるプラスチック光ファイバは、そのままでは
コア材とクラッド材の密着強度が十分強固でないため、
ファイバを繰返し屈曲させたり、熱履歴がかかるとコア
とクラッドが剥離して両者の間に間隙ができ、コアとク
ラッドとの界面が不整になる。このため、この不整部分
でファイバ内の伝播している光線のモ−ドが乱れ、これ
が原因となってファイバの伝送ロスが増大するという問
題がある。
Plastic optical fibers (step index type multi-mode plastic optical fibers) are manufactured by a lot drawing method, a coating method,
Although it is manufactured by a melt composite spinning method or the like, the plastic optical fiber manufactured by these methods is not sufficiently strong in adhesion strength between the core material and the clad material as it is,
When the fiber is repeatedly bent or subjected to heat history, the core and the clad are separated from each other to form a gap therebetween, and the interface between the core and the clad becomes irregular. Therefore, there is a problem that the mode of the propagating light beam in the fiber is disturbed at this irregular portion, which causes an increase in transmission loss of the fiber.

【0005】一般に、プラスチック光ファイバはコア材
にPMMA(ポリメチルメタクリル酸メチル)、ポリカ
−ボネ−ト等を使用した時、クラッド材にはシリコン樹
脂、フッ素樹脂等が使用され、しかもコア径はファイバ
素線径の約90%以上を占めており、クラッド層はコア
層表面に薄くついているだけであるため、コア材とクラ
ッド材の密着強度が不十分であり、ファイバを繰返し屈
曲させたり熱履歴がかかると前記のようにコアとクラッ
ドとが剥離して両者の間に間隙ができ、コアとクラッド
との界面が不整になり、この部分でファイバ内の伝播し
ている光線のモ−ドが乱され、ファイバの伝送ロスが増
大するという問題がある。
Generally, in a plastic optical fiber, when PMMA (polymethylmethacrylate), polycarbonate or the like is used for the core material, silicon resin, fluororesin or the like is used for the clad material, and the core diameter is It accounts for about 90% or more of the fiber diameter, and the clad layer is only thinly attached to the surface of the core layer, so the adhesion strength between the core material and the clad material is insufficient, and the fiber may be repeatedly bent or heated. As described above, when a history is applied, the core and the clad are separated from each other to form a gap between the two, and the interface between the core and the clad becomes irregular. Is disturbed and the transmission loss of the fiber increases.

【0006】また、プラスチック光ファイバは引っ張ら
れたり、縮められたりすることでコアに屈折率の分布が
でき、それによりファイバの伝播モ−ドが変化し、これ
によってもファイバの伝送ロスが増大するという問題が
あった。
Further, when the plastic optical fiber is pulled or contracted, a refractive index distribution is formed in the core, which changes the propagation mode of the fiber, which also increases the transmission loss of the fiber. There was a problem.

【0007】このため工作ロボットのア−ムの関節のよ
うに繰返し屈曲する部分や熱履歴がかかる部分に市販の
プラスチック光ファイバを使用すると伝送ロス増が発生
し、信号伝送が不可能になってしまうという問題があっ
た。
For this reason, if a commercially available plastic optical fiber is used in a portion which is repeatedly bent like a joint of an arm of a work robot or a portion to which a thermal history is applied, transmission loss increases and signal transmission becomes impossible. There was a problem that it would end up.

【0008】本発明の目的は、コア材とクラッド材の密
着強度を向上させることで、ファイバを屈曲させた時及
び熱履歴がかかった時に発生するコアとクラッドとの界
面の不整の発生を防止でき、伝送ロスの増加を抑制で
き、屈曲部でも使用可能なプラスチック光ファイバの製
造方法を提供することにある。
An object of the present invention is to improve the adhesion strength between the core material and the clad material to prevent the occurrence of irregularities in the interface between the core and the clad, which occur when the fiber is bent and when a thermal history is applied. Another object of the present invention is to provide a method of manufacturing a plastic optical fiber that can be used, can suppress an increase in transmission loss, and can be used even in a bent portion.

【0009】[0009]

【課題を解決するための手段】本発明のプラスチック光
ファイバの製造方法は図1、図2のようにコア材を線引
きした後、そのコア材1の表面にプラズマ処理を行って
から、クラッド材を塗布、付着させるようにしたもので
ある。
According to the method for producing a plastic optical fiber of the present invention, after drawing a core material as shown in FIGS. 1 and 2, the surface of the core material 1 is subjected to plasma treatment, and then the clad material. Is applied and adhered.

【0010】本発明ではプラスチック光ファイバに可撓
性を持たせるために、コア材にPMMA(ポリメチルメ
タクリル酸メチル)、ポリカ−ボネ−ト、ポリスチレン
等の透過性のプラスチックを使用し、クラッド材にはコ
ア材よりも屈折率の小さいシリコン樹脂やフッ素樹脂を
使用する。
In the present invention, in order to make the plastic optical fiber flexible, a transparent plastic such as PMMA (polymethyl methyl methacrylate), polycarbonate or polystyrene is used as the core material, and the clad material is used. For this, silicon resin or fluororesin having a smaller refractive index than the core material is used.

【0011】プラズマ中を通す線引き後のコア材1の線
径は、約1〜2mm以下とし、プラズマ処理後、その表
面に約数百μm以下の前記クラッド材を塗布して作成す
る。
The core material 1 after being drawn through the plasma has a wire diameter of about 1 to 2 mm or less. After the plasma treatment, the surface is coated with the clad material of about several hundreds of micrometers or less.

【0012】プラズマ処理方法としてはマイクロ波、R
Fプラズマ等を発生させ、発生させたプラズマ中を毎分
数m程度の早さで通して行う。プラズマ条件はマイクロ
波、RF等で、キャリア−ガスにAr 、He 等の不活性
ガスやO2 等の活性ガスを使用する(プラズマが発生す
れば良い)。
As a plasma processing method, microwave or R is used.
F plasma or the like is generated, and the generated plasma is passed through at a speed of several meters per minute. The plasma conditions are a microwave, an RF or the like, the carrier - gas A r, using an inert gas or active gas such as O 2, such as H e (may be plasma is generated).

【0013】本発明ではコア材1の表面の処理が目的で
あるため微小領域にプラズマが発生すればよい。そのた
め、キャリア−ガスにHe を使用し、大気圧でのグロ−
放電によりプラズマを発生させる大気圧プラズマ処理が
適する。しかもこの大気圧プラズマ処理はチャンバー内
を減圧する必要もないので便利である。
Since the purpose of the present invention is to treat the surface of the core material 1, it is sufficient that plasma is generated in a minute area. Therefore, the carrier - using H e a gas, glow at atmospheric pressure -
Atmospheric pressure plasma treatment in which plasma is generated by electric discharge is suitable. Moreover, this atmospheric pressure plasma treatment is convenient because there is no need to reduce the pressure inside the chamber.

【0014】プラズマ出力が高すぎると、プラズマ中を
通るコア材1が加熱されて高温になり、線引きされたコ
ア材1が軟化してしまい、線径が不揃いになる等の問題
が生じることから、その出力はコア材1が高温にならな
いように数十W程度以下にする。
If the plasma output is too high, the core material 1 passing through the plasma will be heated to a high temperature and the drawn core material 1 will be softened, causing problems such as uneven wire diameters. The output is set to about several tens W or less so that the core material 1 does not reach a high temperature.

【0015】[0015]

【作用】本発明のプラスチック光ファイバの製造方法で
は、線引きしたあ後のコア材1の表面をプラズマ処理す
るので、コアとクラッドとの密着強度が上がり、屈曲さ
せたり熱履歴が加わってもコアとクラッドとが剥れにく
くなり、コアとクラッドの間に間隙ができにくくなり、
伝送損失の増大が抑制される。
In the method for producing a plastic optical fiber of the present invention, the surface of the core material 1 after drawing is plasma-treated, so that the adhesion strength between the core and the clad is increased, and the core is not bent even if it is bent or subjected to heat history. And the clad are less likely to come off, and a gap is less likely to be created between the core and the clad,
The increase in transmission loss is suppressed.

【0016】[0016]

【実施例1】コア材にポリカ−ボネ−トを使用し、クラ
ッドをコ−テイングして光ファイバを作製した。具体的
には、ポリカ−ボネ−トで直径約3cmのコア母材を作
製した後、前記母材を直径約0.8mmに線引きし、線
引きしたコア材1に図1に示す装置でプラズマ処理を行
った後、その外周にクラッド材としてフッ素樹脂をコ−
テイングしてファイバを作製した。図1でのプラズマ処
理条件は減圧下で、キャリア−ガスとしてAr ガスをフ
ロ−し、マイクロ波でプラズマを発生させ、出力30W
とし、その中を5m/minの速度でコア材1を通して
その表面のプラズマ処理を行った。
EXAMPLE 1 Polycarbonate was used as the core material, and the cladding was coated to prepare an optical fiber. Specifically, after a core base material having a diameter of about 3 cm is prepared with a polycarbonate, the base material is drawn to a diameter of about 0.8 mm, and the drawn core material 1 is plasma-treated by the apparatus shown in FIG. After that, a fluorocarbon resin was coated on the outer periphery as a clad material.
A fiber was produced by tailing. The plasma treatment conditions in Fig. 1 under reduced pressure, the carrier - the A r gas flow as a gas - and to generate a plasma in the microwave output 30W
And the plasma treatment was performed on the surface of the core material 1 through the core material 1 at a speed of 5 m / min.

【0017】作製したファイバを直径20mmのマンド
レルを使用して、180°繰返し屈曲試験を行ったとこ
ろ、1万回繰返し屈曲した後の伝送損失は約2dB/1
0mの増加程度であった。
When the manufactured fiber was subjected to a 180 ° repeated bending test using a mandrel having a diameter of 20 mm, the transmission loss after being repeatedly bent 10,000 times was about 2 dB / 1.
It was about 0 m increase.

【0018】また、低温0℃、高温130℃、移動時間
4時間、保持時間2時間の条件でヒートサイクル試験を
行なた。50サイクル終了時に伝送損失を測定したとこ
ろ、約0.5dB/10mとわずかな増加しか認められ
なかった。
A heat cycle test was conducted under conditions of a low temperature of 0 ° C., a high temperature of 130 ° C., a moving time of 4 hours and a holding time of 2 hours. When the transmission loss was measured at the end of 50 cycles, only a slight increase of about 0.5 dB / 10 m was observed.

【0019】[0019]

【実施例2】コア材にポリスチレンを使用し、実施例1
と同様にしてクラッドをコ−テイングして光ファイバを
作製した。この場合、クラッド材をコ−テイングする前
工程にプラズマ処理工程を入れてファイバを作製した。
[Example 2] Example 1 using polystyrene as the core material
An optical fiber was manufactured by coating the clad in the same manner as in. In this case, a fiber was produced by adding a plasma treatment step to the step before coating the clad material.

【0020】作製したファイバを90°繰返し屈曲試験
を行なったところ、1万回繰返し屈曲した後の伝送損失
は、約1.6dB/10mの増加程度であった。
When the manufactured fiber was subjected to a 90 ° repeated bending test, the transmission loss after being repeatedly bent 10,000 times was about 1.6 dB / 10 m increase.

【0021】また、実施例1と同様に、低温0℃、高温
120℃、移動時間4時間、保持時間2時間の条件でヒ
ートサイクル試験を行った。50サイクル終了時に伝送
損失を測定したところ約0.3dB/10mと、わずか
な増加しか認められなかった。
Further, as in Example 1, a heat cycle test was conducted under the conditions of a low temperature of 0 ° C., a high temperature of 120 ° C., a moving time of 4 hours and a holding time of 2 hours. When the transmission loss was measured at the end of 50 cycles, a slight increase of about 0.3 dB / 10 m was observed.

【0022】[0022]

【実施例3】コア材にポリカ−ボネ−トを使用し、大気
圧でのグロ−放電でのプラズマ処理を行い、その後クラ
ッド材を塗布して作製した。具体的には実施例1と同様
にポリカ−ボネ−トで直径約3cmの母材を作製した
後、前記母材を直径約0.8mmに線引きした後、コア
材1に図2に示した大気圧プラズマ装置でプラズマ処理
を行なった後、クラッド材としてフッ素樹脂をコア材1
の表面に塗布してファイバを作製した。図2においてキ
ャリア−ガスとしてHe ガスをフロ−し、RFでプラズ
マを発生させ、出力30Wとし、その中を先に線引きし
たコア材1を5m/minの速度で通して表面のプラズ
マ処理を行なった。
[Example 3] Polycarbonate was used as a core material, plasma treatment was performed by glow discharge at atmospheric pressure, and then a clad material was applied. Specifically, as in Example 1, a base material having a diameter of about 3 cm was prepared with a polycarbonate, and the base material was drawn to have a diameter of about 0.8 mm. After performing plasma treatment with an atmospheric pressure plasma device, fluorocarbon resin as the clad material is used as the core material 1
Was applied to the surface of the to prepare a fiber. The H e gas flow as the gas - - carrier 2 and, RF in to generate plasma, and the output 30 W, the plasma treatment of the surface through the core material 1 is drawn through the first at a speed of 5 m / min I did.

【0023】作製したファイバを実施例1と同様に直径
20mmのマンドレルを使用して、180°繰返し屈曲
試験を行なったところ、1万回繰返し屈曲した後の伝送
損失は、約1.7dB/10mの増加程度であった。
The produced fiber was subjected to a 180 ° repeated bending test using a mandrel having a diameter of 20 mm as in Example 1, and the transmission loss after repeatedly bending 10,000 times was about 1.7 dB / 10 m. Was about the increase.

【0024】また、実施例1と同様に、低温0℃、高温
130℃、移動時間4時間、保持時間2時間の条件でヒ
ートサイクル試験を行った。50サイクル終了時に伝送
損失を測定したところ約0.5dB/10mとわずかな
増加しか認められなかった。
Further, as in Example 1, a heat cycle test was conducted under the conditions of a low temperature of 0 ° C., a high temperature of 130 ° C., a moving time of 4 hours and a holding time of 2 hours. When the transmission loss was measured at the end of 50 cycles, only a slight increase of about 0.5 dB / 10 m was observed.

【0025】[0025]

【発明の効果】本発明のプラスチック光ファイバの製造
方法により製造される光ファイバは、コアとクラッドと
の密着強度が強固になるため、ファイバを屈曲させた時
及び熱履歴がかかった時に発生するコアとクラッドとの
界面の不整が生じることがなく、伝送ロスの増加が少な
い。このためロボットの関節部分等のように繰返し屈曲
する部分や熱履歴がかかる部分に電磁ノイズ対策用の光
伝送路として使用するのに適する。
In the optical fiber manufactured by the method for manufacturing a plastic optical fiber of the present invention, since the adhesion strength between the core and the clad becomes strong, it occurs when the fiber is bent and when a thermal history is applied. There is no irregularity in the interface between the core and the clad, and the increase in transmission loss is small. Therefore, it is suitable to be used as an optical transmission line for countermeasures against electromagnetic noise in a repeatedly bent portion such as a joint portion of a robot or a portion to which a thermal history is applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のプラスチック光ファイバの
製造方法の説明図。
FIG. 1 is an explanatory diagram of a method for manufacturing a plastic optical fiber according to a first embodiment of the present invention.

【図2】本発明の実施例3のプラスチック光ファイバの
製造方法の説明図。
FIG. 2 is an explanatory diagram of a method for manufacturing a plastic optical fiber according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 コア材 1 core material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コア材を線引きした後、そのコア材1の
表面にプラズマ処理を行い、その後にクラッド材を塗
布、付着させることを特徴とするプラスチック光ファイ
バの製造方法。
1. A method for producing a plastic optical fiber, which comprises drawing a core material, subjecting the surface of the core material 1 to plasma treatment, and then applying and adhering a clad material thereto.
JP4073502A 1992-02-25 1992-02-25 Production of plastic optical fiber Pending JPH05232330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073502A JPH05232330A (en) 1992-02-25 1992-02-25 Production of plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073502A JPH05232330A (en) 1992-02-25 1992-02-25 Production of plastic optical fiber

Publications (1)

Publication Number Publication Date
JPH05232330A true JPH05232330A (en) 1993-09-10

Family

ID=13520098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073502A Pending JPH05232330A (en) 1992-02-25 1992-02-25 Production of plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH05232330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145763A (en) * 2007-12-17 2009-07-02 Mitsubishi Rayon Co Ltd Method of manufacturing plastic optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145763A (en) * 2007-12-17 2009-07-02 Mitsubishi Rayon Co Ltd Method of manufacturing plastic optical fiber cable

Similar Documents

Publication Publication Date Title
AU633552B2 (en) A method of forming an optical fibre coupler and a coupler so formed
JP2008026903A (en) Optical fiber with extended bandwidth for crimp and cleave connector
ATE112859T1 (en) OPTICAL WAVEGUIDE DEVICE AND METHOD FOR MANUFACTURING OPTICAL WAVEGUIDE DEVICE.
JPH10170787A (en) Production of coated optical fiber ribbon
JP2011085854A (en) Plastic clad optical fiber core, and optical fiber cable
JPH05232330A (en) Production of plastic optical fiber
EP0212864A2 (en) Coaxial couplers
EP0623831A1 (en) Method and apparatus for fusion splicing optical fibers
JPH04151111A (en) Optical branching and coupling device and its manufacture
JPH0574804B2 (en)
JPS59164522A (en) Manufacture of optical distributing circuit
JPH04140702A (en) Method and device for connection between optical fiber and optical waveguide
WO1983001946A1 (en) A device in equipment for coating filamentary objects
JP6059128B2 (en) Fiber base unit for optical connection parts
CN112604925B (en) Manufacturing method and film coating method based on hollow optical fiber light field resonance structure
WO2012144005A1 (en) Plastic-clad optical fiber core and optical fiber cable
JPS63315542A (en) Production of optical fiber
JPH1152184A (en) Method for connecting coated optical fiber
JPS6070402A (en) Production of optical fiber for laser guide
JP2002201048A (en) Coated optical fiber
JPS63131109A (en) Optical fiber
JPH01284806A (en) Erasing method for flaw on surface of optical fiber
JP2002071973A (en) Hollow waveguide and method of manufacturing the same
JP3681047B2 (en) Manufacturing method of optical components
JPH02208242A (en) Production resin-coated optical fiber