JPH05232284A - Inspecting apparatus of piping - Google Patents

Inspecting apparatus of piping

Info

Publication number
JPH05232284A
JPH05232284A JP4032486A JP3248692A JPH05232284A JP H05232284 A JPH05232284 A JP H05232284A JP 4032486 A JP4032486 A JP 4032486A JP 3248692 A JP3248692 A JP 3248692A JP H05232284 A JPH05232284 A JP H05232284A
Authority
JP
Japan
Prior art keywords
inspection
distance
origin
inspection device
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032486A
Other languages
Japanese (ja)
Inventor
Mitsuko Shimizu
みつ子 清水
Hisashi Hozumi
久士 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4032486A priority Critical patent/JPH05232284A/en
Publication of JPH05232284A publication Critical patent/JPH05232284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain an inspecting apparatus of a piping which brings forth no positional slippage, by a method wherein a guide with an origin marker is provided in the vicinity of a surface to be inspected, while the position of an inspecting unit is detected by a distance sensor of an inspecting mechanism, and a slippage from the surface to be inspected is corrected, in a running-type inspecting apparatus not using a track for exclusive use. CONSTITUTION:In an inspecting apparatus having a moving mechanism 8 running in the circumferential direction on the surface of a piping or the like and a slide mechanism 4 making an inspecting unit slide in the axial direction, a guide which is provided at a position being in the vicinity of a part to be inspected and not interfering with the main frame 9 of the inspecting apparatus, an origin marker 12 provided on at least one place of this guide, and an inspecting part 1 which is made up of a distance sensor 5 detecting a distance between the guide provided for the main frame 9 of the inspecting apparatus and the main frame 9 of the inspecting apparatus and of an origin sensor 6 detecting the origin marker 12, are provided. Moreover, a storage circuit receiving signals from the distance sensor 5 and the origin sensor 12 and signals from the slide mechanism 4 and the moving mechanism 8 as inputs and storing them and a operation processing circuit calculating and correcting a positional slippage accompanying scanning of the inspecting unit over the part to be inspected which is set beforehand, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電所を始めと
する各種プラントにおける配管等の検査を行う検査装置
に係り、特に検査位置精度を高めた配管検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for inspecting pipes and the like in various plants such as a nuclear power plant, and more particularly to a pipe inspection device with improved inspection position accuracy.

【0002】[0002]

【従来の技術】従来、各種プラントにおける配管等の非
破壊検査は、被検査対象配管の外周に環状の軌道を装着
し、この軌道に沿って検査装置を走行移動させて超音波
探触子等の検出器を内蔵した検査ヘッドを走査して検査
を行っていた。
2. Description of the Related Art Conventionally, for nondestructive inspection of pipes and the like in various plants, an annular track is attached to the outer periphery of the pipe to be inspected, and the inspection device is moved along this track to perform ultrasonic probe or the like. The inspection was carried out by scanning the inspection head with the built-in detector.

【0003】しかしながら検査装置の軌道への着脱作業
等は作業者の負担が大きく、また配管の口径に応じた専
用の軌道、および検査装置を準備する必要があり、作業
性や経済性等に劣るという問題があり、専用の軌道を用
いない走行式の検査装置が検討されている。
However, the work of attaching and detaching the inspection device to the track is heavy on the operator, and it is necessary to prepare a dedicated track and inspection device according to the diameter of the pipe, which is inferior in workability and economical efficiency. Therefore, a traveling inspection device that does not use a dedicated track is being studied.

【0004】[0004]

【発明が解決しようとする課題】専用の軌道を用いない
走行式の検査装置においては、例えば配管が磁性体の場
合には、磁気車輪により配管表面に吸着して移動する方
式や、フレキシブルベルトを配管に巻付けて移動する方
式等があるが、いずれの場合にも検査装置が配管に専用
の軌道で固定されていないため、磁気車輪の滑りやフレ
キシブルベルトの緩み等により、微量ではあるが検査位
置からズレる恐れがあり、検査位置を正確に維持できる
自走式の検査装置が要望されていた。
In a traveling type inspection apparatus which does not use a dedicated track, for example, when the pipe is a magnetic body, a method of adsorbing to the surface of the pipe by magnetic wheels and moving the flexible belt is used. There is a method of winding around the pipe and moving it, but in any case the inspection device is not fixed to the pipe with a dedicated track, so it is a small amount due to slip of magnetic wheels and loosening of flexible belt, but it is an inspection There has been a demand for a self-propelled inspection device that can accurately maintain the inspection position because it may be displaced from the position.

【0005】本発明の目的とするところは、専用の軌道
を用いない走行式の検査装置において、被検査面近傍に
原点マーカ付きガイド設けると共に、検査機構の距離セ
ンサにより検査器の位置検出をして、被検査面とのズレ
補正をして位置ズレの生じない配管検査装置を提供する
ことにある。
An object of the present invention is to provide a guide with an origin marker in the vicinity of the surface to be inspected in a traveling type inspection apparatus that does not use a dedicated track, and detect the position of the inspection device by a distance sensor of the inspection mechanism. In addition, it is to provide a pipe inspection device that corrects the deviation from the surface to be inspected and does not cause a positional deviation.

【0006】[0006]

【課題を解決するための手段】配管等の表面を周方向に
走行する移動機構と前記配管等の軸方向に検査器を摺動
させるスライド機構を有する検査装置において、被検査
部近傍で検査設置本体と干渉しない位置に設けたガイド
と、このガイドの少なくても1ケ所以上に設けた原点マ
ーカと前記検査装置本体に設けた前記ガイドと検査装置
本体間の距離を検出する距離センサと前記原点マーカを
検出する原点センサからなる検査部と、前記距離センサ
と原点センサからの信号および前記スライド機構と移動
機構からの信号を入力して記憶する記憶回路と、予め設
定した被検査部に対する前記検査器の走査に伴う位置ズ
レを算出し補正する演算・処理回路を具備した制御部か
らなることを特徴とする。
In an inspection apparatus having a moving mechanism that travels in the circumferential direction on the surface of a pipe or the like and a slide mechanism that slides an inspecting device in the axial direction of the pipe or the like, the inspection is installed near the portion to be inspected. A guide provided at a position where it does not interfere with the main body, an origin marker provided at least at one place of this guide, a distance sensor for detecting the distance between the guide provided on the inspection device body and the inspection device body, and the origin. An inspection unit including an origin sensor that detects a marker, a storage circuit that inputs and stores signals from the distance sensor and the origin sensor and signals from the slide mechanism and the movement mechanism, and the inspection of a preset inspection target portion. It is characterized by comprising a control unit equipped with a calculation / processing circuit for calculating and correcting a positional deviation due to the scanning of the vessel.

【0007】[0007]

【作用】被検査部近傍に設けた原点マーカとガイドによ
り、運転開始前における検査器と検査装置本体の原点位
置を原点マーカで確認すると共に、運転後はガイドによ
って被検査部における検査器のズレを検出し、このズレ
と前記原点位置から制御部により検査器の位置を常時正
確に補正しながら検査を行う。
The origin marker and the guide provided near the portion to be inspected confirm the origin position of the inspection device and the inspection apparatus main body before the start of operation with the origin marker, and after the operation, the guide displaces the inspection device in the portion to be inspected. Is detected, and the inspection is performed while the position of the inspection device is always accurately corrected by the control unit based on this deviation and the origin position.

【0008】[0008]

【実施例】本発明の一実施例について図面を参照して説
明する。
An embodiment of the present invention will be described with reference to the drawings.

【0009】配管検査装置は検査部1と制御部20とで構
成されており、図1は検査部1の配管装着を示す平面図
で、図2および図3は、夫々図1における正面図と側面
図である。
The pipe inspection apparatus comprises an inspection unit 1 and a control unit 20. FIG. 1 is a plan view showing the pipe mounting of the inspection unit 1, and FIGS. 2 and 3 are front views of FIG. It is a side view.

【0010】検査部1は、超音波探触子等の検出器2を
内蔵した検査ヘッド3と、この検査ヘッド3を配管30の
軸方向にスライドさせるスライド機構4、およびこのス
ライド機構4と距離センサ5,原点センサ6,車輪7を
配設した移動機構8からなる検査装置本体9と、配管30
の外周に取付けた検査装置本体9を保持し、周方向に移
動するフレキシブルベルト10と、配管30における被検査
位置31に対して平行で、検査装置の移動に干渉しないよ
うに配管30の外周に環状に取付けたガイドであるガイド
用ベルト11、およびこのガイド用ベルト11上に取付けた
原点マーカ12から形成される。
The inspection unit 1 includes an inspection head 3 having a detector 2 such as an ultrasonic probe, a slide mechanism 4 for sliding the inspection head 3 in the axial direction of the pipe 30, and a distance from the slide mechanism 4. Inspection device main body 9 including moving mechanism 8 in which sensor 5, origin sensor 6 and wheels 7 are arranged, and piping 30
The flexible belt 10 that holds the inspection device body 9 attached to the outer periphery of the pipe 30 and moves in the circumferential direction is parallel to the position 31 to be inspected in the pipe 30, and is attached to the outer periphery of the pipe 30 so as not to interfere with the movement of the inspection device. It is formed of a guide belt 11 which is a guide attached in an annular shape, and an origin marker 12 attached on the guide belt 11.

【0011】また制御部20は図4の制御部系統構成図に
示すように、前記検査部1の距離センサ5で検出した各
種距離データ等を記憶する記憶回路21と、この距離デー
タから補正値を求めて検査部1に制御信号を出力する演
算回路22と、これらを結ぶバス23、およびインタフェー
ス24,25,26,27,28で形成されている。
As shown in the control system diagram of FIG. 4, the control unit 20 stores a memory circuit 21 for storing various distance data detected by the distance sensor 5 of the inspection unit 1 and a correction value based on the distance data. Is formed by an arithmetic circuit 22 that outputs a control signal to the inspection unit 1 in order to obtain the signal, a bus 23 that connects these, and interfaces 24, 25, 26, 27, and 28.

【0012】なお、前記のインタフェース24は任意のパ
ラメータの入力等を行う操作パネル29と、インタフェー
ス25は前記検査装置本体9の移動機構8を駆動する回転
用モータ13とこれの回転用エンコーダ14、さらに回転用
モータ13を制御する回転用ドライバ15と接続されてい
る。
The interface 24 is an operation panel 29 for inputting arbitrary parameters, and the interface 25 is a rotating motor 13 for driving the moving mechanism 8 of the inspection apparatus body 9 and an encoder 14 for rotating the rotating motor 13. Further, it is connected to a rotation driver 15 that controls the rotation motor 13.

【0013】またインタフェース26は前記スライド機構
4を駆動するスライド用モータ16とスライド用エンコー
ダ17、さらにスライド用モータ16を制御するスライド用
ドライバ18と接続される。さらに、インタフェース27,
28は、夫々前記距離センサ5および原点センサ6と接続
していて、いずれも相互にアクセスできる構成となって
いる。次に上記の構成による作用について、配管30外周
に施した溶接部の検査を例にして説明する。
The interface 26 is connected to a slide motor 16 for driving the slide mechanism 4, a slide encoder 17, and a slide driver 18 for controlling the slide motor 16. In addition, the interface 27,
Reference numerals 28 are connected to the distance sensor 5 and the origin sensor 6, respectively, so that both can access each other. Next, the operation of the above configuration will be described by taking the inspection of the welded portion on the outer periphery of the pipe 30 as an example.

【0014】先ず被検査物である配管30の外周に検査装
置本体9をフレキシブルベルト10により装着する。配管
30外周の溶接部である被検査位置31に対し、スライド機
構4に摺動自在に設けた検査ヘッド3に内蔵した超音波
探触子の検出器2を位置合わせする。
First, the inspection device main body 9 is attached to the outer periphery of the pipe 30 as the inspection object by the flexible belt 10. Piping
The ultrasonic probe detector 2 incorporated in the inspection head 3 slidably provided in the slide mechanism 4 is aligned with the inspected position 31, which is the welded portion on the outer periphery of the periphery 30.

【0015】さらに、配管30の外周において前記被検査
位置31と平行し、かつ検査装置本体9および検査ヘッド
3の走査に干渉しない位置で、距離センサ5に対峙する
ように環状のガイド用ベルト11を装着し、このガイド用
ベルト11上に原点マーカ12を取付ける。
Further, an annular guide belt 11 is provided on the outer circumference of the pipe 30 so as to be parallel to the inspected position 31 and not interfere with the scanning of the inspection apparatus body 9 and the inspection head 3 so as to face the distance sensor 5. And mount the origin marker 12 on the guide belt 11.

【0016】ここで、図1に示すように配管30の軸方向
に、原点位置P0 における検査装置本体9とガイド用ベ
ルト11との距離をl0 、検査装置本体9の長さをL、移
動中の検査装置本体9とガイド用ベルト11との距離をl
1 、移動中の検出器2と検査装置本体9との距離をl2
とし、符号l3 は検出器2とガイド用ベルト11との距離
で、符号l2Sは原点位置P0 における検出器2と検査装
置本体9との距離を表わす。
Here, as shown in FIG. 1, in the axial direction of the pipe 30, the distance between the inspection device body 9 and the guide belt 11 at the origin position P 0 is l 0 , and the length of the inspection device body 9 is L, The distance between the moving inspection device body 9 and the guide belt 11 is l
1 , the distance between the moving detector 2 and the inspection device body 9 is l 2
The symbol l 3 is the distance between the detector 2 and the guide belt 11, and the symbol l 2S is the distance between the detector 2 and the inspection apparatus body 9 at the origin position P 0 .

【0017】なお、環状の被検査位置31に対して、例え
ば検査ヘッド3に内蔵された検出器2は被検査位置31の
近傍も検査するように、図5の平面図に示す矢印線A、
あるいは図6の平面図の矢印線Bに示すような軌跡にな
るように、周方向移動量rと軸方向移動量tを設定し、
被検査位置31の表面を走査して検査を行う。なお、図6
は周方向移動量rが配管30の全外周とした場合を示して
いる。次に検査の操作手順について説明する。検査装置
本体9を支持するフレキシブルベルト11は、その形を柔
軟に変えることができるため種々の口径の配管に容易に
対応できる。
With respect to the annular inspection position 31, for example, the detector 2 built in the inspection head 3 also inspects the vicinity of the inspection position 31 so that an arrow line A shown in the plan view of FIG.
Alternatively, the circumferential movement amount r and the axial movement amount t are set so that the locus becomes as shown by the arrow B in the plan view of FIG.
The surface of the inspected position 31 is scanned for inspection. Note that FIG.
Indicates the case where the circumferential movement amount r is the entire outer circumference of the pipe 30. Next, the operation procedure of the inspection will be described. Since the shape of the flexible belt 11 that supports the inspection device body 9 can be changed flexibly, it can be easily applied to pipes of various diameters.

【0018】しかしながら、例えば図1に示すように被
検査配管30が鉛直に設置されている場合等で検査装置本
体9が常に重力により下側に引かれている場合には、前
記図5、あるいは図6に示すような検出器2の走査軌跡
(矢印線A,B)による検査装置本体9の周方向移動を
繰返すにつれて、検査装置本体9とガイド用ベルト11の
間の距離l1 は、螺旋状に僅かずつ短縮されていく。こ
のため随時、距離l1 に生じた誤差の分を補正すること
が必要となる。先ず誤差補正の演算方法について説明す
る。
However, for example, when the pipe 30 to be inspected is installed vertically as shown in FIG. 1 and the inspection device main body 9 is always pulled downward by gravity, as shown in FIG. As the movement of the inspection apparatus main body 9 in the circumferential direction due to the scanning locus (arrow lines A and B) of the detector 2 as shown in FIG. 6 is repeated, the distance l 1 between the inspection apparatus main body 9 and the guide belt 11 becomes spiral. It will be shortened little by little. Therefore, it is necessary to correct the error caused in the distance l 1 as needed. First, a calculation method for error correction will be described.

【0019】図1に示すように、原点位置P0 における
検査装置本体9とガイド用ベルト11との距離l0 と、移
動中の検査ヘッド3内蔵の検出器2と検査装置本体9と
の距離l1 との差の絶対値は、原点位置P0 における検
出器2と検査装置本体9との距離l2Sと移動中の検出器
2と検査装置本体9との距離l2 の差の絶対値と同じ
で、距離l1 が減れば距離l2 は増え、距離l1 が増え
れば距離l2 は減る関係にあるので、この差の絶対値を
0 >l1 の場合は距離l2Sから引き、またl0<l1
の場合は距離l2Sに加えることで、距離l2 が補正さ
れ、距離l3 が常に一定に維持されることがわかる。
As shown in FIG. 1, the distance l 0 between the inspection device main body 9 and the guide belt 11 at the origin position P 0, and the distance between the detector 2 built in the inspection head 3 and the inspection device main body 9 during movement. the absolute value of the difference between l 1 is the absolute value of the difference of the distance l 2 between the detector 2 and the testing device body 9 in the moved distance l 2S of the inspection apparatus main body 9 and the detector 2 at the origin position P 0 In the same manner as above, if the distance l 1 decreases, the distance l 2 increases, and if the distance l 1 increases, the distance l 2 decreases. Therefore, when the absolute value of this difference is l 0 > l 1 , the distance l 2S becomes Pull again, l 0 <l 1
In the case of, the distance l 2 is corrected by adding to the distance l 2S , and the distance l 3 is always maintained constant.

【0020】また図5、および図7の検査部における補
正作動説明図に示すように、検査装置本体9が管周方向
にrだけ移動する毎に、検出器2を管軸方向にtだけ移
動させると、今度は距離l0 +tが基準距離となり、距
離l2S+tに同様な補正値の操作をすることで距離l2
+tが補正され、距離l3 +tが一定に保たれることが
わかる。次に制御部20における演算・処理について、図
7の動作フロー図により説明する。ステップS1 で図4
に示す制御部20の演算回路22、および記憶回路21を初期
化する。ステップS2 にてガイド用ベルト11上の原点マ
ーカ12を原点センサ6で検出し、インタフェース28、お
よびバス23を介して記憶回路21に入力する。
As shown in FIGS. 5 and 7 for explaining the correction operation in the inspection section, the detector 2 is moved in the tube axis direction by t every time the inspection apparatus main body 9 is moved in the tube circumferential direction by r. If is, in turn, the distance l 0 + t is the reference distance, the distance by an operation similar correction value to the distance l 2S + t l 2
It can be seen that + t is corrected and the distance l 3 + t is kept constant. Next, calculation / processing in the control unit 20 will be described with reference to the operation flow chart of FIG. Figure 4 in step S 1
The arithmetic circuit 22 and the memory circuit 21 of the control unit 20 shown in are initialized. In step S 2 , the origin marker 12 on the guide belt 11 is detected by the origin sensor 6 and input to the memory circuit 21 via the interface 28 and the bus 23.

【0021】ステップS3 では、操作パネル29で検査装
置本体9の管周方向移動量rと、検査器2の管軸方向移
動量t、および動作の繰返し回数nのパラメータを入力
する。
In step S 3 , the operation panel 29 is used to input the parameters of the movement amount r of the inspection apparatus body 9 in the pipe circumferential direction, the movement amount t of the inspection device 2 in the pipe axis direction, and the number of times n of repetition of the operation.

【0022】ステップS4 において、前記ステップS2
における検査装置本体9とガイド用ベルト11との距離l
0 を、検査装置本体9に搭載した距離センサ5で検出し
てインタフェース27、およびバス23介して記憶回路21に
記録し、基準ギャップデータとする。
In step S 4 , the step S 2
Between the inspection device body 9 and the guide belt 11 at
0 is detected by the distance sensor 5 mounted on the inspection apparatus main body 9 and recorded in the memory circuit 21 via the interface 27 and the bus 23 to be used as reference gap data.

【0023】ステップS5 にて前記基準ギャップデータ
の距離l0 と、検査器2とガイド用ベルト11の距離
3 、および検査装置本体9の軸方向距離Lとから、管
軸方向初期距離l2S(原点処理後の検査器2と検査装置
本体9との距離)を演算回路22で算出する。さらに、こ
の演算結果である距離l2Sを基に、バス23とインタフェ
ース26、およびスライド用ドライバ18を介し、スライド
用モータ16に管軸方向動作の出力をする。
[0023] The distance l 0 of the reference gap data at step S 5, the tester 2 and the distance l 3 of the guide belt 11, and the axial distance L of the inspection apparatus main body 9, the tube axis direction initial distance l 2S (distance between the inspection device 2 and the inspection device main body 9 after origin processing) is calculated by the arithmetic circuit 22. Further, based on the distance l 2S which is the result of this calculation, the output of the tube axis direction operation is output to the slide motor 16 via the bus 23, the interface 26, and the slide driver 18.

【0024】ステップS6 では前記ステップS3 で入力
したパラメータのt,r,nを基にして、バス23とイン
タフェース25、および回転用ドライバ15を介し、回転用
モータ13に管周方向動作の出力をする。
In step S 6 , based on the parameters t, r and n input in step S 3 , the rotation motor 13 is operated in the circumferential direction via the bus 23, the interface 25 and the rotation driver 15. Output.

【0025】ステップS7 にて前記スライド用モータ16
と回転用モータ13の運転による検査装置本体9の移動に
伴い、検査装置本体9とガイド用ベルト11との距離l1
を距離センサ5で検出する。
In step S 7, the slide motor 16
Along with the movement of the inspection device body 9 due to the operation of the rotation motor 13 and the rotation motor 13, the distance l 1 between the inspection device body 9 and the guide belt 11 is increased.
Is detected by the distance sensor 5.

【0026】ステップS8 においては、前記ステップS
7 により検出した距離l1 をインタフェース27とバス23
を介し、演算回路22にて前記基準ギャップデータの距離
0を基に管軸方向のズレ量から補正値を求め、正確な
管軸方向の距離l2 を算出すると共に、バス23とインタ
フェース26、およびスライド用ドライバ18を介してスラ
イド用モータ16への補正制御出力を行い、検査装置本体
9により管周方向へ移動中の検査器2における管軸方向
のズレを補正する。
In step S 8 , the step S
The distance l 1 detected by 7 is interface 27 and bus 23
The via, obtains a correction value from the deviation amount of the distance l 0 a tube axis direction on the basis of the reference gap data in the arithmetic circuit 22, and calculates the distance l 2 of the accurate tube axis direction, the bus 23 and the interface 26 , And the correction control output to the slide motor 16 via the slide driver 18 to correct the deviation in the pipe axis direction of the inspection device 2 which is being moved in the pipe circumferential direction by the inspection device body 9.

【0027】ステップS9 は、上記距離l1 の検出によ
る、『入力(l1 )→補正{l2S+(l1 −l0 )}→
出力(l2 )』の演算・処理は、検査装置本体9が管周
方向に1ピッチ(管周方向移動量r)だけ移動が終わる
まで繰返し、これを回転用エンコーダ14で検出する。ス
テップS10にて検査器2を管軸方向に1ピッチ(管周方
向移動量t)だけ移動させると共に、管軸方向の補正操
作を繰返し行う。
In step S 9 , "input (l 1 ) → correction {l 2S + (l 1 -l 0 )} →" is detected by detecting the distance l 1.
The calculation / processing of "output (l 2 )" is repeated until the inspection apparatus main body 9 has moved in the pipe circumferential direction by one pitch (pipe circumferential direction movement amount r), and this is detected by the rotary encoder 14. In step S 10, the inspector 2 is moved in the tube axis direction by one pitch (tube circumferential direction movement amount t) and the correction operation in the tube axis direction is repeated.

【0028】ステップS11では上記ステップS9 ,S10
の『起動後→管周方向1ピッチ移動完了→管軸方向1ピ
ッチ移動完了』処理をn回繰返して、検査装置本体9を
配管外周を順次移動させながら検査器2を被検査位置31
に対する所定の軌跡、図5の矢印線Aに沿って正確に走
査させて、被検査位置31の超音波検査を行う。
In step S 11 , the above steps S 9 and S 10 are performed.
The process of “after activation → completion of 1 pitch movement in the pipe circumferential direction → completion of movement of 1 pitch in the pipe axis direction” is repeated n times to move the inspection device main body 9 sequentially along the outer circumference of the pipe to move the inspection device 2 to the inspected position 31.
The ultrasonic inspection of the position 31 to be inspected is performed by accurately scanning along a predetermined locus with respect to the arrow line A in FIG.

【0029】上記のように移動中の検査ヘッド3に内蔵
した検査器2と、検査装置本体9との距離l2 に補正を
加え、検査器2とガイド用ベルト11の距離l3 を一定に
保つことにより、検査装置本体9等の移動に伴う検査器
2の被検査位置31に対するズレを防止する。
As described above, the distance l 2 between the inspection device 2 built in the moving inspection head 3 and the inspection device main body 9 is corrected to make the distance l 3 between the inspection device 2 and the guide belt 11 constant. By keeping it, the displacement of the inspection device 2 from the inspected position 31 due to the movement of the inspection device body 9 and the like is prevented.

【0030】従って、軽量かつ適用範囲が広いフレキシ
ブルベルト10による検査装置本体9の移動を行う配管検
査装置において、検査器2の被検査位置31に対する位置
決めが自動的に補正されるので、検査の効率が向上す
る。
Therefore, in the pipe inspection device for moving the inspection device main body 9 by the flexible belt 10 which is lightweight and has a wide range of application, the positioning of the inspection device 2 with respect to the inspected position 31 is automatically corrected, so that the inspection efficiency is improved. Is improved.

【0031】なお、上記一実施例では、検査装置本体9
の移動手段としてフレキシブルベルト10による自走式を
例にしたが、本発明は移動手段がフレキシブルベルトで
なくても、また自走式でなくても同様の作用と効果が得
られるものである。
In the above embodiment, the inspection device body 9
As an example of the moving means, the self-propelled type using the flexible belt 10 has been taken as an example, but the present invention can obtain the same action and effect even if the moving means is not the flexible belt or the self-propelled type.

【0032】[0032]

【発明の効果】以上本発明によれば、適用範囲の広い自
走式の配管検査装置において、検査位置の自動補正を行
い、作業の自動化を促すことにより、配管の安全性・信
頼性の向上につながる。
As described above, according to the present invention, in the self-propelled pipe inspection device having a wide range of application, the inspection position is automatically corrected to promote the automation of the work, thereby improving the safety and reliability of the pipe. Lead to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る検査部の配管据付を示す平面図。FIG. 1 is a plan view showing pipe installation of an inspection unit according to the present invention.

【図2】図1における正面図。FIG. 2 is a front view of FIG.

【図3】図1における側面図。FIG. 3 is a side view of FIG.

【図4】本発明に係る制御部の系統構成図。FIG. 4 is a system configuration diagram of a control unit according to the present invention.

【図5】検査器走査軌跡の一例を示す検査部の平面図。FIG. 5 is a plan view of an inspection unit showing an example of an inspection device scanning locus.

【図6】検査器走査軌跡の他例を示す検査部の平面図。FIG. 6 is a plan view of an inspection unit showing another example of the inspection device scanning locus.

【図7】検査部における補正作動説明図。FIG. 7 is an explanatory diagram of a correction operation in the inspection unit.

【図8】制御部による動作フロー図。FIG. 8 is an operation flowchart of the control unit.

【符号の説明】[Explanation of symbols]

1…検査部、2…検出器、3…検査ヘッド、4…スライ
ド機構、5…距離センサ、6…原点センサ、8…移動機
構、9…検査装置本体、10…フレキシブルベルト、11…
ガイド用ベルト、12…原点マーカ、13…回転用モータ、
16…スライド用モータ、20…制御部、21…演算回路、22
…記憶回路、23…バス、29…操作パネル、30…配管、31
…被検査位置。
DESCRIPTION OF SYMBOLS 1 ... Inspection part, 2 ... Detector, 3 ... Inspection head, 4 ... Sliding mechanism, 5 ... Distance sensor, 6 ... Origin sensor, 8 ... Moving mechanism, 9 ... Inspection device main body, 10 ... Flexible belt, 11 ...
Guide belt, 12 ... Origin marker, 13 ... Rotation motor,
16 ... slide motor, 20 ... control unit, 21 ... arithmetic circuit, 22
… Memory circuit, 23… Bus, 29… Operation panel, 30… Piping, 31
… Inspected position.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配管等の表面を周方向に走行する移動機
構と前記配管等の軸方向に検査器を摺動させるスライド
機構を有する検査装置において、被検査部近傍で検査設
置本体と干渉しない位置に設けたガイドと、このガイド
の少なくても1ケ所以上に設けた原点マーカと前記検査
装置本体に設けた前記ガイドと検査装置本体間の距離を
検出する距離センサと前記原点マーカを検出する原点セ
ンサからなる検査部と、前記距離センサと原点センサか
らの信号および前記スライド機構と移動機構からの信号
を入力して記憶する記憶回路と、予め設定した被検査部
に対する前記検査器の走査に伴う位置ズレを算出し補正
する演算・処理回路を具備した制御部からなることを特
徴とする配管検査装置。
1. An inspection apparatus having a moving mechanism that travels in the circumferential direction on the surface of a pipe or the like and a slide mechanism that slides an inspection device in the axial direction of the pipe or the like, which does not interfere with the inspection installation main body in the vicinity of the inspected part. A guide provided at a position, an origin marker provided at least at one or more places of the guide, a distance sensor for detecting a distance between the guide provided in the inspection apparatus body and the inspection apparatus body, and the origin marker are detected. An inspection unit consisting of an origin sensor, a memory circuit for inputting and storing signals from the distance sensor and the origin sensor and signals from the slide mechanism and moving mechanism, and for scanning the inspection device with respect to a preset inspection target portion. A pipe inspection device comprising a control unit equipped with a calculation / processing circuit for calculating and correcting a positional shift involved.
JP4032486A 1992-02-20 1992-02-20 Inspecting apparatus of piping Pending JPH05232284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032486A JPH05232284A (en) 1992-02-20 1992-02-20 Inspecting apparatus of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032486A JPH05232284A (en) 1992-02-20 1992-02-20 Inspecting apparatus of piping

Publications (1)

Publication Number Publication Date
JPH05232284A true JPH05232284A (en) 1993-09-07

Family

ID=12360319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032486A Pending JPH05232284A (en) 1992-02-20 1992-02-20 Inspecting apparatus of piping

Country Status (1)

Country Link
JP (1) JPH05232284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882813A (en) * 1987-11-18 1989-11-28 Shinagawa Shoko Co., Ltd. Banding clip
US6407392B1 (en) 1999-06-04 2002-06-18 Kabushiki Kaisha Toshiba Radiation detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882813A (en) * 1987-11-18 1989-11-28 Shinagawa Shoko Co., Ltd. Banding clip
US6407392B1 (en) 1999-06-04 2002-06-18 Kabushiki Kaisha Toshiba Radiation detector

Similar Documents

Publication Publication Date Title
US4255762A (en) Apparatus for inspecting pipes in a plant
CN102590245B (en) Intelligent X-ray digital flat imaging detection system device and detection method
EP0684101A1 (en) System for automatically controlling weld material beading in orbital welding processes for medium- and large-size pipes
JP2010048624A (en) Low-frequency electromagnetic induction type defect measuring apparatus
JPH04220557A (en) Space-correlation eddy-current measuring system
JPH05232284A (en) Inspecting apparatus of piping
CN108333193B (en) Pipeline training test piece ray digital nondestructive testing device
CN111795651B (en) Method and equipment for measuring parameters of large-scale revolving body by using mechanical arm
JP2720077B2 (en) Ultrasonic flaw detector
JP2008032508A (en) Piping inspection device and piping inspection method
JPH01113650A (en) Insertion-type ultrasonic flaw detector
JPH02127976A (en) Method for controlling automatic welding machine
KR20150065648A (en) A nondestructive inspection system railway rails and inspection method thereof using an electromagnetic induction sensor
JP2812737B2 (en) Probe speed controller
JPH091337A (en) Method for controlling weld seam copying in arc of automatic pipe circumference welding equipment
JP3612392B2 (en) Ultrasonic flaw detection scanner
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
JPH0647171B2 (en) Welding controller
JP2601081B2 (en) Centering method of eddy current detection coil
JPS61223510A (en) System for detecting position of probe
RU2684949C1 (en) Method and device for method of magnetic control
JPH0345768B2 (en)
JPS63256851A (en) Ultrasonic flaw detector
JPH02249965A (en) Method and device for automatic flaw detection for seam part
JPH07174731A (en) Method and equipment for ultrasonic flaw detection