JPH05231933A - Pyroelectric element - Google Patents

Pyroelectric element

Info

Publication number
JPH05231933A
JPH05231933A JP3164792A JP3164792A JPH05231933A JP H05231933 A JPH05231933 A JP H05231933A JP 3164792 A JP3164792 A JP 3164792A JP 3164792 A JP3164792 A JP 3164792A JP H05231933 A JPH05231933 A JP H05231933A
Authority
JP
Japan
Prior art keywords
electrode
substrate
pyroelectric
heat capacity
pyroelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3164792A
Other languages
Japanese (ja)
Inventor
Susumu Kobayashi
晋 小林
Nobuyuki Yoshiike
信幸 吉池
Koji Arita
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3164792A priority Critical patent/JPH05231933A/en
Publication of JPH05231933A publication Critical patent/JPH05231933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a pyroelectric element being excellent in production and having excellent sensitivity by forming a heat capacity reducing part in a part of a substrate having a pyroelectric effect. CONSTITUTION:In a pyroelectric element, a light-sensing electrode and a compensating electrode are provided on a substrate having a pyroelectric effect and a heat capacity reducing part is formed in a part of the substrate. Due to the existence of the heat capacity reducing part, a heat capacity is reduced and sensitivity is increased. As for manufacture of the pyroelectric element, the part of the substrate 10 of ZnO, for instance, wherein a light-sensing part and a compensating part are to be formed is patterned by a method of photo-lithography. Successively, etching is made by a 10% hydrofluoric acid at a room temperature until the thickness of the light-sensing part and the compensating part becomes 5mum, so that a shape having a recessed part S be formed. Next, a gold black conductive film is formed by evaporation, patterning is conducted by the method of photolithography and a light sensing electrode 20, a compensating electrode 21 and an electrode connecting part 22 are formed by a method of selective wet etching using an iodine etchant. On the rear side of the substrate 10, too, an opposed electrode 30 for the light-sensing electrode and an opposed electrode 31 for the compensating electrode are provided at positions being opposite to the electrodes 20 and 21 respectively by the same technique, and a lead-out part for external connection is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線、特に熱線を検
知する焦電素子及びその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric element for detecting infrared rays, especially heat rays, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、赤外線、特に熱線を検知する焦電
素子は、焦電効果を有する基材の両面に赤外線受光電極
を設け、赤外線照射によりその電極間電位が変化するこ
とを利用して検知するものである。基材材料としては硫
酸グリシン系、ポリ弗化ビニリデン系、LiTaO3
PbTiO3、ZnOなどの材料が用いられ、また、形
態は硫酸グリシン系、LiTaO3等は結晶体が用いら
れ、PbTiO3系は結晶の形成が困難なことから焼結
セラミック、もしくは薄膜技術により形成した薄膜を用
いるのが一般的である。
2. Description of the Related Art Conventionally, a pyroelectric element for detecting infrared rays, particularly a heat ray, uses infrared ray receiving electrodes provided on both surfaces of a substrate having a pyroelectric effect, and the potential between the electrodes is changed by infrared ray irradiation. It is something to detect. As the base material, glycine sulfate-based, polyvinylidene fluoride-based, LiTaO 3 ,
Materials such as PbTiO 3 and ZnO are used, and morphology is glycine sulfate, LiTaO 3 and the like are crystalline, and PbTiO 3 is formed by sintered ceramic or thin film technology because it is difficult to form crystals. It is general to use a thin film.

【0003】[0003]

【発明が解決しようとする課題】一般に、薄膜を用いた
焦電素子は感度は高いがコストと信頼性の点で問題が有
り、それに比べ結晶体やセラミック体を用いた焦電素子
は生産性および信頼性の点で優れているが感度が低いと
いう課題が有る。
Generally, a pyroelectric element using a thin film has a high sensitivity, but has problems in cost and reliability. In comparison, a pyroelectric element using a crystal body or a ceramic body is more productive. Also, it is excellent in reliability, but has a problem of low sensitivity.

【0004】結晶体あるいはセラミック体焦電センサ
が、感度に関して薄膜焦電センサに劣るのは、素子熱容
量が大きいことによるものであり、従って結晶体、セラ
ミック体焦電センサの場合でもなんらかの方法で基材を
薄板化することにより素子部の熱容量を下げ、薄膜焦電
センサに匹敵する高感度のセンサを製作することが原理
的に可能である。
The reason why the crystalline or ceramic pyroelectric sensor is inferior to the thin film pyroelectric sensor in terms of sensitivity is that the element heat capacity is large. By thinning the material, it is possible in principle to reduce the heat capacity of the element part and manufacture a highly sensitive sensor comparable to a thin film pyroelectric sensor.

【0005】ところで、従来、焦電体の薄板化は専ら切
削・研磨加工により行なわれている。しかしながらこの
場合、物理強度的に上記焦電体が研磨加工に耐え得るの
は数十μmまでであることから低熱容量化には限界があ
った。このことが、結晶体もしくはセラミック体焦電セ
ンサの高感度化の障害となっていた。
By the way, conventionally, the thinning of the pyroelectric body has been performed mainly by cutting and polishing. However, in this case, since the pyroelectric material can withstand the polishing process in terms of physical strength up to several tens of μm, there has been a limit in reducing the heat capacity. This has been an obstacle to increasing the sensitivity of the crystalline or ceramic pyroelectric sensor.

【0006】本発明は、このような従来の焦電素子の課
題を考慮し、信頼性、生産性の点で優れている上、感動
もよい焦電素子を提供することを目的とするものであ
る。
The present invention has been made in consideration of the problems of the conventional pyroelectric element, and an object thereof is to provide a pyroelectric element which is excellent in reliability and productivity and which is also pleasant to move. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、焦電効果を有
する基板に受光電極及び補償電極が設けられた焦電素子
において、基板の一部に熱容量低減部が形成されている
焦電素子である。
The present invention provides a pyroelectric element in which a substrate having a pyroelectric effect is provided with a light receiving electrode and a compensating electrode, in which a heat capacity reducing portion is formed in a part of the substrate. Is.

【0008】また、本発明は、その熱容量低減部が、基
板の片面を物理的あるいは化学的にエッチングすること
により形成した凹部である焦電素子である。
Further, the present invention is the pyroelectric element, wherein the heat capacity reducing portion is a concave portion formed by physically or chemically etching one surface of the substrate.

【0009】また、本発明は、その熱容量低減部の凹部
に受光電極及び補償電極が形成されている焦電素子であ
る。
The present invention is also a pyroelectric element in which a light receiving electrode and a compensating electrode are formed in the concave portion of the heat capacity reducing portion.

【0010】また、本発明は、その基板が、結晶体或は
セラミック材料からなっている焦電素子である。
The present invention is also a pyroelectric element whose substrate is made of a crystalline material or a ceramic material.

【0011】また、本発明は、基板の材料としてPbT
iO3もしくはLiTaO3の結晶体もしくは焼結体を用
い、塩素系もしくは弗素系エッチングガスによるケミカ
ルドライエッチングにより熱容量低減部を形成する焦電
素子の製造法である。
The present invention also uses PbT as a material for the substrate.
This is a method for manufacturing a pyroelectric element in which a heat capacity-reduced portion is formed by chemical dry etching using chlorine-based or fluorine-based etching gas using a crystal or sintered body of iO 3 or LiTaO 3 .

【0012】[0012]

【作用】本発明は上述の熱容量低減部の存在によって、
熱容量を低下出来、その結果、感度の高い焦電素子を低
価格で提供できる。
According to the present invention, the existence of the heat capacity reducing section described above
The heat capacity can be reduced, and as a result, a highly sensitive pyroelectric element can be provided at a low price.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図1は本発明の第1実施例に
よる焦電素子及び製造プロセスを説明するための概略図
である。同図に於て、(x)は、初期の状態、(a)
は、レジスト塗布、露光、現像工程、(b)は、焦電体
基板エッチングレジスト剥離工程、(c)は、金属膜形
成、レジスト塗布、露光、現像工程、(d)は、金属膜
エッチング(受光及び補償電極形成)、レジスト剥離工
程、(e)は、受光及び補償電極対極形成工程を示して
いる。また、右側部分の各図は((2)に示す)、平面
状態を示す図であり、左側部分の各図は((1)に示
す)、右側部分のA−A'線断面図をそれぞれ示してい
る。
(Embodiment 1) FIG. 1 is a schematic view for explaining a pyroelectric element and a manufacturing process according to a first embodiment of the present invention. In the figure, (x) is the initial state, (a)
Is a resist coating, exposure and development process, (b) is a pyroelectric substrate etching resist stripping process, (c) is a metal film formation, resist coating, exposure and development process, and (d) is a metal film etching ( Light receiving and compensating electrode formation), resist stripping step, and (e) shows the light receiving and compensating electrode counter electrode forming step. Further, each drawing of the right side portion (shown in (2)) is a plan view, and each drawing of the left side portion (shown in (1)) is a sectional view taken along the line AA ′ of the right side portion. Shows.

【0015】図1−(x)は、切削・研磨加工により数
十μmまで薄板化したZnOからなる焦電体基板10で
あって、図1−(a)に示すように、受光部および補償
部が形成される部分をフォトリソグラフィー法によりパ
ターン化する。
FIG. 1- (x) shows a pyroelectric substrate 10 made of ZnO thinned to several tens of μm by cutting and polishing, and as shown in FIG. The portion where the portion is formed is patterned by a photolithography method.

【0016】引続き、10%弗酸により室温にて、図1
−(b)に示す凹部Sを有する形状に受光部及び補償部
厚さが5μmになるまでエッチングした。なお、この場
合エッチャントとしては希弗酸の他アンモニア水溶液、
沸騰食塩水、沸騰酒石酸ナトリウム水溶液等が使用可能
である。
Subsequently, with 10% hydrofluoric acid at room temperature, FIG.
Etching was performed until the thickness of the light receiving portion and the compensation portion became 5 μm in the shape having the recess S shown in FIG. In this case, as an etchant, dilute hydrofluoric acid, an aqueous ammonia solution,
Boiling saline, boiling sodium tartrate aqueous solution, etc. can be used.

【0017】つぎに、図1−(c)に示すように蒸着に
より金ブラック導電膜を形成し、続いてフォトリソグラ
フィー法によるパターン化を行い、引続きヨウ素系エッ
チャントによる選択ウエットエッチング法により、図1
−(d)に示すような受光電極20、補償電極21およ
び電極接続部22を形成した。
Next, as shown in FIG. 1- (c), a gold black conductive film is formed by vapor deposition, followed by patterning by photolithography, and then by selective wet etching using an iodine-based etchant.
The light-receiving electrode 20, the compensation electrode 21, and the electrode connecting portion 22 as shown in (d) were formed.

【0018】続いて図1−(e)に示すように焦電体基
板10の裏面にも同様な手法によって、受光電極20と
補償電極21とに各々対峙する位置に受光電極用対極3
0および補償電極用対極31を設け、各々外部回路へ接
続するための電極引出し部を形成する。
Subsequently, as shown in FIG. 1- (e), the counter electrode 3 for the light-receiving electrode is provided on the back surface of the pyroelectric substrate 10 at a position facing the light-receiving electrode 20 and the compensating electrode 21 by the same method.
0 and a compensating electrode counter electrode 31 are provided, and an electrode lead-out portion for connecting to an external circuit is formed.

【0019】なお、導電膜材質は上記実施例のもの限定
されるものではなく、また、導電膜形成法や導電膜エッ
チング法は導電膜材質に応じて適宜選択すべきものであ
り、例えば形成法に関してはスパッタ法やCVD法等、
またエッチング法に関しては選択化学ウエットエッチン
グ、あるいはスパッタエッチングや反応性イオンエッチ
ングといったようなドライエッチング法がある。
The material of the conductive film is not limited to that in the above embodiment, and the conductive film forming method and the conductive film etching method should be appropriately selected according to the conductive film material. Is a sputtering method, a CVD method, etc.
As for the etching method, there are selective chemical wet etching, and dry etching methods such as sputter etching and reactive ion etching.

【0020】本実施例記載の素子形状が従来形状に比し
て優れる点は以下の通りである。まず上述の製造法を採
用することにより従来に比して受光部の熱容量が著しく
減少し、従って大幅な感度向上が可能になる。さらに、
従来形状素子においては、素子全体の熱容量に対する受
光部のそれが比較的大きいため、特に長時間測定時にお
いては照射された赤外線により素子全体が昇温してしま
い特性の劣化が起こる場合があったが、本実施例記載の
形状においては受光部の熱容量に比して素子全体の熱容
量を大きく保つことが可能になり、もって素子全体の昇
温を防ぎ、即ち補償部の温度補償作用を全うさせること
が可能になる。
The advantages of the element shape described in this embodiment over the conventional shape are as follows. First, by adopting the above-mentioned manufacturing method, the heat capacity of the light receiving portion is remarkably reduced as compared with the conventional one, and thus the sensitivity can be greatly improved. further,
In the conventional shape element, since the light receiving portion has a relatively large amount of heat capacity relative to the entire element, there is a possibility that the temperature of the entire element is increased by the emitted infrared rays and the characteristics are deteriorated especially during long time measurement. However, in the shape described in the present embodiment, it is possible to keep the heat capacity of the entire element large compared to the heat capacity of the light receiving section, and thus to prevent the temperature rise of the entire element, that is, to perform the temperature compensating action of the compensating section. It will be possible.

【0021】続いて、本焦電素子の焦電出力の取り出し
方について述べる。図2に示すように焦電素子の受光表
面前面(上面)には赤外線選択透過窓41を有する赤外
線選択透過基板40を配置し、受光電極20にのみ赤外
線50が照射されるようにし、補償電極21側を遮光す
る。この焦電素子等の等価回路を図3に示す。この状態
で赤外線50をチョッパー60により断続的に入射させ
ると、受光部25と補償部26の電荷の差分が焦電出力
Voutとして検出される。ここに、受光部25とは図1
における焦電体基板10を介して受光電極20と受光電
極用対極30とで形成されるものであり、補償部26と
は図1における焦電体基板10を介して補償電極21と
補償電極用対極31とで形成されるものである。
Next, how to take out the pyroelectric output of the present pyroelectric element will be described. As shown in FIG. 2, an infrared selective transmission substrate 40 having an infrared selective transmission window 41 is arranged on the front surface (upper surface) of the light receiving surface of the pyroelectric element so that only the light receiving electrode 20 is irradiated with the infrared rays 50. The 21 side is shaded. An equivalent circuit of this pyroelectric element and the like is shown in FIG. When the infrared ray 50 is intermittently made incident by the chopper 60 in this state, the difference in charge between the light receiving section 25 and the compensating section 26 is detected as the pyroelectric output Vout. Here, the light receiving unit 25 is shown in FIG.
Is formed of the light receiving electrode 20 and the counter electrode 30 for the light receiving electrode via the pyroelectric substrate 10 in FIG. It is formed with the counter electrode 31.

【0022】図4には、実際に従来型焦電素子(基板材
料ZnO、基板及び受光部厚さ50μm)と本実施例の
製法・形状による焦電素子(基板材料ZnO,受光部厚
さ5μm)との特性比較図を示す。なお、本実験は気温
20度の恒温室内にて温度100度の黒体を被測定物と
し、チョピング周波数を15Hzに設定して行なわれ
た。図4より明らかなように、本実施例による焦電素子
は従来に比して格段に大きな焦電出力(図中記号Vm)
を持ち、またチョッパー閉/開時の立ち上がり時間(図
中記号t)は従来より大幅に短縮されており、即ち高感
度で応答性に優れるという良好な特性を持つことが確認
された。なお、本実施例と比較のため使用した従来の焦
電素子の形状及び製造法の図を図5に示す。右側の図
(2)は平面図、左側の図(1)はそのA−A’断面図
である。従来例は図に示すように、平板な焦電体板51
0上に受光電極520、受光電極対極530、補償電極
521、補償電極対極531が形成されている。
In FIG. 4, a conventional pyroelectric element (substrate material ZnO, substrate and light receiving portion thickness 50 μm) and a pyroelectric element (substrate material ZnO, light receiving portion thickness 5 μm) according to the manufacturing method and shape of this embodiment are actually shown. ) Is a characteristic comparison diagram with. In addition, this experiment was conducted in a thermostatic chamber at a temperature of 20 ° C. with a black body having a temperature of 100 ° C. as a measured object and a chopping frequency set to 15 Hz. As is clear from FIG. 4, the pyroelectric element according to the present embodiment has a significantly higher pyroelectric output than the conventional one (symbol Vm in the figure).
It was also confirmed that the rise time (symbol t in the figure) when the chopper was closed / opened was significantly shortened as compared with the conventional one, that is, it had good characteristics of high sensitivity and excellent responsiveness. FIG. 5 is a diagram showing the shape and manufacturing method of a conventional pyroelectric element used for comparison with this example. The view (2) on the right side is a plan view, and the view (1) on the left side is its AA ′ sectional view. As shown in the figure, the conventional example is a flat pyroelectric plate 51.
A light receiving electrode 520, a light receiving electrode counter electrode 530, a compensation electrode 521, and a compensation electrode counter electrode 531 are formed on the surface 0.

【0023】(実施例2)本発明の他の実施例として、
LiTaO3焼結体を材料とし、実施例1と同様の手法
を用いて焦電素子を製作した。但しこの場合、図1−b
の工程におけるエッチングに関しては、適当な化学的ウ
エットエッチャントが存在しないため、反応性イオンエ
ッチング法を用いた。この場合、250〜500Wの大
出力高周波電流中にて、濃度数十%以上のCF4/A
r,NF3/Ar、CCl4/Ar等の弗素系あるいは塩
素系エッチングガスを用いた場合、比較的効果的にエッ
チングが進んだ。
(Embodiment 2) As another embodiment of the present invention,
Using a LiTaO 3 sintered body as a material, a pyroelectric element was manufactured in the same manner as in Example 1. However, in this case, FIG.
As for the etching in the step (1), since there is no suitable chemical wet etchant, the reactive ion etching method was used. In this case, in a high output high frequency current of 250 to 500 W, the concentration of CF 4 / A of several tens% or more.
When a fluorine-based or chlorine-based etching gas such as r, NF 3 / Ar or CCl 4 / Ar was used, the etching proceeded relatively effectively.

【0024】実際に、実施例1と同様に本実施例による
焦電素子を従来形状のものと比較検討し、実施例1と同
様の良好な結果を得た。
Actually, as in Example 1, the pyroelectric element according to this Example was compared and examined with the conventional shape, and the same good results as in Example 1 were obtained.

【0025】なお、LiTaO3と同じくウエットエッ
チングが困難であるPbTiO3、LiNbO3等を焦電
体材料として用いた場合にも、上述の手法で図1記載形
状の素子を作ることが可能であり、またそれらの素子は
前述の如く従来に比して格段に優れた特性を示した。こ
のように、適当な手法を用いてエッチングが可能である
という条件を満たす限り、焦電体材料に関しては本実施
例に限定する必要はない。
Even when PbTiO 3 , LiNbO 3 or the like, which is difficult to wet-etch like LiTaO 3 , is used as the pyroelectric material, the element having the shape shown in FIG. 1 can be produced by the above-mentioned method. Moreover, as described above, these elements exhibited significantly excellent characteristics as compared with the conventional ones. As described above, the pyroelectric material is not limited to this embodiment as long as the condition that etching can be performed using an appropriate method is satisfied.

【0026】このように、形状的にも焦電出力取り出し
電極はすべてフラットな素子背面に位置するため特別な
リード配線が要らない上、焦電体基板全面の厚みを減じ
る場合に生じる機械的強度不足の心配がなく取り扱いが
容易である。
As described above, since the pyroelectric output extraction electrodes are all located on the back surface of the flat element in terms of shape, no special lead wiring is required and the mechanical strength generated when the thickness of the entire surface of the pyroelectric substrate is reduced. Easy to handle without worrying about shortage.

【0027】[0027]

【発明の効果】以上の説明より明らかなように、本発明
による焦電素子は、基板の一部に熱容量低減部が形成さ
れているので、従来に比してはるかに高感度で応答性が
良く長時間使用時の特性安定性に優れ、生産性、信頼性
を犠牲にせず、高性能焦電素子を提供することを可能に
するものである。
As is apparent from the above description, the pyroelectric element according to the present invention has the heat capacity reducing portion formed in a part of the substrate, so that the pyroelectric element has much higher sensitivity and responsiveness than the conventional one. It is possible to provide a high-performance pyroelectric element without sacrificing productivity and reliability, which is excellent in characteristics stability during long-term use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による焦電素子の製造プロセスを示す断
面及び平面図である。
FIG. 1 is a cross-sectional view and a plan view showing a manufacturing process of a pyroelectric element according to the present invention.

【図2】同実施例の焦電素子の焦電出力取出法を説明す
るための斜視図である。
FIG. 2 is a perspective view for explaining a method for extracting a pyroelectric output of the pyroelectric element of the same example.

【図3】同焦電素子の等価回路図である。FIG. 3 is an equivalent circuit diagram of the same pyroelectric element.

【図4】従来および本発明焦電素子の特性比較図であ
る。
FIG. 4 is a characteristic comparison diagram of conventional and invented pyroelectric elements.

【図5】従来の焦電素子の概略形状の断面、平面図であ
る。
FIG. 5 is a cross-sectional view and a plan view of a schematic shape of a conventional pyroelectric element.

【符号の説明】[Explanation of symbols]

10 焦電体基板 11 焦電体基板表面 12 焦電体基板裏面 20 受光電極 21 補償電極 22 電極接続部 25 受光部 26 補償部 30 受光電極用対極 31 補償電極用対極 32 電極引出し部 40 赤外線選択透過基板 41 赤外線選択透過窓 50 赤外線 60 チョッパー S 凹部 10 Pyroelectric Substrate 11 Pyroelectric Substrate Front Surface 12 Pyroelectric Substrate Back Surface 20 Light-Receiving Electrode 21 Compensation Electrode 22 Electrode Connection 25 Light-Receiving Section 26 Compensation Section 30 Light-Receiving Electrode Counter Electrode 31 Compensation Electrode Counter-electrode 32 Electrode Lead-out 40 Infrared Selection Transparent substrate 41 Infrared selective transmission window 50 Infrared 60 Chopper S Recess

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 焦電効果を有する基板に受光電極及び補
償電極が設けられた焦電素子において、前記基板の一部
にその基板の熱容量を低下させる熱容量低減部が形成さ
れていることを特徴とする焦電素子。
1. A pyroelectric element in which a light receiving electrode and a compensation electrode are provided on a substrate having a pyroelectric effect, wherein a heat capacity reducing portion for reducing the heat capacity of the substrate is formed on a part of the substrate. And a pyroelectric element.
【請求項2】 熱容量低減部は、前記基板の片面を物理
的あるいは化学的にエッチングすることにより形成した
凹部であることを特徴とする請求項1記載の焦電素子。
2. The pyroelectric element according to claim 1, wherein the heat capacity reducing portion is a concave portion formed by physically or chemically etching one surface of the substrate.
【請求項3】 熱容量低減部の前記凹部に前記受光電極
及び前記補償電極が形成されていることを特徴とする請
求項2記載の焦電素子。
3. The pyroelectric element according to claim 2, wherein the light receiving electrode and the compensation electrode are formed in the recess of the heat capacity reducing portion.
【請求項4】 基板は、結晶体或はセラミック材料から
なっていることを特徴とする請求項2又は3記載の焦電
素子。
4. The pyroelectric element according to claim 2, wherein the substrate is made of a crystalline material or a ceramic material.
【請求項5】 基板の材料としてPbTiO3もしくは
LiTaO3の結晶体もしくは焼結体を用い、塩素系も
しくは弗素系エッチングガスによるケミカルドライエッ
チングにより熱容量低減部を形成することを特徴とする
焦電素子の製造法。
5. A pyroelectric element characterized by using a PbTiO 3 or LiTaO 3 crystal or a sintered body as a substrate material and forming a heat capacity reducing portion by chemical dry etching with a chlorine-based or fluorine-based etching gas. Manufacturing method.
JP3164792A 1992-02-19 1992-02-19 Pyroelectric element Pending JPH05231933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164792A JPH05231933A (en) 1992-02-19 1992-02-19 Pyroelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164792A JPH05231933A (en) 1992-02-19 1992-02-19 Pyroelectric element

Publications (1)

Publication Number Publication Date
JPH05231933A true JPH05231933A (en) 1993-09-07

Family

ID=12336979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164792A Pending JPH05231933A (en) 1992-02-19 1992-02-19 Pyroelectric element

Country Status (1)

Country Link
JP (1) JPH05231933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754373B2 (en) 2011-02-24 2014-06-17 Ngk Insulators, Ltd. Pyroelectric element and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754373B2 (en) 2011-02-24 2014-06-17 Ngk Insulators, Ltd. Pyroelectric element and method for manufacturing the same
JP5730327B2 (en) * 2011-02-24 2015-06-10 日本碍子株式会社 Pyroelectric element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4760351A (en) Multiple oscillator device having plural quartz resonators in a common quartz substrate
JPH06317475A (en) Infrared sensor and fabrication thereof
JPH075036A (en) Human-body sensing sensor and preparation thereof
JPH05231933A (en) Pyroelectric element
JP2015198155A (en) Thermoelectric conversion element, photo-detection device and electronic device
CN100374832C (en) Absorbed layer of room-temp. ferroelectric film infrared focal plane probe and preparation method
JPH0518816A (en) Pyroelectric array sensor
JP2000121431A (en) Pyroelectric infrared sensor
JPH0792025A (en) Infrared sensor
CN111653631B (en) Hot electron photodetector with working wavelength independent of incident light angle and manufacturing method
CN112768598A (en) Infrared pyroelectric detector and preparation method thereof
CN111426399A (en) Production process of wireless temperature sensor based on thermopile
KR100339395B1 (en) pile bolometer sensor and fabrication methode of the same
JPS62123324A (en) Pyroelectric type infrared detection element
JPH07318420A (en) Infrared ray sensor and manufacture thereof
JPS60171425A (en) Pyroelectric type heat detection element
JPS6073448A (en) Atmosphere sensor
JP2720173B2 (en) Pyroelectric material
JP2006170895A (en) Manufacturing method for infrared detecting element
JPH03244168A (en) Pyroelectricity type detecting device and manufacture thereof
JPH07286897A (en) Pyroelectric type infrared ray element and its manufacturing method
JPH06160202A (en) Temperature sensor and manufacture thereof
JPS6313381A (en) Photoelectric sensor
JPH04268773A (en) Infrared sensor and manufacture thereof
JPS6379022A (en) Pyroelectric type infrared detection thin film element