JPH0523046B2 - - Google Patents

Info

Publication number
JPH0523046B2
JPH0523046B2 JP59242856A JP24285684A JPH0523046B2 JP H0523046 B2 JPH0523046 B2 JP H0523046B2 JP 59242856 A JP59242856 A JP 59242856A JP 24285684 A JP24285684 A JP 24285684A JP H0523046 B2 JPH0523046 B2 JP H0523046B2
Authority
JP
Japan
Prior art keywords
film
thin film
metallized
sided
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242856A
Other languages
Japanese (ja)
Other versions
JPS61121313A (en
Inventor
Mikio Naruse
Takeshi Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24285684A priority Critical patent/JPS61121313A/en
Publication of JPS61121313A publication Critical patent/JPS61121313A/en
Publication of JPH0523046B2 publication Critical patent/JPH0523046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属化フイルムコンデンサに関し、
特に誘電体としてポリプロピレンフイルムを、薄
膜電極として亜鉛を用いる金属化フイルムコンデ
ンサの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to metallized film capacitors,
In particular, it relates to improvements in metallized film capacitors using polypropylene film as the dielectric and zinc as the thin film electrode.

従来例の構成とその問題点 従来、ポリプロピレンフイルムを誘電体として
用いる金属化フイルムコンデンサにおいては、薄
膜電極を蒸着する表面にだけ、コロナ放電処理を
行うことが一般的であつた。これに対して、薄膜
電極を蒸着しない方の表面にもコロナ放電処理を
施すことによつて、金属化フイルムの薄膜電極
と、ポリプロピレンフイルムとが弱い接着力を有
することが見い出され、金属化フイルムコンデン
サの層間で発生する部分放電の抑制手段として使
われるようになつてきている。ところが、従来ポ
リプロピレンフイルムに対して一般に用いられて
きたアルミニウムの薄膜電極と比べて、亜鉛の薄
膜電極では、この接着力が弱いことも明らかとな
つた。このことは、蒸着時にも、核付け用の金属
を蒸着しないとポリプロピレンフイルム上には亜
鉛の薄膜が蒸着できないことや、アルミニウムの
薄膜に比べて亜鉛の薄膜の機械的強度が低いこと
が関係していると考えられる。この結果、両面コ
ロナ放電処理したポリプロピレンフイルムに亜鉛
の薄膜電極を設けた金属化フイルムコンデンサに
おいては、層間の接着力の不足から、特に0℃以
下での連続耐用試験時において部分放電の抑制が
十分にできないという問題があつた。
Conventional Structure and Problems Conventionally, in metallized film capacitors using polypropylene film as a dielectric, it has been common to perform corona discharge treatment only on the surface on which thin film electrodes are deposited. On the other hand, by applying corona discharge treatment to the surface on which the thin film electrode was not deposited, it was discovered that the thin film electrode of the metallized film and the polypropylene film had weak adhesive strength, and the metallized film It has come to be used as a means of suppressing partial discharges that occur between the layers of capacitors. However, it has also become clear that this adhesive force is weaker with zinc thin film electrodes than with aluminum thin film electrodes, which have conventionally been commonly used for polypropylene films. This is related to the fact that a thin film of zinc cannot be deposited on a polypropylene film unless a metal for nucleation is deposited during vapor deposition, and that the mechanical strength of a thin film of zinc is lower than that of a thin film of aluminum. It is thought that As a result, in metallized film capacitors in which zinc thin film electrodes are provided on a polypropylene film that has been subjected to corona discharge treatment on both sides, partial discharges cannot be sufficiently suppressed due to insufficient adhesion between the layers, especially during continuous durability tests at temperatures below 0°C. There was a problem that I couldn't do it.

発明の目的 本発明の目的は、両面コロナ放電処理したポリ
プロピレンフイルムと亜鉛の薄膜電極とからなる
金属化フイルムを用いる金属化フイルムコンデン
サの層間の接着性を改善することにより、特に低
温(0℃以下)の部分放電を抑制することであ
る。この結果、低温連続耐用試験時のCR値の低
下や耐電圧の劣化を抑制することができる。
OBJECT OF THE INVENTION The object of the present invention is to improve the adhesion between the layers of a metallized film capacitor using a metalized film consisting of a polypropylene film subjected to double-sided corona discharge treatment and a thin film electrode of zinc. ) is to suppress partial discharge. As a result, it is possible to suppress a decrease in CR value and deterioration of withstand voltage during a low-temperature continuous durability test.

発明の構成 本発明の構成は、片面金属化フイルムの場合に
は、両面コロナ放電処理したポリプロピレンフイ
ルムの片面に亜鉛の薄膜電極を設けた片面金属化
フイルムを巻回または積層した金属化フイルムコ
ンデンサにおいて、対向部の亜鉛の薄膜電極の厚
さを膜抵抗値にして20Ω/□以上にしたことを特
徴とする。また両面金属化フイルムと合せフイル
ムとを用いる場合には、両面コロナ放電処理した
ポリプロピレンフイルムの両面に亜鉛の薄膜電極
を設けた両面金属化フイルムと両面コロナ放電処
理したポリプロピレンフイルムによりなる合せフ
イルムとを巻回または積層した金属化フイルムコ
ンデンサにおいて、対向部の亜鉛の薄膜電極の厚
さを膜抵抗値にして20Ω/□以上にしたことを特
徴とする。
Structure of the Invention In the case of a single-sided metalized film, a metalized film capacitor is provided in which a single-sided metalized film is wound or laminated, in which a zinc thin film electrode is provided on one side of a polypropylene film subjected to corona discharge treatment on both sides. , is characterized in that the thickness of the zinc thin film electrode on the opposing part is set to a film resistance value of 20Ω/□ or more. In addition, when using a double-sided metallized film and a laminated film, a double-sided metalized film consisting of a double-sided corona discharge treated polypropylene film with zinc thin film electrodes on both sides and a double-sided corona discharge treated polypropylene film are used. A wound or laminated metallized film capacitor is characterized in that the thickness of the zinc thin film electrode on the opposing part has a film resistance value of 20Ω/□ or more.

実施例の説明 以下、図面に従つて本発明の構成をさらに詳細
に説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, the configuration of the present invention will be explained in more detail with reference to the drawings.

第1図は、両面コロナ放電処理したポリプロピ
レンフイルム1の片面に、亜鉛の薄膜電極3を設
けた片面金属化フイルムを一対重ね合わせた断面
図を示している。ポリプロピレンフイルム1の両
表面にはコロナ放電処理による活性化層2が存在
する。また薄膜電極3の対向部は端面電極を形成
する側の縁辺部に比べて膜厚を薄くしている。本
発明ではこの対向部の薄膜電極3の厚さを、膜抵
抗値にして20Ω/□以上とすることにより、金属
化フイルムコンデンサ層間で発生する部分放電を
抑制しようとするものである。この構成は、本来
強い接着力を示す、両面コロナ放電処理したポリ
プロピレンフイルムどおしが亜鉛の薄膜電極を介
在させることにより、大幅に接着力を低下させて
しまうことから導き出されたものである。なお、
両面コロナ放電処理したポリプロピレンフイルム
どおしを強く接着させるためには、巻回、積層し
た後に一定の圧力と温度とを加える必要がある。
これは亜鉛の薄膜電極を介在させる場合も同様で
ある。
FIG. 1 shows a cross-sectional view of a pair of single-sided metallized films having a zinc thin film electrode 3 provided on one side of a polypropylene film 1 which has been subjected to corona discharge treatment on both sides. Activated layers 2 formed by corona discharge treatment are present on both surfaces of the polypropylene film 1. Further, the facing portion of the thin film electrode 3 is thinner than the edge portion on the side where the end electrode is formed. In the present invention, by setting the thickness of the thin film electrode 3 in the facing portion to a film resistance value of 20Ω/□ or more, it is intended to suppress partial discharge occurring between the metallized film capacitor layers. This structure was derived from the fact that when two polypropylene films that have been treated with corona discharge treatment on both sides, which inherently exhibit strong adhesive strength, are interposed with a zinc thin film electrode, the adhesive strength is significantly reduced. In addition,
In order to strongly bond polypropylene films that have been treated with corona discharge on both sides, it is necessary to apply a certain pressure and temperature after they are wound and laminated.
This also applies to the case where a zinc thin film electrode is interposed.

金属化フイルムコンデンサの層間の隙間を少な
くするために、接着力を増すためには、亜鉛の薄
膜電極の厚さは薄ければ薄い程、良好である。
In order to reduce the gap between the layers of a metallized film capacitor and to increase the adhesion force, the thinner the zinc thin film electrode is, the better.

ただし、一般的に金属は薄膜にすれば膜抵抗値
が上昇し、この部分に流れる電流による損失も増
すので、特に交流用途の際には、薄膜電極の厚さ
は膜抵抗値にして20Ω/□〜200Ω/□が使用に
耐えることになる。直流用途では、電流による損
失よりも、薄膜電極自体の物理的、化学的安定性
が問題となるが、交流用途よりもさらに薄い薄膜
電極の使用が可能である。
However, in general, if the metal is made into a thin film, the film resistance value will increase, and the loss due to the current flowing through this part will also increase, so especially for AC applications, the thickness of the thin film electrode should be 20Ω/ □~200Ω/□ can withstand use. In direct current applications, the physical and chemical stability of the thin film electrode itself is more of a problem than current loss, but it is possible to use thin film electrodes that are even thinner than in alternating current applications.

またポリプロピレンフイルムの表面の粗さも接
着力や、部分放電の発生の場所となる層間の隙間
の大きさに影響を与えるが、接着力を増し、層間
の隙間を小さくするためには、表面の粗さはでき
るだけ滑らかな方が良好である。
The surface roughness of the polypropylene film also affects the adhesive strength and the size of the gap between the layers, where partial discharge occurs, but in order to increase the adhesive strength and reduce the gap between the layers, The smoother the surface, the better.

第2図には両面金属化フイルムを用いての構成
を示しており、この場合の合せフイルムは、両面
コロナ放電処理したポリプロピレンフイルムであ
る。なお、第1図、第2図では、コロナ放電処理
したポリプロピレンフイルムと、亜鉛の薄膜電極
との間に用いられる核金属については省略して描
いているが、蒸着時には勿論、銅、銀等の核金属
を用いる。
FIG. 2 shows a structure using a double-sided metallized film, and the laminated film in this case is a polypropylene film that has been subjected to corona discharge treatment on both sides. In Figures 1 and 2, the nuclear metal used between the corona discharge treated polypropylene film and the zinc thin film electrode is omitted, but of course copper, silver, etc. are used during vapor deposition. Uses nuclear metal.

次に具体的な実施例について説明する。 Next, specific examples will be described.

厚さ6μmの両面コロナ放電処理したポリプロ
ピレンフイルム(東レ(株)殿のYK−41)の片表面
に、銅を蒸着して核金属とした後に、対向部の膜
抵抗値が、各々5±1Ω/□,10±3Ω/□,25±
5Ω/□,50±10Ω/□,100±30Ω/□,250±
50Ω/□であり、端面電極と接触する縁辺部の膜
抵抗値が4〜6Ω/□である亜鉛の薄膜電極を蒸
着により設けた。このようにして作成した片面金
属化フイルムの一対を第1図と同様に重ねて、ポ
リブチレンテレフタレート製の円筒上に巻回し、
外巻きとして厚さ10μmの紙を100回巻回した後
に、両端面に亜鉛を金属溶射した。この素子を真
空乾燥炉中で120℃、15時間の温度エージングを
行い、層間を接着させた。外巻きとして紙を用い
るのは、120℃での伸びが、通常の外巻に用いら
れるポリプロピレンフイルムやポリエステルフイ
ルムに比べて小さく、片面金属化フイルムが熱膨
張する力を外側から押えつける圧力を発生させる
ことができるからである。
After copper was vapor-deposited on one surface of a 6-μm-thick double-sided corona discharge-treated polypropylene film (YK-41 from Toray Industries, Inc.) to form a core metal, the film resistance of the opposing parts was 5 ± 1 Ω. /□、10±3Ω/□、25±
5Ω/□, 50±10Ω/□, 100±30Ω/□, 250±
A zinc thin film electrode having a resistance of 50Ω/□ and a film resistance value of 4 to 6Ω/□ at the edge in contact with the end electrode was provided by vapor deposition. A pair of single-sided metallized films thus produced were stacked in the same manner as shown in Figure 1 and wound around a cylinder made of polybutylene terephthalate.
After winding paper with a thickness of 10 μm 100 times as the outer winding, zinc was metal sprayed on both end faces. This element was subjected to temperature aging at 120° C. for 15 hours in a vacuum drying oven to bond the layers. Paper is used as the outer wrapping because its elongation at 120°C is smaller than the polypropylene film or polyester film normally used for the outer wrapping, and it generates pressure from the outside to suppress the thermal expansion force of the single-sided metalized film. This is because it can be done.

温度エージングを終えた後に、端面電極にリー
ド線を溶接し、ポリブチレンテレフタレート製の
ケースに入れてから、二液性のエポキシ樹脂で封
止した。試料の静電容量は各々10μFである。
After temperature aging, lead wires were welded to the end electrodes, placed in a case made of polybutylene terephthalate, and then sealed with a two-component epoxy resin. The capacitance of each sample is 10 μF.

評価は低温連続耐用試験で行つた。なお、初期
の部分放電の諸特性については、対向部の膜抵抗
値による差は、ほとんど認められない。これは、
対向部の膜抵抗値が低い場合でも弱い接着力が存
在することから、短時間の評価では差が現れない
ことによつている。試験条件は、温度が−25℃で
電圧はAC440Vである。
Evaluation was carried out by low temperature continuous durability test. It should be noted that with respect to the initial partial discharge characteristics, almost no difference is observed depending on the membrane resistance value of the opposing portion. this is,
This is because a weak adhesive force exists even when the membrane resistance value of the facing portion is low, so no difference appears in a short-time evaluation. The test conditions were a temperature of -25°C and a voltage of AC440V.

第3図に、この時のCR値(静電容量値C×端
子間絶縁抵抗値R、単位はF・Ω)の経時変化を
示す。
FIG. 3 shows the change over time in the CR value (capacitance value C x inter-terminal insulation resistance value R, unit: F·Ω).

第3図から明らかなように、対向部の亜鉛の薄
膜電極が、5±1Ω/□,10±3Ω/□である金属
化フイルムコンデンサは、500時間以内に、CR値
の低下が始まることに対して、本発明による25±
5Ω/□(最低値は20Ω/□)、50±10Ω/□,100
±30Ω/□,250±50Ω/□である金属化フイル
ムコンデンサでは1000時間を超えてもCR値の低
下が認められない。CR値の低下は、金属化フイ
ルムコンデンサの内部が、部分放電によつて劣化
していることを示すものであるから、本発明に示
すように、亜鉛の膜抵抗値が20Ω/□以上である
金属化フイルムコンデンサの低温連続耐用試験に
おける劣化は、膜抵抗値が20Ω/□未満の金属化
フイルムコンデンサに比べて改善されることがわ
かる。
As is clear from Figure 3, metallized film capacitors with zinc thin film electrodes of 5 ± 1 Ω/□ and 10 ± 3 Ω/□ on the opposite side start to decrease in CR value within 500 hours. In contrast, 25± according to the present invention
5Ω/□ (minimum value is 20Ω/□), 50±10Ω/□, 100
For metalized film capacitors with ±30Ω/□ and 250±50Ω/□, no decrease in CR value is observed even after 1000 hours. A decrease in the CR value indicates that the inside of the metallized film capacitor has deteriorated due to partial discharge. Therefore, as shown in the present invention, the film resistance value of zinc is 20Ω/□ or more. It can be seen that the deterioration of metallized film capacitors in continuous low-temperature durability tests is improved compared to metallized film capacitors with membrane resistance values of less than 20Ω/□.

なお、両面コロナ放電処理ポリプロピレンフイ
ルムの代りに、亜鉛の薄膜を蒸着する表面にのみ
コロナ放電処理した、片面コロナ放電処理ポリプ
ロピレンフイルムを用いて試作した金属化フイル
ムコンデンサにおいては、同様の低温連続耐用試
験において、膜抵抗値が5±1Ω/□から250±
50Ω/□に至るまでことごとく500時間以前にCR
値が低下する。このことから、本発明による金属
化フイルムコンデンサのCR値の低下の抑制、す
なわち金属化フイルムコンデンサ内部の劣化の抑
制は、膜抵抗値が高くなつたことによる自己回復
性の向上でもたらされるものでなく、層間の接着
性の改善の結果と考えられる。
In addition, instead of a double-sided corona discharge treated polypropylene film, a metallized film capacitor prototyped using a single-sided corona discharge treated polypropylene film, in which only the surface on which the zinc thin film was deposited was corona discharge treated, was subjected to the same low-temperature continuous durability test. , the membrane resistance value ranges from 5±1Ω/□ to 250±
All CR before 500 hours up to 50Ω/□
value decreases. From this, it can be seen that the suppression of the decrease in the CR value of the metallized film capacitor according to the present invention, that is, the suppression of the deterioration inside the metallized film capacitor, is brought about by the improvement in self-healing property due to the increased membrane resistance value. This is considered to be the result of improved adhesion between layers.

発明の効果 以上に明らかにされたように本発明によれば、
両面コロナ放電処理したポリプロピレンフイルム
と亜鉛の膜抵抗値が20Ω/□以上である薄膜電極
とを組み合せることにより、層間の接着力を高
め、内部の部分放電とこれによる劣化を抑制する
ことができる。
Effects of the Invention As clarified above, according to the present invention,
By combining a polypropylene film that has been treated with corona discharge on both sides and a thin film electrode with a zinc film resistance of 20Ω/□ or more, it is possible to increase the adhesion between the layers and suppress internal partial discharge and the deterioration caused by it. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による片面金属化フイルムコン
デンサの要部断面図、第2図は同じく両面金属化
フイルムコンデンサの要部断面図、第3図は対向
部の膜抵抗値を変化させた金属化フイルムコンデ
ンサを低温連続耐用試験にかけたときのCR値の
経時変化を示す特性図である。 1……両面コロナ放電処理したポリプロピレン
フイルム、2……活性化層、3……亜鉛の薄膜電
極。
Fig. 1 is a cross-sectional view of a main part of a single-sided metallized film capacitor according to the present invention, Fig. 2 is a cross-sectional view of a main part of a double-sided metallized film capacitor, and Fig. 3 is a metallized film capacitor with different membrane resistance values in the opposing part. FIG. 3 is a characteristic diagram showing changes in CR value over time when a film capacitor is subjected to a continuous low temperature durability test. 1... Polypropylene film subjected to double-sided corona discharge treatment, 2... Activation layer, 3... Zinc thin film electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 両面コロナ放電処理したポリプロピレンフイ
ルムの片面または両面に亜鉛の薄膜電極を設けた
片面金属化フイルムまたは両面金属化フイルムを
巻回または積層した金属化フイルムコンデンサに
おいては、対向部の亜鉛の薄膜電極の厚さを膜抵
抗値にして20Ω/□以上にした金属化フイルムコ
ンデンサ。
1. In a metallized film capacitor in which a single-sided metalized film or a double-sided metalized film is wound or laminated, a zinc thin film electrode is provided on one or both sides of a polypropylene film subjected to double-sided corona discharge treatment. A metallized film capacitor with a thickness of 20Ω/□ or more in terms of membrane resistance.
JP24285684A 1984-11-16 1984-11-16 Metalized film capacitor Granted JPS61121313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24285684A JPS61121313A (en) 1984-11-16 1984-11-16 Metalized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24285684A JPS61121313A (en) 1984-11-16 1984-11-16 Metalized film capacitor

Publications (2)

Publication Number Publication Date
JPS61121313A JPS61121313A (en) 1986-06-09
JPH0523046B2 true JPH0523046B2 (en) 1993-03-31

Family

ID=17095285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24285684A Granted JPS61121313A (en) 1984-11-16 1984-11-16 Metalized film capacitor

Country Status (1)

Country Link
JP (1) JPS61121313A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516936B2 (en) * 1986-10-16 1996-07-24 松下電器産業株式会社 Double-sided metallized polyolefin film capacitor
JPH04123520U (en) * 1991-04-26 1992-11-09 松下電器産業株式会社 Dry high voltage phase advance capacitor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193359A (en) * 1975-02-14 1976-08-16
JPS529851A (en) * 1975-07-13 1977-01-25 Matsushita Electric Ind Co Ltd Battery
JPS5383062A (en) * 1976-12-28 1978-07-22 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPS54104555A (en) * 1978-02-02 1979-08-16 Matsushita Electric Ind Co Ltd Doubleeside metallized film capacitor
JPS54164245A (en) * 1978-06-16 1979-12-27 Fujikura Ltd Capacitor using doubleeside evaporated film
JPS5542492A (en) * 1978-09-21 1980-03-25 Cit Alcatel Video analysis signal processor
JPS5816415A (en) * 1981-07-23 1983-01-31 本州製紙株式会社 Electric orientation polypropylene film
JPS58138019A (en) * 1982-02-10 1983-08-16 本州製紙株式会社 Method of producing metallized plastic film
JPS5961916A (en) * 1982-09-30 1984-04-09 松下電器産業株式会社 Wire-wound condenser
JPS5972714A (en) * 1982-10-20 1984-04-24 松下電器産業株式会社 Moisture type condenser

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193359A (en) * 1975-02-14 1976-08-16
JPS529851A (en) * 1975-07-13 1977-01-25 Matsushita Electric Ind Co Ltd Battery
JPS5383062A (en) * 1976-12-28 1978-07-22 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPS54104555A (en) * 1978-02-02 1979-08-16 Matsushita Electric Ind Co Ltd Doubleeside metallized film capacitor
JPS54164245A (en) * 1978-06-16 1979-12-27 Fujikura Ltd Capacitor using doubleeside evaporated film
JPS5542492A (en) * 1978-09-21 1980-03-25 Cit Alcatel Video analysis signal processor
JPS5816415A (en) * 1981-07-23 1983-01-31 本州製紙株式会社 Electric orientation polypropylene film
JPS58138019A (en) * 1982-02-10 1983-08-16 本州製紙株式会社 Method of producing metallized plastic film
JPS5961916A (en) * 1982-09-30 1984-04-09 松下電器産業株式会社 Wire-wound condenser
JPS5972714A (en) * 1982-10-20 1984-04-24 松下電器産業株式会社 Moisture type condenser

Also Published As

Publication number Publication date
JPS61121313A (en) 1986-06-09

Similar Documents

Publication Publication Date Title
US3457478A (en) Wound film capacitors
JPH0523046B2 (en)
JPH0533524B2 (en)
JPH02285618A (en) Metallized plastic film capacitor
JPH03201421A (en) Laminated film capacitor
JP2002367854A (en) Double-sided metallization film capacitor
JPS6030095B2 (en) Multilayer film capacitor
JPH0434810B2 (en)
JPS596518A (en) Wire wound condenser
JP2562159Y2 (en) Metallized film capacitors
JPS6128210B2 (en)
JP2870179B2 (en) Chip type metallized film capacitor and manufacturing method thereof
JPH0511406B2 (en)
JPH0682584B2 (en) Metallized plastic film capacitors
JPS596517A (en) Wire wound condenser
JP2021121003A (en) Wound-type film capacitor
JPS5943713Y2 (en) metallized film capacitor
JP2644036B2 (en) Metallized film capacitors
JPS6127165Y2 (en)
JPH0521329B2 (en)
JP2004200591A (en) Metallized film capacitor
JPS596516A (en) Wire wound oil-immersed condenser
JPH0770418B2 (en) Metallized film capacitors
JPS6247108A (en) Metalized plastic film capacitor
JPS581532B2 (en) metallized film capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term