JPS6127165Y2 - - Google Patents

Info

Publication number
JPS6127165Y2
JPS6127165Y2 JP10646881U JP10646881U JPS6127165Y2 JP S6127165 Y2 JPS6127165 Y2 JP S6127165Y2 JP 10646881 U JP10646881 U JP 10646881U JP 10646881 U JP10646881 U JP 10646881U JP S6127165 Y2 JPS6127165 Y2 JP S6127165Y2
Authority
JP
Japan
Prior art keywords
electrode
zinc
capacitor
electrodes
evaporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10646881U
Other languages
Japanese (ja)
Other versions
JPS5812931U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10646881U priority Critical patent/JPS5812931U/en
Publication of JPS5812931U publication Critical patent/JPS5812931U/en
Application granted granted Critical
Publication of JPS6127165Y2 publication Critical patent/JPS6127165Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【考案の詳細な説明】 本考案は、同電位にある電極互いに接触する構
造をもつ金属化フイルムまたは金属化紙を用いた
コンデンサの電極構成を改良したコンデンサに関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacitor having an improved electrode configuration using a metallized film or metalized paper having a structure in which electrodes at the same potential are in contact with each other.

一般に同電位にある電極が互いに接触する構造
をもつコンデンサとしてはフイルムまたは紙の誘
電体シート両面に蒸着電極を設けこれを一対重ね
合わせ巻回し端面にメタリコン層を設けて構成し
ている。しかしてこのように構成してなるコンデ
ンサにおける蒸着電極構成としては従来亜鉛単独
またはアルミニウム単独であつた。例えば亜鉛単
独の場合は電流強度は比較的大きく容量変化率も
小さいという特徴をもつているがヒーリング法が
悪くしたがつて絶縁特性が悪いという欠点をもつ
ている。またアルミニウム単独の場合ヒーリング
法が良く絶縁特性は良好であるが電流強度に問題
があると同時に経時的に容量変化率が大きくなる
という欠点をもつている。
In general, a capacitor having a structure in which electrodes at the same potential are in contact with each other is constructed by providing a pair of vapor-deposited electrodes on both sides of a dielectric sheet of film or paper, overlapping the electrodes in a pair, and providing a metallicon layer on the end surface of the wound sheet. However, the vapor deposited electrode structure of a capacitor constructed in this manner has conventionally been made of zinc alone or aluminum alone. For example, when zinc is used alone, the current intensity is relatively high and the rate of change in capacity is small, but the heating method is poor and the insulation properties are poor. In the case of using aluminum alone, the healing method is good and the insulation properties are good, but there is a problem with the current intensity and at the same time, the capacitance change rate increases over time.

本考案は上記の点に鑑みてなされたもので誘電
体シートの一面を亜鉛蒸着電極として他面をアル
ミ蒸着電極とした一対の誘電体シートを用い亜鉛
蒸着電極とアルミ蒸着電極が同電位になるように
重ね合わせ、この場合亜鉛蒸着電極の膜抵抗を1
〜5Ω/□としさらに合成膜抵抗を3〜10Ω/□
に設定して巻回し亜鉛蒸着電極部だけでメタリコ
ン層と接着することによつて従来のもつ欠点を除
去した特性良好なコンデンサを提供することを目
的とするものである。
The present invention was developed in view of the above points, and uses a pair of dielectric sheets with one side of the dielectric sheet as a zinc evaporation electrode and the other side as an aluminum evaporation electrode, so that the zinc evaporation electrode and the aluminum evaporation electrode have the same potential. In this case, the membrane resistance of the zinc-deposited electrode is 1.
~5Ω/□ and further increase the composite membrane resistance to 3~10Ω/□
The object of the present invention is to provide a capacitor with good characteristics that eliminates the drawbacks of the conventional method by bonding the metallicon layer only with the wound zinc evaporated electrode portion.

以下本考案の一実施例につき図面を参照して説
明する。すなわち第1図に示すようにフイルムま
たは紙の誘電体シートの一面の一方端に長さ方向
にマージン部1を残して亜鉛蒸着電極2を形成し
他面に前記マージン部1と反対側にマージン部3
を残してアルミ蒸着電極4を形成してなる一対の
両面金属化誘電体シート5からなり、前記亜鉛蒸
着電極2とアルミ蒸着電極4を接触すると同時に
亜鉛蒸着電極2端面部がそれぞれ外側に出るよう
に重ね合わせ巻回しコンデンサ素子6を構成す
る。しかして該コンデンサ素子6両端面に突出し
た亜鉛蒸着電極2部にメタリコン層7を接着して
なるものである。なおこの場合亜鉛蒸着電極2の
膜抵抗を1Ω/□〜5Ω/□とし該亜鉛蒸着電極
2とアルミ蒸着電極4の合成膜抵抗3Ω/□〜10
Ω/□に設定することが肝要である。
An embodiment of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 1, a zinc evaporated electrode 2 is formed on one end of one side of a film or paper dielectric sheet, leaving a margin part 1 in the length direction, and a margin part 1 is formed on the other side on the opposite side of the margin part 1. Part 3
It consists of a pair of double-sided metallized dielectric sheets 5 formed by leaving an aluminum evaporated electrode 4, and at the same time when the zinc evaporated electrode 2 and the aluminum evaporated electrode 4 are brought into contact, the end surfaces of the zinc evaporated electrodes 2 are respectively exposed to the outside. The wound capacitor element 6 is constructed by superimposing the wound capacitor elements 6 and 6 on each other. Thus, the metallicon layer 7 is bonded to two parts of the zinc-deposited electrodes protruding from both end faces of the capacitor element 6. In this case, the membrane resistance of the zinc evaporated electrode 2 is 1Ω/□~5Ω/□, and the combined membrane resistance of the zinc evaporated electrode 2 and the aluminum evaporated electrode 4 is 3Ω/□~10.
It is important to set it to Ω/□.

つぎに本考案者の実施例をもとにさらに詳細に
説明する。すなわちまず最初にメタリコン層と接
着する部分の蒸着電極構造として亜鉛金属による
ものイとアルミ金属によるものロで蒸着電極の膜
抵抗をそれぞれ違わせた6μFのポリエチレンテ
レフタレートフイルムコンデンサを作成し400V
で充放電100回後の膜抵抗(Ω/□)に対するtan
δ(%)を調べた結果第2図に示すようになりメ
タリコン層と接着する部分の蒸着電極構造として
は亜鉛蒸着電極で膜抵抗として1〜5Ω/□の場
合安定したtanδを示すことがわかつた。つぎに
上記実験でわかつた点、すなわち亜鉛蒸着電極の
膜抵抗1〜5Ω/□を前提としアルミ蒸着電極と
の合成抵抗値(Ω/□)に対する耐圧特性を測定
した結果第3図に示すようになり耐圧特性の最適
範囲として合成膜抵抗3〜10Ω/□であることが
判明した。したがつて以上の実験によつて明らか
になつた蒸着電極構造および膜抵抗を前提として
第1図に示す本考案Aと亜鉛蒸着電極単独による
従来の参考例Bとアルミ蒸着単独による従来の参
考例Cそれぞれの70℃、320V.AC印加条件によ
る時間に対する容量変化率を第4図に示した。な
お試料はA,B,Cいずれも6μのポリエチレン
テレフタレートフイルムを用いた6μFのコンデ
ンサを用いた。第4図から明らかなように参考例
Cは時間の経過とともに容量減少が大きくなるの
に対して本考案Aおよび参考例Bは1000時間経過
時点でも容量減少は1%にも満たず容量変化率特
性がすぐれていることを示した。つぎに同一条件
によつて得られた同定格のコンデンサを用い電圧
−絶縁抵抗の関係を調べた結果第5図に示すよう
になつた。第5図から明らかなように参考例Bと
比較して本考案Aと参考例Cのものはすぐれた絶
縁抵抗特性を示した。以上の実験結果から容量変
化率および絶縁抵抗特性の両特性においてすぐれ
た効果を発揮するのは本考案Aだけで参考例Bは
容量変化率特性で本考案Aと同じ特性を発揮して
も絶縁抵抗特性では本考案Aに及ばず、また参考
例Cは絶縁抵抗特性で本考案Aと同じ特性を発揮
しても容量変化率では本考案Aに及ばないことが
わかつた。以上の実験結果からtanδ特性、絶縁
抵抗特性ならびに容量変化率特性などにおいてす
ぐれた効果を発揮するのは同電位にある電極が互
いに接触するコンデンサの電極構成として一方の
電極を1〜5Ω/□亜縁蒸着電極とし他方の電極
がアルミ蒸着電極からなり両電極の合成抵抗を3
〜10Ω/□として亜縁蒸着電極部だけでメタリコ
ン層と接着するように構成すればよいことがわか
つた。
Next, a more detailed explanation will be given based on an embodiment of the present inventor. That is, first, we created a 6 μF polyethylene terephthalate film capacitor with different film resistances for the vapor deposited electrode structure of the part that adheres to the metallicon layer, one made of zinc metal and the other made of aluminum metal, and then produced a 400V capacitor.
tan vs. membrane resistance (Ω/□) after 100 charge/discharge cycles
The results of investigating δ (%) are shown in Figure 2, and it is found that the structure of the evaporated electrode in the part that adheres to the metallicon layer is a zinc evaporated electrode, and a stable tan δ is shown when the film resistance is 1 to 5 Ω/□. Ta. Next, we will discuss the point found in the above experiment, that is, assuming that the membrane resistance of the zinc evaporated electrode is 1 to 5 Ω/□, we measured the withstand voltage characteristics against the combined resistance value (Ω/□) with the aluminum evaporated electrode, as shown in Figure 3. It was found that the optimum range of breakdown voltage characteristics is a composite membrane resistance of 3 to 10 Ω/□. Therefore, based on the evaporated electrode structure and membrane resistance that have been clarified through the above experiments, we have proposed the present invention A shown in FIG. 1, a conventional reference example B using a zinc evaporation electrode alone, and a conventional reference example using an aluminum evaporation electrode alone. Figure 4 shows the rate of capacitance change over time for each of C under the conditions of 70° C. and 320 V.AC applied. For samples A, B, and C, 6μF capacitors made of 6μ polyethylene terephthalate film were used. As is clear from Figure 4, in Reference Example C, the capacity decrease increases with the passage of time, whereas in Inventive A and Reference Example B, the capacity decrease is less than 1% even after 1000 hours, and the capacity change rate is It has been shown to have excellent properties. Next, using capacitors of the same rating obtained under the same conditions, the relationship between voltage and insulation resistance was investigated, and the results were as shown in FIG. As is clear from FIG. 5, compared to Reference Example B, the present invention A and Reference Example C exhibited superior insulation resistance characteristics. From the above experimental results, only the present invention A exhibits excellent effects in both capacitance change rate and insulation resistance characteristics, and reference example B exhibits the same characteristics as present invention A in terms of capacitance change rate characteristics but is insulated. It was found that the resistance characteristics were not as good as the present invention A, and even though the reference example C exhibited the same characteristics as the present invention A in insulation resistance characteristics, it was not as good as the present invention A in the capacitance change rate. From the above experimental results, the best effect on tan δ characteristics, insulation resistance characteristics, and capacitance change rate characteristics is achieved by using a capacitor electrode configuration in which electrodes at the same potential are in contact with each other, with one electrode at 1 to 5 Ω/□. The edge vapor-deposited electrode and the other electrode are aluminum vapor-deposited electrodes, and the combined resistance of both electrodes is 3.
It has been found that it is sufficient to set the resistance to ~10Ω/□ so that only the sub-edge vapor deposited electrode portion is bonded to the metallikon layer.

以上述べたように本考案によれば同電位にある
電極が互いに接触する構造をもつ金属化フイルム
または金属化紙などの誘電体シートを用いたコン
デンサにおいてtanδ特性、絶縁抵抗特性、容量
変化率特性のすぐれたコンデンサを提供すること
ができるものであり、その産業的効果は大なるも
のである。
As described above, according to the present invention, in a capacitor using a dielectric sheet such as a metallized film or metallized paper, which has a structure in which electrodes at the same potential are in contact with each other, the tanδ characteristics, insulation resistance characteristics, and capacitance change rate characteristics Therefore, it is possible to provide an excellent capacitor with high quality, and its industrial effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案によるコンデンサを示す断面
図、第2図は膜抵抗−tanδ特性曲線図、第3図
は合成膜抵抗−耐圧特性曲線図、第4図は時間−
容量変化率特性曲線図、第5図は電圧−絶縁抵抗
特性曲線図である。 2……亜縁蒸着電極、4……アルミ蒸着電極、
5……両面金属化誘電体シート、7……メタリコ
ン層。
Fig. 1 is a sectional view showing a capacitor according to the present invention, Fig. 2 is a membrane resistance-tanδ characteristic curve, Fig. 3 is a composite membrane resistance-withstanding voltage characteristic curve, and Fig. 4 is a time-voltage characteristic curve.
FIG. 5 is a capacitance change rate characteristic curve diagram, and FIG. 5 is a voltage-insulation resistance characteristic curve diagram. 2...Sub-rim evaporation electrode, 4...Aluminum evaporation electrode,
5... Double-sided metallized dielectric sheet, 7... Metallicon layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 同電位にある電極が互いに接触する構造をもつ
両面金属化誘電体シートを用いたコンデンサにお
いて、前記一方の電極を膜抵抗1〜5Ω/□の亜
鉛蒸着電極とし他方をアルミ蒸着電極とし両電極
の合成膜抵抗を3〜10Ω/□とすると同時に亜鉛
蒸着電極部にだけメタリコン層を接着したことを
特徴とするコンデンサ。
In a capacitor using a double-sided metallized dielectric sheet with a structure in which electrodes at the same potential are in contact with each other, one electrode is a zinc evaporated electrode with a membrane resistance of 1 to 5 Ω/□, the other is an aluminum evaporated electrode, and both electrodes are A capacitor characterized by having a composite membrane resistance of 3 to 10 Ω/□ and at the same time having a metallicon layer bonded only to the zinc-deposited electrode portion.
JP10646881U 1981-07-16 1981-07-16 capacitor Granted JPS5812931U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10646881U JPS5812931U (en) 1981-07-16 1981-07-16 capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10646881U JPS5812931U (en) 1981-07-16 1981-07-16 capacitor

Publications (2)

Publication Number Publication Date
JPS5812931U JPS5812931U (en) 1983-01-27
JPS6127165Y2 true JPS6127165Y2 (en) 1986-08-13

Family

ID=29900942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10646881U Granted JPS5812931U (en) 1981-07-16 1981-07-16 capacitor

Country Status (1)

Country Link
JP (1) JPS5812931U (en)

Also Published As

Publication number Publication date
JPS5812931U (en) 1983-01-27

Similar Documents

Publication Publication Date Title
US3457478A (en) Wound film capacitors
US3740623A (en) Self-healing non-metallized polystyrene capacitor
US3365626A (en) Electrical capacitor
JPS6127165Y2 (en)
US2703857A (en) Capacitor
JPH08288171A (en) Metallized film capacitor
US2891204A (en) Metallized electrical capacitor
JPS6127173Y2 (en)
JPS6017890Y2 (en) wound film capacitor
JP3392525B2 (en) Metallized film capacitors
JPH0121542Y2 (en)
US3065393A (en) Capacitor
JPH0215312Y2 (en)
GB723693A (en) Improvements in or relating to electrical capacitors
JPH01215008A (en) Metallized film capacitor
JP2562159Y2 (en) Metallized film capacitors
JP2644036B2 (en) Metallized film capacitors
JPH0442908Y2 (en)
US3596152A (en) Capacitor with laminar electrode
JPS6336676Y2 (en)
JPS6331386Y2 (en)
JPS6128210B2 (en)
JPS6017891Y2 (en) Wound film capacitor
JPS6294912A (en) Manufacture of toroidal electrolytic capacitor
JPH0143849Y2 (en)