JPH0523012B2 - - Google Patents

Info

Publication number
JPH0523012B2
JPH0523012B2 JP8629486A JP8629486A JPH0523012B2 JP H0523012 B2 JPH0523012 B2 JP H0523012B2 JP 8629486 A JP8629486 A JP 8629486A JP 8629486 A JP8629486 A JP 8629486A JP H0523012 B2 JPH0523012 B2 JP H0523012B2
Authority
JP
Japan
Prior art keywords
quadrupole
charged
axis
charged beam
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8629486A
Other languages
Japanese (ja)
Other versions
JPS62243230A (en
Inventor
Yoshihiro Tamura
Takao Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP8629486A priority Critical patent/JPS62243230A/en
Publication of JPS62243230A publication Critical patent/JPS62243230A/en
Publication of JPH0523012B2 publication Critical patent/JPH0523012B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はE×B速度選別器に係り、特に、選別
された所要の荷電粒子ビームを集束して尖鋭なビ
ームを形成する新しい構造のE×B速度選別器に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an E×B velocity selector, and more particularly, to an E×B velocity selector with a new structure that focuses selected charged particle beams to form a sharp beam. ×B Regarding the speed selector.

(技術の背景) 半導体装置の製造工程において、半導体基体の
選択された領域に不純物を導入する方法として、
イオン注入法が広く行なわれている。
(Technical background) In the manufacturing process of semiconductor devices, as a method of introducing impurities into selected regions of a semiconductor substrate,
Ion implantation is widely used.

イオン注入法では周知の如く、イオン源で形成
された所要の不純物イオンが、引出し、分離及び
加速の過程を経て、目的とするイオン折込み部に
導入されるが、イオンビームは通常直径5乃至10
mm程度の太さとなつている。このイオンビームの
直径に対して、半導体基体のイオン注入領域のパ
ターンの寸法は通常は!?かに小さく、半導体基体
面上を皮膜で被覆し、所要のイオン注入領域上の
皮膜を選択的に除去してマスクを形成し、このマ
スクを介してイオン注入が行なわれている。
As is well known in the ion implantation method, the required impurity ions formed in the ion source are introduced into the target ion folding part after the process of extraction, separation and acceleration, but the ion beam usually has a diameter of 5 to 10 mm.
It is about mm thick. Compared to the diameter of this ion beam, the dimensions of the pattern of the ion-implanted region on the semiconductor substrate are usually much smaller! The surface of the semiconductor substrate is coated with a film, and the film is selectively applied to the desired ion-implanted region. This removal forms a mask, and ion implantation is performed through this mask.

しかるに半導体装置の高速化、高集積密度化を
推進するために、イオン注入領域のパターンも微
細化が必要となり、前記マスク形成の困難さが高
まるとともに、イオン注入に際してマスクを使用
することなく尖鋭な不純物イオンビームを用い
て、不純物導入領域のみに選択的に不純物を照射
する方法が要求されている。
However, in order to promote higher speed and higher integration density of semiconductor devices, it is necessary to miniaturize the pattern of the ion-implanted region, which increases the difficulty of forming the mask, and also makes it possible to achieve sharp edges without using a mask during ion implantation. There is a need for a method of selectively irradiating impurities only to impurity-introduced regions using an impurity ion beam.

(従来の技術) ウイーンフイルターとも呼ばれているE×B速
度選別器は、一般的には、平行な2枚の電極とこ
れらに直交する2枚の磁極とにより構成されてお
り、イオンビーム等の荷電ビームの速度選別に用
いられている。
(Prior Art) An ExB velocity selector, also called a Wien filter, is generally composed of two parallel electrodes and two magnetic poles perpendicular to these, and is used to control the ion beam, etc. It is used for speed selection of charged beams.

第2図は、従来の一般的なE×B速度選別器の
構成図である。図において、1,2は電極対であ
り、電極1,2の間に、X軸方向にEOなる電界
が形成される。3,4は磁極対であり、磁極3,
4の間に、Y軸方向にBOなる磁界が形成される。
一般に、電極1,2は互いに平行であり、磁極
3,4もまた互いに平行であり、電界EOと磁界
BO、即ち、X軸とY軸は互いに直交している。
FIG. 2 is a block diagram of a conventional general E×B speed selector. In the figure, 1 and 2 are a pair of electrodes, and an electric field E O is formed between the electrodes 1 and 2 in the X-axis direction. 3 and 4 are a pair of magnetic poles;
4, a magnetic field B O is formed in the Y-axis direction.
Generally, electrodes 1, 2 are parallel to each other, magnetic poles 3, 4 are also parallel to each other, and the electric field E O and the magnetic field
B O , that is, the X and Y axes are orthogonal to each other.

荷電ビームの進入方向(光軸)5は、X,Y両
軸に垂直なZ軸であり、光軸5が絞り部材6を貫
く位置に絞り孔60が設けられている。
The charging direction (optical axis) 5 of the charged beam is a Z axis perpendicular to both the X and Y axes, and an aperture hole 60 is provided at a position where the optical axis 5 penetrates the aperture member 6 .

ここで、荷電ビームを構成する荷電粒子(イオ
ン、電子等)の質量をm、電荷をe、前記X,
Y,Z座標系に対する位置を(x,y,z)、速
度を(x〓,y〓,z〓)、加速度を(x¨,y¨,z¨)と
すれ
ば、第1図の構成のE×B速度選別器内における
荷電粒子の運動方程式は次式に示すとおりであ
る。
Here, the mass of the charged particles (ions, electrons, etc.) constituting the charged beam is m, the charge is e, the above X,
If the position with respect to the Y, Z coordinate system is (x, y, z), the velocity is (x〓, y〓, z〓), and the acceleration is (x¨, y¨, z¨), then the configuration shown in Figure 1 is obtained. The equation of motion of charged particles in the E×B velocity selector is as shown in the following equation.

mx=e(EO−zBO) ……(1) my=o ……(2) mz=exBO ……(3) ここで、(1)式においてz〓=EO/BOであれば、
mx¨=oとなり、X軸方向に対して、電界EOと磁
界BOが荷電粒子に作用する力が互に平衡する。
従つて第2図にて、Z軸方向に運動し、かつ、 z〓=EO/BO ……(4) であるような荷電粒子すなわち速度vO=(O,O,
EO/BO)なる荷電粒子は、等速で直進し、絞り
部材6の絞り孔60を通過する。また速度zが前
述の条件(4)から外れる場合には、XZ平面に平行
な力が作用して、X軸の正、もしくは負の方向に
偏向される。
mx=e(E O −zB O ) ……(1) my=o ……(2) mz=exB O ……(3) Here, in equation (1), if z〓=E O /B O Ba,
mx¨=o, and the forces exerted on the charged particles by the electric field E O and the magnetic field B O are mutually balanced in the X-axis direction.
Therefore, in Fig. 2, a charged particle that moves in the Z-axis direction and has a velocity of z = E O /B O (4), ie, a velocity v O = (O, O,
The charged particles (E O /B O ) travel straight at a constant velocity and pass through the aperture hole 60 of the aperture member 6 . Further, when the speed z deviates from the above-mentioned condition (4), a force parallel to the XZ plane acts, causing deflection in the positive or negative direction of the X axis.

さて、荷電ビームの速度vがvOにほぼ等しいと
するとき、Z軸(光軸)近傍の荷電粒子の運動方
程式は、(1)〜(3)式を線型化して次の(5)式のように
得られる。
Now, when the velocity v of the charged beam is approximately equal to v O , the equation of motion of the charged particles near the Z axis (optical axis) is linearized from equations (1) to (3) to form the following equation (5). obtained as follows.

x¨=−e2/m2BO 2x ……(5) (5)式は、Z軸(光軸)からのX軸方向の変位X
に比例した加速度が荷電粒子に作用し、荷電ビー
ムがX軸方向(電界方向)につき、Z軸上に集束
されることを示している。
x¨=-e 2 /m 2 B O 2 x ...(5) Equation (5) is the displacement X in the X-axis direction from the Z-axis (optical axis)
This shows that an acceleration proportional to is applied to the charged particles, and the charged beam is focused in the X-axis direction (electric field direction) and on the Z-axis.

さて、従来は、このようにして荷電ビームがE
×B速度選別器を通過することで、電界方向につ
いて集束を受けるが、それは電界方向についての
みであり、得られる荷電ビームがZ軸の回りで対
称形にならないという欠点があつた。
Now, conventionally, in this way, the charged beam was
By passing through the ×B velocity selector, the beam is focused in the direction of the electric field, but this is only in the direction of the electric field, and there is a drawback that the resulting charged beam is not symmetrical around the Z axis.

この欠点を解決する方法としては、特開昭59−
3856が開示するような、磁極を相互に傾けて磁界
を円弧状にする方法が考えられているが、必要と
する荷電ビームの種類に応じて傾斜の程度を変え
る必要があり、また傾斜の精度の再現性が乏しく
装置が複雑化、大型化するという欠点があつた。
As a method to solve this drawback,
3856 has been considered, but the degree of inclination needs to be changed depending on the type of charged beam required, and the accuracy of the inclination is The disadvantages were that the reproducibility was poor and the equipment became complicated and large.

(発明の目的) 本発明は、広い速度分布を持つ荷電ビームに対
して、所望の速度を有する荷電ビームのみを取り
出し、かつ集束し、高品質の荷電ビームを形成す
ることのできるE×B速度選別器を提供すること
を目的とする。
(Objective of the Invention) The present invention provides an ExB speed capable of extracting and focusing only a charged beam having a desired velocity from a charged beam having a wide velocity distribution, and forming a high quality charged beam. The purpose is to provide a sorter.

(問題を解決するための手段) 本発明は、上記の問題を解決するため、相互に
対向して配設されて静電界を形成する電極と、相
互に対向して配設されて前記静電界と交叉する静
磁界を形成する磁極と、を具備して四極子を構成
し、かかる四極子の少くとも2個を、互の静電界
の方向を交叉させ、かつ、光軸及び該光軸上に配
設された絞り孔を共通にして、縦属接続的に配置
した構成のE×B速度選別器によつて上記目的を
達成したものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides electrodes that are arranged opposite to each other to form an electrostatic field, and electrodes that are arranged opposite to each other to form the electrostatic field. and magnetic poles that form a static magnetic field that intersects with the optical axis. The above object is achieved by the E×B speed selectors which are arranged in a vertically connected manner, with the aperture holes provided in common.

(作用) 前記のように縦属接続された、前段と後段の二
つの四極子のうら、前段の四極子の作用は、既述
のE×B速度選別器の作用と変らない。後段の四
極子の電極対によつて形成される電界が、前段の
場合におけると同様に、後段の適宜位置にとつ
た、後段の四極子内における荷電粒子の運動方程
式は、次式で与えられる。
(Operation) The operation of the front-stage quadrupole, which is behind the two quadrupoles in the front and rear stages connected in series as described above, is the same as the operation of the E×B speed selector described above. The electric field formed by the electrode pair of the rear quadrupole is placed at an appropriate position in the rear quadrupole, as in the case of the front quadrupole, and the equation of motion of a charged particle in the quadrupole at the rear stage is given by the following equation: .

mx¨=o ……(6) my¨=e(ER−z〓BR) ……(7) mz¨=ey〓BR ……(8) この四極子では、X軸方向に磁界が作用し、Y
軸方向に電界が作用しているためである。
mx¨=o ...(6) my¨=e( ER −z〓B R ) ...(7) mz¨=ey〓B R ...(8) In this quadrupole, the magnetic field is in the X-axis direction. act, Y
This is because an electric field acts in the axial direction.

ここでは、後段の四極子の電界をER、磁界を
BRとしている。そして、先の(5)式に対応する式
としては、(9)式が得られる。
Here, the electric field of the latter quadrupole is E R and the magnetic field is
It is called B R. Then, the equation (9) is obtained as the equation corresponding to the above equation (5).

y¨=−e2/m2BR 2y ……(9) 前段と同じ考え方で、後段では荷電ビームは、
Y軸方向(後段四極子の電界方向)につき、Z軸
上に集束されることを示す。
y¨=−e 2 /m 2 B R 2 y ...(9) Using the same idea as the first stage, in the second stage, the charged beam is
It shows that the Y-axis direction (the electric field direction of the rear quadrupole) is focused on the Z-axis.

即ち、EO/BO=ER/BR ……(10) が満足されるとき、vO=(O,O,EO/BO)=
(O,O,ER/BR)なる速度を有する荷電ビーム
を絞り孔60から取り出すことが可能である。
That is, when E O /B O = E R /B R ...(10) is satisfied, v O = (O, O, E O /B O ) =
A charged beam having a velocity of (O, O, E R /B R ) can be taken out from the aperture hole 60 .

更に集束作用について検討を加えると次のよう
になる。
Further consideration of the focusing effect results in the following.

前段の四極子における荷電ビームサイクロトロ
ン半径rOと後段の四極子における荷電ビームのサ
イクロトロン半径rRは、次式で与えれる。
The charged beam cyclotron radius r O in the front-stage quadrupole and the cyclotron radius r R of the charged beam in the rear-stage quadrupole are given by the following equations.

rO=mvO/eBO ……(11) rR=mvO/eBR ……(12) ここで前段の四極子の有効長をLO、後段の四
極子の有効長をLR前段と後段の四極子間の距離
をLdとすれば rO/sin(LO/rO)= LR+Ld+rR/sin(LR/rR) ……(13) なる条件を満たすとき、荷電ビームは後段の四極
子より f=rR/sin(LR/rR) ……(14) だけ距離を隔てたところにZ軸に対して対称に集
束される。
r O =mv O /eB O ……(11) r R =mv O /eB R ……(12) Here, L O is the effective length of the quadrupole in the front stage, and L R is the effective length of the quadrupole in the rear stage. If the distance between the _ _ _ _ At this time, the charged beam is focused symmetrically with respect to the Z axis at a distance f=r R /sin(L R /r R )...(14) from the subsequent quadrupole.

従つて、前段、後段の四極子の電界、磁界EO
BO、EO,BO、有効長LO,LR、前段、後段の四極
子の間隔Ldを荷電ビームの速度、分解能等に応
じて選択することが必要ではあるが、これにより
本発明の目的が達成される。
Therefore, the electric field and magnetic field E O of the quadrupole in the front and rear stages are
Although it is necessary to select B O , E O , B O , effective lengths L O , L R , and the spacing Ld between the front and rear quadrupoles according to the speed of the charged beam, the resolution, etc., the present invention objectives are achieved.

(実施例) 第1図は、本発明の実施例である。(Example) FIG. 1 shows an embodiment of the invention.

第1図において、前段の四極子の符号は従来の
第2図と同様である。後段の四極子にては、7,
8は電極、9,10は磁極、11は荷電ビームの
焦点面を示す。本実施例では既述のように、電極
1,2は互いに平行であり、磁極3,4も互いに
平行であり、これと同様に、電極7,8、磁極
9,10もまたそれぞれ互いに平行であるが、電
極1,2が形成する電界EOと、電極7,8が形
成する電界ERとは、互いに直交するように前段
の四極子と後段の四極子とは互に縦属接続されて
配置されている。
In FIG. 1, the symbols of the quadrupole at the front stage are the same as in the conventional FIG. 2. In the latter quadrupole, 7,
8 is an electrode, 9 and 10 are magnetic poles, and 11 is a focal plane of a charged beam. In this embodiment, as described above, electrodes 1 and 2 are parallel to each other, magnetic poles 3 and 4 are also parallel to each other, and similarly, electrodes 7 and 8 and magnetic poles 9 and 10 are also parallel to each other. However, the electric field E O formed by electrodes 1 and 2 and the electric field E R formed by electrodes 7 and 8 are vertically connected to each other in the front quadrupole and the rear quadrupole so that they are orthogonal to each other. It is arranged as follows.

また前段の四極子の有効長LO、後段の四極子
の有効長LR、四極子の間隔をLd、後段の四極子
の焦点距離をfとすることは第2図の通りであ
る。また、絞り部材6の表面、焦点面11はとも
に光軸5に対して垂直である。
Further, as shown in FIG. 2, the effective length L O of the quadrupole in the front stage, the effective length L R of the quadrupole in the rear stage, the interval between the quadrupoles is Ld, and the focal length of the quadrupole in the rear stage is f. Further, the surface of the aperture member 6 and the focal plane 11 are both perpendicular to the optical axis 5.

前述の通り、前段四極子の磁極3,4の間に磁
場BOが+Y方向に形成されていて、電荷q、質
量mなる荷電粒子が光軸5に沿つて前段四極子に
入射した場合、磁場BOにより−X方向に偏向さ
れる。そして、荷電ビームの速度がvOにほぼ等し
い場合、(4)式を満たすように電界EOが電極1,
2の間に+X方向に形成されているため該荷電ビ
ームは前段四極子の内部を光軸5に沿つて直進
し、同時にX方向につき、Z軸上へと集束作用を
受ける。
As mentioned above, when a magnetic field B O is formed in the +Y direction between the magnetic poles 3 and 4 of the front quadrupole, and a charged particle with a charge q and a mass m enters the front quadrupole along the optical axis 5, It is deflected in the -X direction by the magnetic field B O. When the velocity of the charged beam is approximately equal to v O , the electric field E O is set at electrode 1,
Since the charged beam is formed in the +X direction between 2 and 3, the charged beam travels straight inside the front quadrupole along the optical axis 5, and is simultaneously focused in the X direction and onto the Z axis.

次に、実施例においては、更に後段の四極子が
縦属接続されているので、後段の四極子の磁極
9,10の間に磁場BRが+X方向に形成される
ときは、前記荷電粒子は、磁場BRにより−Y方
向に、偏向される。
Next, in the embodiment, since the quadrupole in the later stage is connected in series, when the magnetic field B R is formed in the +X direction between the magnetic poles 9 and 10 of the quadrupole in the later stage, the charged particles is deflected in the -Y direction by the magnetic field BR .

ここで(10)式を満たすように電場ERが電極7,
8の間に形成されておれば、荷電粒子は後段四極
子内を直進し、また荷電ビームはY軸方向につ
き、Z軸上へと集束作用を受ける。
Here, the electric field E R is set at electrode 7,
8, the charged particles will travel straight through the rear quadrupole, and the charged beam will be focused in the Y-axis direction and onto the Z-axis.

ここで、更に(11),(12),(13)式で示す条件を満たす
構成によれば、後段四極子から(14)式で示される距
離fを隔てた焦点面11上に、絞り部材6の絞り
孔60を通過した荷電ビームが、Z軸(光軸)5
の回りにつき、対称形に集束される。
Here, according to a configuration that further satisfies the conditions shown in equations (11), (12), and (13), an aperture member is placed on the focal plane 11 separated from the rear quadrupole by a distance f shown in equation (14). The charged beam passing through the aperture hole 60 of No. 6 is directed toward the Z-axis (optical axis)
It is focused symmetrically around the

なお、電極、磁極の形状、構造は本実施例に限
られるものではないし、また電場、磁場の形成方
法も、本実施例に限るものではない。
Note that the shapes and structures of the electrodes and magnetic poles are not limited to those in this embodiment, and the methods for forming electric fields and magnetic fields are not limited to those in this embodiment.

例えば、前段と後段の四極子の電界は、互に直
交でなく斜交するものでもよい。
For example, the electric fields of the quadrupole at the front stage and the rear stage may not be perpendicular to each other but may be oblique to each other.

さらにまた、四極子間の距離Ldを可変とする
機能を附加するなどによつて更に汎用性を拡大す
ることができる。
Furthermore, the versatility can be further expanded by adding a function of making the distance Ld between quadrupoles variable.

(発明の効果) 本発明によりエネルギー分布を有する荷電ビー
ム、例えば異なる質量、電荷を有する複数種より
構成されるイオンビームより、特定の速度、質量
のみを有する荷電ビームを選別し、かつこれを集
束して、高品質の荷電ビームを形成することがで
き、例えば、半導体基板を、マスクを用いること
なく直接微細加工することなどが可能となる。
(Effects of the Invention) According to the present invention, a charged beam having only a specific speed and mass is selected from a charged beam having an energy distribution, for example, an ion beam composed of multiple types having different masses and charges, and is focused. As a result, a high-quality charged beam can be formed, and, for example, it becomes possible to directly microfabricate a semiconductor substrate without using a mask.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のE×B速度選別器の
構成を示す図。第2図は従来のE×B速度選別器
の同様の図。 1,2,7,8……電極、3,4,9,10…
…磁極、5……光軸、6……絞り部材、60……
絞り孔、11……焦点面。
FIG. 1 is a diagram showing the configuration of an E×B speed selector according to an embodiment of the present invention. FIG. 2 is a similar diagram of a conventional ExB speed separator. 1, 2, 7, 8... electrode, 3, 4, 9, 10...
...Magnetic pole, 5...Optical axis, 6...Aperture member, 60...
Aperture hole, 11... Focal plane.

Claims (1)

【特許請求の範囲】[Claims] 1 相互に対向して配設されて静電界を形成する
電極と、相互に対向して配設されて前記静電界と
交叉する静磁界を形成する磁極と、を具備して四
極子を構成し、かかる四極子の少くとも2個を、
互の静電界の方向を交叉させ、かつ、光軸及び該
光軸上に配設された絞り孔を共通にして、縦属接
続的に配置したことを特徴とするEXB速度選別
器。
1 A quadrupole is formed by comprising electrodes that are arranged to face each other and form an electrostatic field, and magnetic poles that are arranged to face each other and form a static magnetic field that intersects the electrostatic field. , at least two such quadrupoles,
1. An EXB speed selector characterized in that the directions of the electrostatic fields are crossed, the optical axis and the aperture hole arranged on the optical axis are common, and the EXB speed selector is arranged in a vertically connected manner.
JP8629486A 1986-04-15 1986-04-15 E x b speed selector Granted JPS62243230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8629486A JPS62243230A (en) 1986-04-15 1986-04-15 E x b speed selector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8629486A JPS62243230A (en) 1986-04-15 1986-04-15 E x b speed selector

Publications (2)

Publication Number Publication Date
JPS62243230A JPS62243230A (en) 1987-10-23
JPH0523012B2 true JPH0523012B2 (en) 1993-03-31

Family

ID=13882813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8629486A Granted JPS62243230A (en) 1986-04-15 1986-04-15 E x b speed selector

Country Status (1)

Country Link
JP (1) JPS62243230A (en)

Also Published As

Publication number Publication date
JPS62243230A (en) 1987-10-23

Similar Documents

Publication Publication Date Title
US4755685A (en) Ion micro beam apparatus
Seliger E× B Mass‐Separator Design
EP1082747B1 (en) Acceleration and analysis architecture for ion implanter
US6326631B1 (en) Ion implantation device arranged to select neutral ions from the ion beam
GB2076588A (en) Exb mass separator
CN102737932A (en) Aberration-corrected wien exb mass filter with removal of neutrals from the beam
EP0097535A2 (en) Crossed-field velocity filter and ion-beam processing system
JPH0523012B2 (en)
US6974950B2 (en) Positive and negative ion beam merging system for neutral beam production
US2665384A (en) Ion accelerating and focusing system
US3723733A (en) Stigmatic, crossed-field velocity filter
JPH09102291A (en) Objective lens and charge particle beam device
JPH06349429A (en) Ion beam lead-out electrode group device having mass separating electrode
JP4662610B2 (en) Solid convergence mass separator
JP2956706B2 (en) Mass spectrometer
JPH0467549A (en) Ion source with mass spectrograph
Yavor Progress in ion optics for mass-separator design
JPS6313250A (en) Ion beam device
JPS593856A (en) Exb speed selector
JPS62115639A (en) Ion implanting apparatus
JPH05275057A (en) Wien filter
JPS598949B2 (en) ion source device
JPS61171045A (en) Ion microbeam device
JPH0133897B2 (en)
Schott et al. Phase free acceleration of charged particles by ac fields using deflecting coils and triangular shaped hollow electrodes