JP4662610B2 - Solid convergence mass separator - Google Patents

Solid convergence mass separator Download PDF

Info

Publication number
JP4662610B2
JP4662610B2 JP2000196341A JP2000196341A JP4662610B2 JP 4662610 B2 JP4662610 B2 JP 4662610B2 JP 2000196341 A JP2000196341 A JP 2000196341A JP 2000196341 A JP2000196341 A JP 2000196341A JP 4662610 B2 JP4662610 B2 JP 4662610B2
Authority
JP
Japan
Prior art keywords
ion beam
pole piece
ion
mass separator
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000196341A
Other languages
Japanese (ja)
Other versions
JP2002015695A (en
Inventor
修 塚越
和浩 樫本
純平 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000196341A priority Critical patent/JP4662610B2/en
Publication of JP2002015695A publication Critical patent/JP2002015695A/en
Application granted granted Critical
Publication of JP4662610B2 publication Critical patent/JP4662610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、中電流型イオン注入装置用の立体収束質量分離器に関するものである。なお、本明細書において用語「中電流」は30mA〜12mAの範囲を意味するものとする。
【0002】
【従来の技術】
この種のイオン注入装置は、添付図面の図6に示すように、イオン源Aと、質量分離器Bと、加速管Cと、収束レンズ系Dと、イオンビームをY方向に偏向させる静電偏向器Eと、イオンビームをX方向に偏向させる静電偏向器Fと、ターゲットに所望のイオンを照射する照射室Gとを備え、イオン源Aから引出されたイオンビームは質量分離器Bにおいて同一質量数のイオンからなるイオンビームに分離し、加速管Cで加速し、収束レンズ系Dで収束し、静電偏向器EによりY方向に偏向し、そして静電偏向器FにおいてX方向に偏向して、途中残留ガス分子と衝突し荷電交換により発生した中性ビームを除去した後、ターゲットに注入する。
【0003】
このようなイオン注入装置において使用される質量分離器では、セクター型電磁石のポールピースの入出射端面が系の軸線すなわちイオンビームの中心軸線に対して直角であるためイオンビームの完全な立体収束を得るためには、イオン源からのイオンビームの斜め入射角を大きく採る必要がある。しかしながら、イオンビームの斜め入射角を大きく採っても、縦方向にイオンビームが広がってしまい立体収束は十分ではない。
【0004】
図7には従来のイオン注入装置における質量分離器を示し、aはセクターマグネットで、そのセクターマグネットaの出射側には回転鉄片bが設けられている。セクターマグネットaのポールピース間のギャップは60mmで、cは有効な磁場端縁を示し、dはフリーマン型イオン源の出口スリットで、その幅は3mmである。またeはイオンビームの集束点で、この集束点eにおけるイオンビームの幅は2cmとなるようにされる。
【0005】
図7に示す質量分離器において、幅10mm、高さ35mmのデファイニングアパーチャーをP50keVで30mA、またAs30keVで12.5mA通過させることを目標値として実験を行った。
セクターマグネットaにシム部材を取付け、幅方向の磁場分布の均一範囲を10.5cmにし、セクターマグネットaの出射側に回転鉄片bを取付け、集束点eをデファイニングアパーチャーに合わせることにより、基板上で測定した結果、目標値とおり、P15mA(引出し電圧30kV)、As12mA(引出し電圧50kV)を、後段加速電圧170kV及び150kVで基板に注入することができた。
【0006】
つぎに本発明の対象概念としている立体収束の原理について説明する。
図8に示すように、メディアン面上で質量分離器の端面中心に右手直角座標0−xyzを取り、磁場のx、y、z成分をHx、Hy、Hzとし、イオンビームの速度成分をVx、Vy、Vzとし、イオンに働く力の成分をFx、Fy、Fzとすると、
→ → →
F=ev×H (1)

Figure 0004662610
である。イオンに対してz方向に働く力Fzは
Fz=e(VxHy−VyHx) (3)
となる。
中心の単位ベクトルをKとすると、いま、質量分離器の入射端面における磁場のx成分Hxがゼロより大きく、イオンビームの速度成分Vyがゼロより大きいと、イオンに働く力Fの方向は上から下(−K)の方向となり、質量分離器の入射端面における磁場のx成分Hxがゼロより小さく、イオンビームの速度成分Vyがゼロより大きいと、イオンに働く力Fの方向は下から上(+K)方向となる。一方、質量分離器の出射端面における磁場のx成分Hxがゼロより小さく、イオンビームの速度成分Vyがゼロより小さいと、イオンに働く力Fの方向は上から下(−K)の方向となり、質量分離器の出射端面における磁場のx成分Hxがゼロより大きく、イオンビームの速度成分Vyがゼロより小さいと、イオンに働く力Fの方向は下から上(+K)の方向となる。
図8に示すように、Hx成分が大きいほど、イオンに働く縦方向の力の成分は大きくなり、立体収束効果は大きくなる。
【0007】
【発明が解決しようとする課題】
従来の質量分離器では、図8に示すように、ポールピース(ポールピース)の端面が直角に切ってあるので、磁場のHx成分の大きさが完全な立体収束を得るためには、斜め入射角を大きくしなければならない。
このことは、イオン源から磁石の入射側端縁までの距離L1とし、磁石の出射側端縁から集束アパーチャーまでの距離をL2とし、イオン軌道半径の原点と磁石の入射側端縁の中央位置を通る軸線に対して磁石の入射側端縁の成す角度をαとし、イオン軌道半径の原点と磁石の出射側端縁の中央位置を通る軸線に対して磁石の出射側端縁の成す角度をβとするとき、Engeの式
L2=(L1tanα+Rm)/(L1/Rm(1−tanαtanβ)−tanβ)
からわかるように、イオン源から磁石の入射側端縁までの距離L1を大きくしなければならず、その結果分離器の大きさが大きくなるという問題点がある。
【0008】
一方、中電流型イオン注入装置に用いられる質量分離器においては、イオン通過率を高め、イオンの収量を多くできるものが求められている。
【0009】
そこで、本発明は、上記の問題点を解決するためメディアン面だけでなくメディアン面に垂直な方向にもイオンビームを収束できる中電流型イオン注入装置用の立体収束質量分離器を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、イオンビームを生成するイオン源からのイオンから所望のイオンを分離し、加速し、偏向した後エンドステーションの基板へ注入するようにした中電流型イオン注入装置用の立体収束質量分離器において、
90°セクターマグネットのポールピースの端面を予定の斜め入出射角度に設定すると共に、ポールピースの端面におけるイオンビーム通路の開口部の縁部の高さの1/2を30±3°の角度で削ぎ落として、ポールピースの入出射側端縁近傍の磁場のイオンビームの入射方向及び出射方向の成分を大きくする面取り部を形成し、
面取り部を形成したポールピースの端面におけるイオンビーム通路の開口部の縁部に対向して、イオンビーム通路の開口部の全幅にわたってのびる帯状のシム部材を設けたこと
を特徴としている。
【0013】
【発明の実施の形態】
以下添付図面の図1〜図5を参照して本発明の実施の形態について説明する。
図1には本発明の立体収束質量分離器の一実施の形態を示す。図1において1は90°セクターマグネットで、この90°セクターマグネット1はポールピース2と、巻線3と、ヨーク4とを備えている。巻線3は図示していないが冷却水で冷却するように構成されている。また図1において5はイオン源の出口スリットであり、また6は集束アパーチャーである。
【0014】
ポールピース2の入出射側端面7、8の各々において、ポールピース2間のギャップすなわちイオンビーム通路9の開口部の縁部は、図2及び図3に示すように、削ぎ落されて面取り部7a、8aを形成している。すなわちポールピース2の入出射側の各端面7、8に形成された面取り部7a、8aは、図示実施の形態ではそれぞれの端面のイオンビーム通路9の開口部の縁部から1/2の高さまでそれぞれの端面に対して角度30±3°を成すように形成されている。
【0015】
また図2及び図3に示すように、イオンビーム通路9の端部すなわちポールピース2間のギャップの端部に対向して、イオンビーム通路の開口部の全幅にわたってのびる帯状の純鉄製のシム10が銀ろうによって取付けられている。これにより散乱が少なくなり、均一な磁場が広くなる。
【0016】
ポールピース2の入出射側端面7、8はそれぞれ、図1及び図2に示すように、イオン源(図示していない)のスリツト5からのイオンビームの中心軸線11に垂直な面12に対して角度α=20°及びポールピース2から集束アパーチャー6へ向うイオンビームの中心軸線13に垂直な面14に対して角度β=20°を成すように形成されている。
【0017】
また図1において、L1はイオン源のスリツト5からセクターマグネット1におけるポールピース2の入射側端面7までの距離であり、L2はポールピース2の出射側端面8からイオンビームの集束アパーチャー6までの距離である。
【0018】
このように構成した本発明の立体収束質量分離器においては、一例としてイオン源のスリツト5からセクターマグネット1におけるポールピース2の入射側端面7までの距離L1はを30.5cm、ポールピース2の出射側端面8からイオンビームの集束アパーチャー6までの距離L2は39.4cmにでき、またα、βをそれぞれ20°とすると、Engeの式によりセクターマグネット1を通るイオンビームの軌道半径は26.6cmとすることができる。
【0019】
図4には図1〜図3に示す本発明の立体収束質量分離器におけるy方向に対する磁場の強さを示し、10〜50アンペアの電流値においてy方向約100mm亘って磁場の強さがほぼ一様となっていることが認められる。
また図5にはz方向における磁場を示している。
【0020】
【発明の効果】
以上説明してきたように、本発明によれば、90°セクターマグネットのポールピースの端面を予定の斜め入出射角度に設定すると共に、ポールピースの端面におけるイオンビーム通路の開口部の縁部の高さの1/2を30±3°の角度で削ぎ落として、ポールピースの入出射側端縁近傍の磁場のイオンビームの入射方向及び出射方向の成分を大きくする面取り部を形成し、面取り部を形成したポールピースの端面におけるイオンビーム通路の開口部の縁部に対向して、イオンビーム通路の開口部の全幅にわたってのびる帯状のシム部材を設けたことにより、イオン源からセクターマグネットのポールピースの端面間での距離は従来の方法による立体収束の場合に比べて約半分にでき、ギャップに入るビームの割合が大きくなり、スリットを通過するイオンの収量が約2倍になる。また電磁石の重量も従来の構造に比べて80%程度となり、製造コストも小型軽量化により従来のものの約60%にできる。
【図面の簡単な説明】
【図1】本発明の立体収束質量分離器の一つの実施の形態を示す概略線図。
【図2】(a)図1の立体収束質量分離器におけるポールピースの入射側端面部分の構成を示す図1のA−Aに沿った拡大断面図、(b)図1の立体収束質量分離器におけるポールピースの出射側端面部分の構成を示す図1のB−B沿った拡大断面図。
【図3】図1の立体収束質量分離器におけるポールピースの入射側端面部分の構成を示す概略拡大斜視図、(b)図1の立体収束質量分離器におけるポールピースの出射側端面部分の構成を示す概略拡大斜視図。
【図4】図1に示す立体収束質量分離器における種々の電流値に対するy方向磁場分布を示すグラフ。
【図5】図1に示す立体収束質量分離器における種々の電流値に対するz方向磁場の強さを示すグラフ。
【図6】本発明の適用されるイオン注入装置の一例を示す概略線図。
【図7】従来のイオン注入装置における質量分離器を示す概略線図。
【図8】立体収束の原理を示す概略斜視図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid focusing mass separator for a medium current ion implantation apparatus. In the present specification, the term “medium current” means a range of 30 mA to 12 mA.
[0002]
[Prior art]
As shown in FIG. 6 of the accompanying drawings, this type of ion implantation apparatus includes an ion source A, a mass separator B, an acceleration tube C, a focusing lens system D, and an electrostatic that deflects an ion beam in the Y direction. A deflector E, an electrostatic deflector F for deflecting the ion beam in the X direction, and an irradiation chamber G for irradiating a target with desired ions are provided. The ion beam extracted from the ion source A is passed through the mass separator B. Separated into ion beams consisting of ions of the same mass number, accelerated by an accelerating tube C, converged by a converging lens system D, deflected in the Y direction by an electrostatic deflector E, and in the X direction by an electrostatic deflector F The neutral beam generated by the charge exchange by deflecting and colliding with the residual gas molecules is removed, and then injected into the target.
[0003]
In the mass separator used in such an ion implantation apparatus, the input / output end face of the pole piece of the sector type electromagnet is perpendicular to the axis of the system, that is, the central axis of the ion beam. In order to obtain this, it is necessary to increase the oblique incident angle of the ion beam from the ion source. However, even if the ion beam has a large oblique incident angle, the ion beam spreads in the vertical direction and the three-dimensional convergence is not sufficient.
[0004]
FIG. 7 shows a mass separator in a conventional ion implantation apparatus, in which a is a sector magnet, and a rotating iron piece b is provided on the exit side of the sector magnet a. The gap between the pole pieces of the sector magnet a is 60 mm, c indicates an effective magnetic field edge, d is the exit slit of the Freeman ion source, and its width is 3 mm. E is a focal point of the ion beam, and the width of the ion beam at the focal point e is set to 2 cm.
[0005]
In the mass separator shown in FIG. 7, an experiment was conducted with a target value of passing a defining aperture having a width of 10 mm and a height of 35 mm through P + 50 keV at 30 mA and As + 30 keV at 12.5 mA.
The shim member is attached to the sector magnet a, the uniform range of the magnetic field distribution in the width direction is set to 10.5 cm, the rotating iron piece b is attached to the exit side of the sector magnet a, and the focusing point e is aligned with the defining aperture. As a result of the measurement, P + 15 mA (drawing voltage 30 kV) and As + 12 mA (drawing voltage 50 kV) were injected into the substrate at the subsequent stage acceleration voltages 170 kV and 150 kV as the target values.
[0006]
Next, the principle of solid convergence, which is the target concept of the present invention, will be described.
As shown in FIG. 8, the right-handed rectangular coordinate 0-xyz is taken at the center of the end face of the mass separator on the median plane, the x, y, and z components of the magnetic field are Hx, Hy, and Hz, and the velocity component of the ion beam is Vx. , Vy, Vz, and Fx, Fy, Fz as force components acting on ions,
→ → →
F = ev × H (1)
Figure 0004662610
It is. The force Fz acting in the z direction with respect to ions is Fz = e (VxHy−VyHx) (3)
It becomes.
Assuming that the central unit vector is K, when the x component Hx of the magnetic field at the incident end face of the mass separator is greater than zero and the velocity component Vy of the ion beam is greater than zero, the direction of the force F acting on the ions is from the top. When the x component Hx of the magnetic field at the incident end face of the mass separator is smaller than zero and the velocity component Vy of the ion beam is larger than zero, the direction of the force F acting on the ions is from the bottom to the top (-K). + K) direction. On the other hand, when the x component Hx of the magnetic field at the exit end face of the mass separator is smaller than zero and the velocity component Vy of the ion beam is smaller than zero, the direction of the force F acting on the ions is from the top to the bottom (−K), When the x component Hx of the magnetic field at the exit end face of the mass separator is larger than zero and the velocity component Vy of the ion beam is smaller than zero, the direction of the force F acting on the ions is from the bottom to the top (+ K).
As shown in FIG. 8, the greater the Hx component, the greater the force component in the vertical direction that acts on the ions, and the greater the stereo convergence effect.
[0007]
[Problems to be solved by the invention]
In the conventional mass separator, as shown in FIG. 8, the end face of the pole piece (pole piece) is cut at a right angle, so that the Hx component of the magnetic field is obliquely incident in order to obtain a perfect three-dimensional convergence. The corner must be increased.
This means that the distance from the ion source to the entrance edge of the magnet is L1, the distance from the exit edge of the magnet to the focusing aperture is L2, and the origin of the ion trajectory radius and the center position of the entrance edge of the magnet The angle formed by the entrance edge of the magnet with respect to the axis passing through is α, and the angle formed by the exit edge of the magnet with respect to the axis passing through the origin of the ion trajectory radius and the center position of the exit edge of the magnet When β, the formula of L2 = (L1 tan α + Rm) / (L1 / Rm (1-tan α tan β) −tan β)
As can be seen, there is a problem that the distance L1 from the ion source to the incident side edge of the magnet must be increased, resulting in an increase in the size of the separator.
[0008]
On the other hand, a mass separator used in a medium current ion implantation apparatus is required to increase ion passage rate and increase ion yield.
[0009]
Accordingly, the present invention provides a solid focusing mass separator for a medium current ion implantation apparatus capable of focusing an ion beam not only in the median plane but also in a direction perpendicular to the median plane in order to solve the above-described problems. Objective.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, desired ions are separated from ions from an ion source that generates an ion beam, accelerated, deflected, and then injected into an end station substrate. In a stereofocusing mass separator for a current ion implantation system,
The end face of the 90 ° sector magnet pole piece is set to a predetermined oblique incident / exit angle, and half the height of the edge of the ion beam passage opening at the end face of the pole piece is set at an angle of 30 ± 3 °. As a shaving, forming a chamfered portion that increases the incident direction and exit direction components of the ion beam of the magnetic field near the entrance and exit side edges of the pole piece,
A band-shaped shim member extending across the entire width of the opening of the ion beam passage is provided opposite to the edge of the opening of the ion beam passage on the end face of the pole piece having the chamfered portion .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 shows an embodiment of a three-dimensional convergence mass separator according to the present invention. In FIG. 1, reference numeral 1 denotes a 90 ° sector magnet. The 90 ° sector magnet 1 includes a pole piece 2, a winding 3, and a yoke 4. Although not shown, the winding 3 is configured to be cooled with cooling water. In FIG. 1, 5 is an exit slit of the ion source, and 6 is a focusing aperture.
[0014]
In each of the entrance and exit side end faces 7 and 8 of the pole piece 2, the gap between the pole pieces 2, that is, the edge of the opening of the ion beam passage 9 is scraped off as shown in FIG. 2 and FIG. 7a and 8a are formed. In other words, the chamfered portions 7a and 8a formed on the end surfaces 7 and 8 on the incident / exit side of the pole piece 2 have a height of ½ from the edge of the opening of the ion beam passage 9 on each end surface in the illustrated embodiment. It is formed so as to form an angle of 30 ± 3 ° with respect to each end face.
[0015]
Further, as shown in FIGS. 2 and 3 , a band-shaped pure iron shim 10 extending across the entire width of the opening of the ion beam passage is opposed to the end of the ion beam passage 9, that is, the end of the gap between the pole pieces 2. Is installed by silver solder. This reduces scattering and increases the uniform magnetic field.
[0016]
As shown in FIGS. 1 and 2, the entrance and exit side end faces 7 and 8 of the pole piece 2 are respectively relative to a plane 12 perpendicular to the central axis 11 of the ion beam from the slit 5 of the ion source (not shown). And an angle β = 20 ° with respect to a plane 14 perpendicular to the central axis 13 of the ion beam from the pole piece 2 toward the focusing aperture 6.
[0017]
In FIG. 1, L1 is the distance from the slit 5 of the ion source to the incident side end face 7 of the pole piece 2 in the sector magnet 1, and L2 is from the emission side end face 8 of the pole piece 2 to the focusing aperture 6 of the ion beam. Distance.
[0018]
In the three-dimensional focusing mass separator of the present invention configured as described above, as an example, the distance L1 from the slit 5 of the ion source to the incident side end face 7 of the pole piece 2 in the sector magnet 1 is 30.5 cm, The distance L2 from the emission side end face 8 to the ion beam focusing aperture 6 can be 39.4 cm, and if α and β are each 20 °, the orbit radius of the ion beam passing through the sector magnet 1 is 26. It can be 6 cm.
[0019]
FIG. 4 shows the strength of the magnetic field in the y direction in the three-dimensionally converging mass separator of the present invention shown in FIGS. 1 to 3, and the strength of the magnetic field is approximately 100 mm over the y direction at a current value of 10 to 50 amperes. It is recognized that it is uniform.
FIG. 5 shows the magnetic field in the z direction.
[0020]
【The invention's effect】
As described above, according to the present invention, the end face of the pole piece of the 90 ° sector magnet is set to a predetermined oblique incident / exit angle, and the height of the edge of the opening of the ion beam passage on the end face of the pole piece is set. A chamfered portion is formed by cutting 1/2 of the thickness at an angle of 30 ± 3 ° to increase the incident direction and the outgoing direction component of the ion beam of the magnetic field in the vicinity of the input and output side edges of the pole piece. A pole-shaped shim member extending across the entire width of the ion beam passage opening is provided opposite the edge of the ion beam passage opening on the end face of the pole piece formed with the pole piece of the sector magnet from the ion source. The distance between the two end faces can be reduced to about half that of the conventional method of three-dimensional convergence. Ion yield that is about 2-fold. Further, the weight of the electromagnet is about 80% compared with the conventional structure, and the manufacturing cost can be reduced to about 60% of the conventional one by reducing the size and weight.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of a three-dimensional convergence mass separator according to the present invention.
2A is an enlarged cross-sectional view taken along the line AA in FIG. 1 showing the configuration of the incident side end face portion of the pole piece in the three-dimensional converging mass separator in FIG. 1, and FIG. 2B is a three-dimensional converging mass separation in FIG. The expanded sectional view along BB of FIG. 1 which shows the structure of the output side end surface part of the pole piece in a container.
3 is a schematic enlarged perspective view showing a configuration of an incident side end surface portion of the pole piece in the solid convergence mass separator of FIG. 1, and FIG. 3B is a configuration of an output side end surface portion of the pole piece in the solid convergence mass separator of FIG. FIG.
4 is a graph showing a y-direction magnetic field distribution with respect to various current values in the solid convergence mass separator shown in FIG. 1; FIG.
5 is a graph showing the z-direction magnetic field strength with respect to various current values in the three-dimensional convergence mass separator shown in FIG. 1;
FIG. 6 is a schematic diagram showing an example of an ion implantation apparatus to which the present invention is applied.
FIG. 7 is a schematic diagram showing a mass separator in a conventional ion implantation apparatus.
FIG. 8 is a schematic perspective view showing the principle of solid convergence.

Claims (1)

イオンビームを生成するイオン源からのイオンから所望のイオンを分離し、加速し、偏向した後エンドステーションの基板へ注入するようにした中電流型イオン注入装置用の立体収束質量分離器において、
90°セクターマグネットのポールピースの端面を予定の斜め入出射角度に設定すると共に、ポールピースの端面におけるイオンビーム通路の開口部の縁部の高さの1/2を30±3°の角度で削ぎ落として、ポールピースの入出射側端縁近傍の磁場のイオンビームの入射方向及び出射方向の成分を大きくする面取り部を形成し、
面取り部を形成したポールピースの端面におけるイオンビーム通路の開口部の縁部に対向して、イオンビーム通路の開口部の全幅にわたってのびる帯状のシム部材を設けたこと
を特徴とする中電流型イオン注入装置用の立体収束質量分離器。
In a stereofocus mass separator for a medium current ion implanter that separates, accelerates, deflects, and injects desired ions from ions from an ion source that generates an ion beam, and then injects them into an end station substrate,
The end face of the 90 ° sector magnet pole piece is set to a predetermined oblique incident / exit angle, and half the height of the edge of the ion beam passage opening at the end face of the pole piece is set at an angle of 30 ± 3 °. As a shaving, forming a chamfered portion that increases the incident direction and exit direction components of the ion beam of the magnetic field near the entrance and exit side edges of the pole piece,
A medium-current type ion characterized in that a band-shaped shim member extending across the entire width of the opening of the ion beam passage is provided opposite to the edge of the opening of the ion beam passage on the end face of the pole piece having the chamfered portion Solid converging mass separator for injection devices.
JP2000196341A 2000-06-29 2000-06-29 Solid convergence mass separator Expired - Fee Related JP4662610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196341A JP4662610B2 (en) 2000-06-29 2000-06-29 Solid convergence mass separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196341A JP4662610B2 (en) 2000-06-29 2000-06-29 Solid convergence mass separator

Publications (2)

Publication Number Publication Date
JP2002015695A JP2002015695A (en) 2002-01-18
JP4662610B2 true JP4662610B2 (en) 2011-03-30

Family

ID=18694852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196341A Expired - Fee Related JP4662610B2 (en) 2000-06-29 2000-06-29 Solid convergence mass separator

Country Status (1)

Country Link
JP (1) JP4662610B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300149A (en) * 2007-05-30 2008-12-11 Jeol Ltd Charged-particle beam deflection device
DE102009044989A1 (en) * 2009-09-24 2011-03-31 Funnemann, Dietmar, Dr. Imaging energy filter for electrically charged particles and spectroscope with such
JP5500500B2 (en) * 2010-03-11 2014-05-21 日新イオン機器株式会社 Ion implanter with beam deflector having asymmetric Einzel lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263748A (en) * 1989-08-17 1991-11-25 Nissin Electric Co Ltd Ion implanter
JPH04209460A (en) * 1990-11-30 1992-07-30 Hitachi Ltd Ion implantation device
JPH05266860A (en) * 1992-03-23 1993-10-15 Hitachi Ltd Mass separator and ion implantation device
JPH0785833A (en) * 1993-06-30 1995-03-31 Sony Corp Removing of neutral particle in ion implanting device and ion implanting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03263748A (en) * 1989-08-17 1991-11-25 Nissin Electric Co Ltd Ion implanter
JPH04209460A (en) * 1990-11-30 1992-07-30 Hitachi Ltd Ion implantation device
JPH05266860A (en) * 1992-03-23 1993-10-15 Hitachi Ltd Mass separator and ion implantation device
JPH0785833A (en) * 1993-06-30 1995-03-31 Sony Corp Removing of neutral particle in ion implanting device and ion implanting device

Also Published As

Publication number Publication date
JP2002015695A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
US4315153A (en) Focusing ExB mass separator for space-charge dominated ion beams
TWI391976B (en) Beam deflecting method, beam deflector for scanning, ion implantation method, and ion implantation system
US4661712A (en) Apparatus for scanning a high current ion beam with a constant angle of incidence
JP5341070B2 (en) Method and system for extracting ion beam consisting of molecular ions (cluster ion beam extraction system)
US4697086A (en) Apparatus for implanting ion microbeam
JPH0793121B2 (en) Ion irradiation apparatus using two-dimensional magnetic scanning and related apparatus
JP2002517885A (en) Acceleration and analysis architecture for ion implanters
US5757018A (en) Zero deflection magnetically-suppressed Faraday for ion implanters
EP1046183B1 (en) Ion implantation device arranged to select neutral ions from the ion beam and methode
JPH04226021A (en) Method for irradiating body with charged particle beam
JP2012227141A (en) Wien e×b mass filter of aberration correction for removing neutral material from beam
JP2006351312A (en) Ion implanter
JP4662610B2 (en) Solid convergence mass separator
JPS62108438A (en) High current mass spectrometer employing space charge lens
JPS6340241A (en) Ion beam device
US6974950B2 (en) Positive and negative ion beam merging system for neutral beam production
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
JP4691347B2 (en) Ion implanter
JP4013377B2 (en) Mass separation type ion source
JP3067784B2 (en) Electrostatic accelerator
JPH0773843A (en) Device and method for ion implantation
JPH04209460A (en) Ion implantation device
JP3448352B2 (en) Method for manufacturing semiconductor device
LaFontaine et al. Beam optics of the VIISta 3000 ion implanter
JP3836562B2 (en) Ion irradiation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R150 Certificate of patent or registration of utility model

Ref document number: 4662610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees