JPS593856A - Exb speed selector - Google Patents
Exb speed selectorInfo
- Publication number
- JPS593856A JPS593856A JP57111940A JP11194082A JPS593856A JP S593856 A JPS593856 A JP S593856A JP 57111940 A JP57111940 A JP 57111940A JP 11194082 A JP11194082 A JP 11194082A JP S593856 A JPS593856 A JP S593856A
- Authority
- JP
- Japan
- Prior art keywords
- exb
- ions
- magnetic
- magnetic pole
- velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/05—Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明はExB速度選別器に係り、特に選別された所要
の荷電粒子ビームを集束して尖鋭々ビームを形成する構
造を有するEXB速度選別器に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an ExB speed selector, and more particularly to an EXB speed selector having a structure that focuses selected charged particle beams to form a sharp beam. Regarding.
(b) 技術の背景
半導体装置の製造工程において、半導体基体の選択され
た領域に不純物を導入する方法としてイオン注入法が広
く行なわれている。(b) Background of the Technology In the manufacturing process of semiconductor devices, ion implantation is widely used as a method of introducing impurities into selected regions of a semiconductor substrate.
イオン注入法では周知の如くイオン源で形成された所要
の不純物イオンが、引出し、分離及び加法の過8を経て
目的きするイオン打込み部間導入されるが、イオンビー
ムは通常直径5乃至10〔闘〕程度の太さと々っている
。このイオンビームの直径に対して半導体基体のイオン
注入領域のパターンの寸法は通常は遥に小6く、半導体
基体面上を皮膜でvLNし、所要のイオン注入領域上の
皮膜全選択的に除去してマスクを形成し、このマスクを
介してイオン注入が行なわれている。In the ion implantation method, as is well known, the required impurity ions formed in the ion source are introduced into the desired ion implantation area through extraction, separation, and addition, but the ion beam usually has a diameter of 5 to 10 mm. It is about as thick as a sword. The size of the pattern of the ion-implanted region of the semiconductor substrate is usually much smaller than the diameter of this ion beam, and VLN is performed on the surface of the semiconductor substrate with a film, and the entire film on the desired ion-implanted region is selectively removed. A mask is formed, and ion implantation is performed through this mask.
しかるに半導体装置の高速化、高集積密度化を1′II
進するためにイオン注入領域のパターンも微細化が必要
となり前記マスクの形成の困雛さが高まるとともに、イ
メン注入に除してマスクを使用する仁となく、尖鋭な不
純物イオンビームを用いて不純物導入領域のみに選択的
に不純物を照射する方法が要求されている。However, increasing the speed and integration density of semiconductor devices is 1'II.
In order to advance the process, the pattern of the ion implantation region needs to be miniaturized, which increases the difficulty of forming the mask. There is a need for a method of selectively irradiating impurities only to the introduced region.
(C)従来技術と問題点
イオン等の荷電粒子の速度選別器としてE X B速度
選別器(ウィーンフィルタとも呼ばれる)が既に知られ
ている。第1図(a)けEXB速度選別器の模式斜視図
、第1図(b)はその動作の説明図である。図において
1及び2は磁極片であってこれらの磁極片間に磁束密度
Boなる磁界が形成され、3及び4は電極であってこれ
らの電極間に電界強度Eoなる電界が形成される。この
図の構造においては電界と磁界とは直交し、以下電r1
方向をX軸、磁界方向をY軸とする。このE X B速
[選別器にイオンビームはZ軸方向に導入される。(C) Prior Art and Problems An EXB velocity selector (also called a Wien filter) is already known as a velocity selector for charged particles such as ions. FIG. 1(a) is a schematic perspective view of the EXB speed selector, and FIG. 1(b) is an explanatory diagram of its operation. In the figure, 1 and 2 are magnetic pole pieces, between which a magnetic field having a magnetic flux density Bo is formed, and 3 and 4 are electrodes, and an electric field having an electric field intensity Eo is formed between these electrodes. In the structure shown in this figure, the electric field and magnetic field are orthogonal, and below the electric field r1
The direction is the X axis, and the magnetic field direction is the Y axis. The ion beam is introduced into the selector in the Z-axis direction at this EXB speed.
この場合罠、イオンの質量をm、電荷をq2位置を(X
+ V+ ZL速度を(XH’l、Z L加速度を(
x+y+z)とすれば運動方程式は次式のとおシとスる
。In this case, the trap, the mass of the ion is m, the charge is q2, and the position is (X
+ V + ZL velocity (XH'l, Z L acceleration (
x+y+z), the equation of motion becomes the following equation.
mx =q (Eo−ZBo) (1
)my = O,(2)
mz−=qxBo (3J
式(1)は、その右辺がZ=Eo/Boなるときに0と
なる。すなわち電界と磁界がX軸方向に及tりす力が平
衡することを示している。従って速度Vo==(0,0
,EO/BO)なるイオンFi等速度でZtN方向に直
進する。これに対して速度がこil−よシ外iするイオ
ンには、Xz平面に平行な刀が作用して、X軸の正、弁
(八ずれかの方向に偏向する。mx = q (Eo-ZBo) (1
) my = O, (2) mz-=qxBo (3J
Equation (1) becomes 0 when its right-hand side becomes Z=Eo/Bo. In other words, this shows that the forces exerted by the electric field and the magnetic field in the X-axis direction are balanced. Therefore, speed Vo==(0,0
, EO/BO), the ions Fi move straight in the ZtN direction at a constant velocity. On the other hand, ions whose speed is much higher than that are acted on by a blade parallel to the Xz plane, and are deflected in either direction of the positive X axis.
従って第ルり+ (b)に示す如<、ISi’lIコ5
を街する遮蔽板6ゲ靜′けることによって、速度VO々
るイオンのみを選別することができる。Therefore, as shown in (b), ISi'lIko5
By blocking the shielding plate 6, only ions with a velocity of VO can be selected.
更に詳頽1に、速度VがVoKllは吟しくがっ2軸の
近傍にあるイオンに注目して前Ir+式(1)を糾形化
して仏式が得られる。Further, in detail 1, the French formula can be obtained by consolidating the previous Ir+ formula (1) by focusing on ions in the vicinity of the two axes where the velocity V is VoKll.
”;= −S” Bo2X (4
)式(4)は、Z軸からの偏位置に比例するカがZ軸方
向に作用することをボし、イオンビームはX軸方向につ
いては集束することが知られる。”;= −S” Bo2X (4
) Equation (4) indicates that a force proportional to the deviation from the Z-axis acts in the Z-axis direction, and it is known that the ion beam is focused in the X-axis direction.
すなわち、前記オル造のEXB速度選別器においては、
速度がVo=Eo/Bo とは異なるイオンを電界力
向に偏向させ、がっ、直進するイオンビームは磁界方向
について集束される。That is, in the Oruzou EXB speed selector,
Ions whose velocity differs from Vo=Eo/Bo are deflected in the direction of the electric field force, and the ion beam traveling straight is focused in the direction of the magnetic field.
先に述べた目的罠用いる尖鋭なイオンビームを形成する
ためには、イオンビームの集束を2軸に関して対称形と
する必要がある。この様にイオンビームの集束を2軸に
関して対称形とする方法として、前記例においては第2
図(a)に模式断面図を示す如く磁界Boと電界Eoと
が直交するのに対して、第2図(b)に模式断面図を示
す如く磁極面1′と2′とを相互に傾けて磁界を円弧状
とする方法が知られている。In order to form a sharp ion beam using the above-mentioned objective trap, it is necessary to focus the ion beam symmetrically with respect to two axes. As a method for making the ion beam focused symmetrically with respect to two axes, the second
While the magnetic field Bo and the electric field Eo are orthogonal to each other as shown in the schematic cross-sectional view in Figure 2(a), the magnetic pole faces 1' and 2' are tilted to each other as shown in the schematic cross-sectional view in Figure 2(b). A method is known in which the magnetic field is shaped like an arc.
第2図(b)において、EXB速度選別器の中心軸上の
点Pを通る磁束密度の大きさiBo、電界強度をEoと
し、Pを通る磁束密度aを円弧とする円の中心ヲ01
この円の半径OPの長さをRoとする。このとき、電界
及び磁界は次式の如く表わされる。In Fig. 2(b), the magnitude of the magnetic flux density passing through a point P on the central axis of the EXB speed selector is iBo, the electric field strength is Eo, and the center of a circle whose arc is the magnetic flux density a passing through P is 01.
Let Ro be the length of the radius OP of this circle. At this time, the electric field and magnetic field are expressed as shown below.
Ex =’Eo (5
)Ey = o (6
)B y =8=B o (” Ro )
(8)この場合に削代(4)に相当する運動方程
式はとなって、Vo=Eo/Bo なるイオンビーム
はZ軸上に対称的に集束する。Ex = 'Eo (5
) Ey = o (6
)B y =8=B o (” Ro )
(8) In this case, the equation of motion corresponding to the cutting allowance (4) is as follows: Vo=Eo/Bo The ion beam is focused symmetrically on the Z-axis.
以上説明した如く、第2図(b)に示す如き断面構造を
有するExB速度選別器によって速度Vo=Eo /
Boなるイオンを選別して、軸に対称VC巣束すること
がoJ能となるが、実隙の半導体装置等の製造工程にお
りるイオン注入法においては、周知の如く、イオンの打
込み深さを所幾011良とするためにイオンの運動エネ
ルギー即ち速度Voが選択される。従ってイオン注入法
のビーム形成に適用するEXE速度速度選別子め辿択さ
れた速度VOもしくは加速物、圧vlLについて以上説
明したイオンビームの集束栄件を満足する機能を具備し
なければならない。As explained above, the speed Vo=Eo/
The OJ function is to select Bo ions and bundle them into an axially symmetrical VC bundle, but as is well known, in the ion implantation method used in the manufacturing process of semiconductor devices, etc., the implantation depth of the ions is The kinetic energy, or velocity Vo, of the ions is selected to make the value approximately 011. Therefore, the EXE velocity selector applied to beam formation in the ion implantation method must have a function that satisfies the ion beam focusing requirements described above regarding the selected velocity VO or accelerator and pressure vIL.
(d) 発明の目的
本発明は、速度分布を有する荷電粒子、例えばイオンビ
ームよυ所要の速度を有する粒子を選別し、かつこわを
集束して尖鋭なビームを形成する装置を提供することを
目的とする。(d) Purpose of the Invention The present invention provides an apparatus for selecting charged particles having a velocity distribution, such as ion beams, and for forming a sharp beam by focusing the particles. purpose.
(e) 発明の構成
本発明の前記目的は、相互に対向して配設されて静@、
界を形成する電極と、相互に対向して配設されで前記静
電界と交叉する靜磁界を形成する磁極と全具備して、前
記磁極の磁極面が、前記にす市1界に垂直である−の直
線を含み、かつ前記静電界の対称面に関して対称である
二千面に、七ねぞれ一致するごとく調整可能とされてな
るEXB速厖選別器によって達成される。(e) Structure of the Invention The object of the present invention is to provide static
and a magnetic pole disposed opposite to each other to form a static magnetic field that intersects the electrostatic field, the magnetic pole face of the magnetic pole being perpendicular to the magnetic field. This is achieved by an EXB speed sorter which can be adjusted so that seven lines coincide with 2,000 planes that include a certain straight line and are symmetrical with respect to the plane of symmetry of the electrostatic field.
前記式(5)乃至(8)によって表わされる電界及び磁
界内におけるイオンの運動方程式は、前記式(1)乃至
(3)に対応して次式(11)乃至(13)となる。The equations of motion of ions in the electric and magnetic fields expressed by the above equations (5) to (8) are the following equations (11) to (13), corresponding to the above equations (1) to (3).
mマ=q(Eo−4By) (ロ)rny
=(IZBX (”9m”; =
q (xBy−多Bx ) (131(]
3)より初期条件Z=Vof:用いてZ中Vo +−B
oX (14)が得られ、
Fio = Vo Bo (+5
)なるとき、式(+4)?用いて式(11)及び(坤よ
りが得られる。この式(11’)及び(12’)よりか
満足されるときに、加速層Vとyとが対称ルとなり初速
度VoなるイオンがZ軸に対称形VC集束することが知
られる。mma=q(Eo-4By) (b)rny
=(IZBX ("9m"; =
q (xBy-multiBx) (131(]
3) Using the initial condition Z=Vof: Vo +-B in Z
oX (14) is obtained, Fio = Vo Bo (+5
), then the expression (+4)? Using equations (11) and (12'), when these equations (11') and (12') are satisfied, the acceleration layer V and y become symmetrical, and an ion with an initial velocity Vo becomes Z It is known that VC focuses axially symmetrically.
イオンの加速過圧をvn−とすitば、初速度V。If the acceleration overpressure of ions is vn-, then the initial velocity is V.
は
であシ、式(1す、(19及び(17)よシが得られる
。Then, formula (1), (19 and (17)) yields.
従って不純物イオン注入に際して、不純物の種類とイオ
ン打込深さにより式(18)に従って電界と磁界との比
Eo/Bo’k、tたイオンビームの分解能、集束径等
によりて電界及び磁界のそれぞれの強さを決定するなら
ば、所要のイオンビームを2軸に対称形に集束させるた
めには、磁界の曲率半径を式(19)に従って調整する
こと、すなわち磁極面を曲率中心軸を含む二千面に一致
せしめることが必要となる。Therefore, when implanting impurity ions, the electric field and magnetic field ratio Eo/Bo'k, t, is calculated according to equation (18) according to the type of impurity and the ion implantation depth. In order to focus the desired ion beam symmetrically around two axes, the radius of curvature of the magnetic field must be adjusted according to equation (19), that is, the magnetic pole surface must be adjusted to two directions including the center axis of curvature. It is necessary to make a thousand faces consistent.
(f) 発明の実施例
以下本発明を実施例により図面を参照して具体的に説明
する。(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.
第3図は本発明の実施例の主要部を示す断面図である。FIG. 3 is a sectional view showing the main parts of an embodiment of the present invention.
図において、11及び12は磁極片、13及び14は電
極、15はコア、16はコイルを示す。In the figure, 11 and 12 are magnetic pole pieces, 13 and 14 are electrodes, 15 is a core, and 16 is a coil.
本実施例の磁極片11及び12は、円柱を軸に平行な平
面、例えば軸を含む平面によって切断した形状を有し、
コア15は対向する端面が、磁極片11及び12に摺接
する円筒面をなしている。The magnetic pole pieces 11 and 12 of this embodiment have a shape obtained by cutting a cylinder by a plane parallel to the axis, for example, a plane including the axis,
The opposing end surfaces of the core 15 are cylindrical surfaces that come into sliding contact with the magnetic pole pieces 11 and 12.
更に磁極片11及び12には、装置の外部からの制御に
よシ、コア15の前記端面に摺接する所要の角度の回転
を与えることができる。Furthermore, the pole pieces 11 and 12 can be rotated through the required angle to come into sliding contact with the end face of the core 15 by control from outside the device.
この#極片11及び120回転によって、対向する磁極
面を所要の磁界の曲率中心軸を含む平面にそれぞれ一致
させることができる。By rotating the # pole piece 11 and 120 times, the opposing magnetic pole faces can be respectively aligned with the plane containing the central axis of curvature of the required magnetic field.
従って、霜、極13よ、!ll1%極14に向う方向に
電界Eo、磁極片11より磁極片12に向う方向に磁界
Boを形成し、磁極片11及び12を前述の如く回転せ
しめることによって、交叉する電界E。Therefore, frost, pole 13! By forming an electric field Eo in the direction toward the pole 14 and a magnetic field Bo in the direction from the magnetic pole piece 11 toward the magnetic pole piece 12, and rotating the magnetic pole pieces 11 and 12 as described above, the electric field E is crossed.
と磁界BOの中心よシ電極13に垂力方向に式(19)
によって与えられる半径ROの距離において第3図の断
面に直交する直線を含む二千面た、磁極片11及び12
の磁極面をそれぞれ一致させ、第3図の断面図の紙面衣
側から裏側に質量m1電荷qなるイオンビームを通ずる
ならば、エネルギーqVηなるイオンを選別し、かつこ
れを点状に集束することができる。and the normal force direction from the center of the magnetic field BO to the electrode 13 is expressed by equation (19)
The pole pieces 11 and 12 have 2,000 planes including a straight line perpendicular to the cross section of FIG. 3 at a distance of radius RO given by
If we align the magnetic pole faces of the ions and pass an ion beam with mass m1 and charge q from the paper surface side to the back side of the cross-sectional view of Fig. 3, we can select ions with energy qVη and focus them into a point. I can do it.
(g) 発明の効果
以上説明した如く、本発明によれば速度分布を有する荷
電粒子、例えばイオンビームよシ所要の速度を有する粒
子を選別し、かつこれを集束して尖鋭なビームを形成す
ることができ゛、例えば微細なパターン形状の選択的イ
オン注入を、マスクを用いることな〈実施することが可
能となる。(g) Effects of the Invention As explained above, according to the present invention, charged particles having a velocity distribution, such as ion beams, are selected to have a desired velocity, and are focused to form a sharp beam. For example, selective ion implantation in a fine pattern can be performed without using a mask.
第1図(a)は従来のEXB速度選別器の例を示す斜視
図、#41図(b)はその動作説明図、第2図(a)及
び(b)は従来のEXE速度選別器の電極、磁極部分の
模式断面図、第3図は本発明の芙施例會示すtli面図
である。
図において、1.1’、2及び2′は磁極片、3及び4
は電極、5は開口、6は遮蔽板、11及び12FiMm
片、13及ヒl 4id1iU&、 I Fl::1
ア、16はコイルを示す0
第2図((1)
第 3 図Figure 1 (a) is a perspective view showing an example of a conventional EXB speed selector, Figure #41 (b) is an explanatory diagram of its operation, and Figures 2 (a) and (b) are of a conventional EXE speed selector. FIG. 3 is a schematic sectional view of an electrode and a magnetic pole portion, and is a tli plane view showing a second embodiment of the present invention. In the figure, 1.1', 2 and 2' are pole pieces, 3 and 4
is an electrode, 5 is an opening, 6 is a shielding plate, 11 and 12FiMm
Piece, 13 and Hi 4id1iU&, I Fl::1
A, 16 indicates the coil 0 Figure 2 ((1) Figure 3
Claims (1)
互に対向して配設されて前記静電界と交叉する静磁界を
形成する磁極とを具(Mして、前記磁極の磁極面が、前
記静電界に平面である−の直線を含み、かつ前記静電界
の対称面に関して対称である二千面に、それぞれ一致す
るごとく調整度M巳とされてなることを特徴とするEX
B速度選別器。electrodes that are arranged to face each other to form an electrostatic field; and magnetic poles that are arranged to face each other to form a static magnetic field that intersects the electrostatic field (M is a magnetic pole of the magnetic pole). EX characterized in that the planes are adjusted to have a degree of adjustment M so as to correspond to 2,000 planes that include a - line that is a plane in the electrostatic field and that are symmetrical with respect to the plane of symmetry of the electrostatic field.
B speed sorter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57111940A JPS593856A (en) | 1982-06-29 | 1982-06-29 | Exb speed selector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57111940A JPS593856A (en) | 1982-06-29 | 1982-06-29 | Exb speed selector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS593856A true JPS593856A (en) | 1984-01-10 |
Family
ID=14573950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57111940A Pending JPS593856A (en) | 1982-06-29 | 1982-06-29 | Exb speed selector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS593856A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985001389A1 (en) * | 1983-09-14 | 1985-03-28 | Hitachi, Ltd. | Ion microbeam implanting apparatus |
-
1982
- 1982-06-29 JP JP57111940A patent/JPS593856A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985001389A1 (en) * | 1983-09-14 | 1985-03-28 | Hitachi, Ltd. | Ion microbeam implanting apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4315153A (en) | Focusing ExB mass separator for space-charge dominated ion beams | |
US4649316A (en) | Ion beam species filter and blanker | |
Seliger | E× B Mass‐Separator Design | |
US4697086A (en) | Apparatus for implanting ion microbeam | |
US6410924B1 (en) | Energy filtered focused ion beam column | |
US4075488A (en) | Pattern forming apparatus using quadrupole lenses | |
US3660658A (en) | Electron beam deflector system | |
EP0097535A2 (en) | Crossed-field velocity filter and ion-beam processing system | |
JPS5978432A (en) | Device with deflecting objective system for forming multikind particle beam | |
US4839523A (en) | Ion implantation apparatus for semiconductor manufacture | |
JPS593856A (en) | Exb speed selector | |
EP0150089A1 (en) | Charged-particle optical systems | |
US6974950B2 (en) | Positive and negative ion beam merging system for neutral beam production | |
US3671895A (en) | Graded field magnets | |
US3243667A (en) | Non dispersive magnetic deflection apparatus and method | |
RU2144237C1 (en) | Optical particle-emitting column | |
JPH09102291A (en) | Objective lens and charge particle beam device | |
JPH11500573A (en) | Ribbon type ion beam generator | |
JP3040245B2 (en) | Vienna filter | |
JPH04104441A (en) | Ion source provided with mas separation mechanism | |
JPH0133897B2 (en) | ||
JPH0523012B2 (en) | ||
JPH05315212A (en) | Focused ion beam apparatus | |
JP2003178709A (en) | Energy filter | |
JPH02105099A (en) | Fast atom source |