JPH05227732A - High-performance explosive generator - Google Patents

High-performance explosive generator

Info

Publication number
JPH05227732A
JPH05227732A JP32181091A JP32181091A JPH05227732A JP H05227732 A JPH05227732 A JP H05227732A JP 32181091 A JP32181091 A JP 32181091A JP 32181091 A JP32181091 A JP 32181091A JP H05227732 A JPH05227732 A JP H05227732A
Authority
JP
Japan
Prior art keywords
explosive
armature
normal
performance
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32181091A
Other languages
Japanese (ja)
Other versions
JP2842460B2 (en
Inventor
Shuzo Fujiwara
修三 藤原
Youzou Kakudate
洋三 角舘
Shiyuu Usuha
州 薄葉
Masanori Yoshida
正典 吉田
Katsutoshi Aoki
勝敏 青木
Akira Kubota
彰 久保田
Shunichi Sato
俊一 佐藤
Masahiro Miyamoto
昌広 宮本
Akira Morita
公 森田
Noritoshi Hiroshige
宣紀 廣重
Norio Nakazawa
徳郎 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Asahi Chemical Industry Co Ltd
Nichicon Corp
Original Assignee
Agency of Industrial Science and Technology
Fuji Electric Co Ltd
Asahi Chemical Industry Co Ltd
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Electric Co Ltd, Asahi Chemical Industry Co Ltd, Nichicon Corp filed Critical Agency of Industrial Science and Technology
Priority to JP32181091A priority Critical patent/JP2842460B2/en
Publication of JPH05227732A publication Critical patent/JPH05227732A/en
Application granted granted Critical
Publication of JP2842460B2 publication Critical patent/JP2842460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To get a high-performance explosive generator where a large current can flow by charging a normal explosive on initiating side and subsequently highperformance explosive, as the explosive to be charged, in an armature. CONSTITUTION:In case of a coil-type generator, a normal explosive 8 and a highperformance explosive 9 are arranged as explosives inside a cylindrical armature so that the high-performance explosive 9 may become conical at the interface with the normal explosive 9 and pierce the ordinary explosive 8. Moreover, a stator 3 with the normal winding 4 is arranged around an armature 1, and an initial power source 6 and a load 7 are connected, and when the explosion is triggered by the triggering device 5 at one end of the normal explosive, the armature operates by the explosion of the normal explosive 8 at first, and the gap 2 is reduced, and a magnetic field is condensed. And, as the condensation of the magnetic field advances, the explosion of the high- performance explosive 9 begins, and the condensation of the magnetic field advances with great force, as a result, a large current can be supplied to the load 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁場濃縮型(以下MC
型と記す)爆薬発電機、特に高性能爆薬を利用した高出
力の爆薬発電機に関する。
The present invention relates to a magnetic field concentration type (hereinafter referred to as MC
Type)) explosive generator, especially high-power explosive generator using high-performance explosives.

【0002】[0002]

【従来の技術】MC型爆薬発電機は電機子を駆動させる
ための爆薬の爆轟によって電機子と固定子との間隙を縮
小し、磁場を濃縮させることを原理とするものである。
2. Description of the Related Art The MC type explosive generator is based on the principle that the gap between the armature and the stator is reduced and the magnetic field is concentrated by the detonation of the explosive for driving the armature.

【0003】その具体的構成を図面を参照して説明する
と図8に断面を示すように、円筒状の電機子1の周囲に
コイル巻線4を内蔵する固定子3を間隙2を有するよう
に配置したコイル型発電機と、図2に示すように、平板
状の電機子1と固定子3とを間隙2を隔てて対向させた
平板型発電機がある。これらの発電機は初期電流源6に
よって電機子1と固定子3を通して負荷7に通電した状
態で、コイル型の場合は電機子1の内部に配置した爆薬
8を起爆装置5によって爆発させるとその爆轟の進行に
従って電機子1が拡大して電機子1と固定子3との間に
存在する空隙部2が縮小し、そこに形成されていた磁場
が濃縮される。平板型発電機の場合は、平板状電機子1
の上に配置した爆薬8を起爆装置5で爆発させると平板
状電機子1が平板状固定子3の方へ押し下げられ、電機
子1と固定子3との間の空隙部2が縮小され、そこに形
成されていた磁場が濃縮される。
The specific structure will be described with reference to the drawings. As shown in the cross section of FIG. 8, a stator 3 containing a coil winding 4 is provided around a cylindrical armature 1 with a gap 2. There are a coil type generator arranged and a plate type generator in which a plate-shaped armature 1 and a stator 3 are opposed to each other with a gap 2 therebetween, as shown in FIG. In these generators, when the load 7 is energized by the initial current source 6 through the armature 1 and the stator 3, when the explosive 8 disposed inside the armature 1 is exploded by the detonator 5 in the case of the coil type, As the detonation progresses, the armature 1 expands, the gap 2 existing between the armature 1 and the stator 3 contracts, and the magnetic field formed there is concentrated. In the case of a flat plate generator, a flat plate armature 1
When the explosive 8 arranged above is detonated by the detonator 5, the plate-shaped armature 1 is pushed down toward the plate-shaped stator 3, and the gap 2 between the armature 1 and the stator 3 is reduced, The magnetic field formed there is concentrated.

【0004】この場合、濃縮された磁場の強さの2乗に
比例して固定子3と電機子1で形成する平行な空隙部2
の縮小に対抗する力(f1)が大きくなってくる。これ
に対して、爆轟力により、コイル型の場合は電機子1を
外側に拡げようとする力(f2)、平板型の場合は電機
子1を下側に押し下げようとする力(f2)を大きくす
る必要がある。
In this case, the parallel void portion 2 formed by the stator 3 and the armature 1 in proportion to the square of the strength of the concentrated magnetic field.
The force (f 1 ) against the reduction of is increased. On the other hand, due to the detonation force, the force (f 2 ) for expanding the armature 1 to the outside in the case of the coil type, and the force (f 2 ) for pushing down the armature 1 in the case of the flat plate type 2 ) needs to be larger.

【0005】ここでf1=f2になった場合は磁場の濃縮
は停止し、これ以上の電流増幅はできなくなる。
When f 1 = f 2 , the concentration of the magnetic field is stopped and further current amplification cannot be performed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、爆薬の種類
とその装填方法を特定することによって上記f2を大き
くした高性能型爆薬発電機を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention is intended to provide a high-performance explosive generator in which the above-mentioned f 2 is increased by specifying the type of explosive and the method of loading it.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、特許請求の範囲に記載のとおり、電
機子に装填する爆薬として、起爆側に通常爆薬、それに
続いて高性能爆薬を装填したMC型高性能型爆薬発電機
である。上記通常爆薬とは定常な爆発速度が6.0Km
/sec以下のものであり、それより速いものを高性能
爆薬という。
The structure of the present invention for solving the above-mentioned problems is, as described in the claims, an explosive to be loaded on an armature, a normal explosive on the detonating side, and subsequently a high-performance explosive. It is an MC type high-performance explosive generator loaded with explosives. The regular explosive has a steady explosion speed of 6.0 km.
/ Sec or less, and faster than that is called high performance explosive.

【0008】一般に爆轟生成ガスが電機子に及ぼす力
は、爆薬の爆発速度の略二乗に比例する。即ち、本発明
は空隙部2の縮小に対抗する力f1が小さい前半では通
常爆薬を用い、f1力の大きい後半では高性能爆薬を組
み合せて、爆薬を合理的に使用することによって、同一
形状の発電機を用いても大電流が得られる様にしたもの
である。
Generally, the force exerted by the detonation-producing gas on the armature is proportional to approximately the square of the explosive velocity. That is, in the present invention, the explosive is rationally used by using the normal explosive in the first half where the force f 1 against the reduction of the void 2 is small, and by combining the high explosive in the latter half when the force f 1 is large, the explosive is rationally used. Even if a shaped generator is used, a large current can be obtained.

【0009】又、磁場濃縮型発電ではインダクタンスの
変化速度(減少速度)が、磁場濃縮速度に比例し、それ
が電気出力に比例するので、この点からも爆速の速い爆
薬が好ましい。しかし、高性能爆薬は高価であるので、
磁場濃縮の初期には通常爆薬を使用し、後半に高性能爆
薬を使用することにより、効率的な発電を行うことがで
きる。
Further, in the magnetic field concentration type power generation, the rate of change (decrease rate) of the inductance is proportional to the magnetic field concentration rate and it is proportional to the electric output. From this point as well, explosives having a fast detonation rate are preferable. But high explosives are expensive, so
Efficient power generation can be achieved by using a normal explosive in the initial stage of magnetic field concentration and a high-performance explosive in the latter half.

【0010】図面を参照して具体点に説明すると、図1
は本発明のコイル型発電機の場合の縦断面の模式図であ
る。円筒形電機子1の内部に爆薬として通常爆薬8と高
性能爆薬9とを、高性能爆薬9が通常爆薬8との界面で
円錐状になって通常爆薬に貫入するように配置する。電
機子1の周囲にはコイル巻線4を内蔵した固定子3が配
置され、初期電流源6と負荷7とが図示のとおりに接続
されている。通常爆薬の一端にある起爆装置5によって
起爆すると、最初(f1が小さい間)は通常爆薬8の爆
轟によって電機子1が作動して空隙部2が縮小され磁場
が濃縮される。磁場の濃縮が進んでf1が大きくなると
高性能爆薬9の爆轟が起り、大きな力で更に磁場の濃縮
が進み、その結果、負荷7に対して大きな電流を供給す
ることができる。
A concrete point will be described with reference to the drawings.
FIG. 3 is a schematic view of a vertical cross section in the case of the coil type generator of the present invention. Inside the cylindrical armature 1, a normal explosive 8 and a high-performance explosive 9 are arranged as explosives so that the high-performance explosive 9 forms a conical shape at the interface with the normal explosive 8 and penetrates the normal explosive. A stator 3 incorporating a coil winding 4 is arranged around the armature 1, and an initial current source 6 and a load 7 are connected as shown. When the detonator 5 at one end of the normal explosive detonates, initially (while f 1 is small), the detonation of the normal explosive 8 activates the armature 1 to reduce the gap 2 and concentrate the magnetic field. When concentration of the magnetic field f 1 is greater advances occur detonation of high explosives 9, further advances are concentrated in a magnetic field with a large force, as a result, it is possible to supply a large current to the load 7.

【0011】図2から図7は平板型発電機の場合を示す
ものである。図2は平板型の発電機の縦断面の模式図、
図3はその平面図である。図2は電機子1の上に通常爆
薬8と高性能爆薬9とを、それ等の界面で通常爆薬8が
高性能爆薬9と電機子1との間に楔形に貫入するように
配置されている。この場合はまず起爆装置5によって通
常爆薬の爆轟が始まり、電機子1を固定子3の方に押し
下げ、空隙部2を縮小し、磁場が濃縮される。磁場の濃
縮が進んでf1が大きくなると高性能爆薬9の爆轟が始
まり、大きな力で更に磁場の濃縮が進行し、負荷7に対
して大きな電流を供給することができる。
2 to 7 show a case of a flat plate type generator. 2 is a schematic view of a vertical cross section of a flat plate generator,
FIG. 3 is a plan view thereof. FIG. 2 shows that the normal explosive 8 and the high-performance explosive 9 are arranged on the armature 1 so that the normal explosive 8 penetrates between the high-performance explosive 9 and the armature 1 in a wedge shape at their interfaces. There is. In this case, first, the detonator 5 starts detonation of the normal explosive, the armature 1 is pushed down toward the stator 3, the gap 2 is reduced, and the magnetic field is concentrated. When the concentration of the magnetic field progresses and f 1 increases, the detonation of the high-performance explosive 9 starts, and the concentration of the magnetic field further proceeds with a large force, so that a large current can be supplied to the load 7.

【0012】図4および図5は図2、図3と同じ趣旨で
あり高性能爆薬9が楔型になって通常爆薬8の中央部に
貫入している例である。
4 and 5 have the same meaning as in FIGS. 2 and 3, and show an example in which the high-performance explosive 9 is wedge-shaped and penetrates into the central portion of the normal explosive 8.

【0013】図6、図7は同じく平板型発電機であり、
高性能爆薬9の先端が角錐状に通常爆薬8の中央に貫入
している具体例である。
FIGS. 6 and 7 also show a flat plate type generator,
This is a specific example in which the tip of the high-performance explosive 9 penetrates into the center of the normal explosive 8 in a pyramidal shape.

【0014】以上、何れの例も高性能爆薬9と通常爆薬
8の界面では高性能爆薬9が電機子1から離れた位置に
存在し、電機子1には通常爆薬8が接触している。これ
は上記界面で高性能爆薬9が電機子1に接触していると
その接触部で二種類の爆薬の爆速が不連続になって電機
子1が破断するおそれがある。
In any of the above examples, the high-performance explosive 9 exists at a position apart from the armature 1 at the interface between the high-performance explosive 9 and the normal explosive 8, and the normal explosive 8 is in contact with the armature 1. This is because if the high-performance explosive 9 is in contact with the armature 1 at the interface, the explosive velocity of the two kinds of explosives becomes discontinuous at the contact portion, and the armature 1 may be broken.

【0015】もっとも高性能爆薬9と通常爆薬8の接触
部に両爆薬を混合した爆薬を配置すれば爆速の不連続は
防止できるがそのような爆薬を作製するのは困難である
ので実用性がない。
The discontinuity of the explosive velocity can be prevented by disposing an explosive mixed with both explosives at the contact portion between the high-performance explosive 9 and the normal explosive 8, but it is difficult to produce such explosive, and therefore, it is not practical. Absent.

【0016】なお、通常爆薬8と高性能爆薬9との界面
で高性能爆薬が通常爆薬内に貫入しているその先端部の
角度(例えば図1のθ)には最適な値があり、下記数式
で表わされる。
There is an optimum value for the angle (eg, θ in FIG. 1) of the tip of the high explosive penetrating into the normal explosive at the interface between the normal explosive 8 and the high explosive 9, and It is represented by a mathematical formula.

【0017】通常爆薬の爆速をd1(m/sec)、高
性能爆薬の爆速をd2(m/sec)とすると、d2・c
osθ≧d1より cosθ≧d1/d2 → θ≦cos-1(d1/d2) が条件となる。
Assuming that the explosive velocity of a normal explosive is d 1 (m / sec) and the explosive velocity of a high-performance explosive is d 2 (m / sec), d 2 · c
osθ ≧ d 1 than cosθ ≧ d 1 / d 2 → θ ≦ cos -1 is (d 1 / d 2) is a condition.

【0018】なお、本発明で用いる爆薬の爆速は二段
階、例えばペントリットを含むプラスティック状爆薬を
用いて爆速が5,500m/secのものと、HMXを
含むプラスティック状爆薬を用いて爆速が8,400m
/secのものを組合せることが考えられるが、三段階
以上の各爆速の爆薬を組合せてもよい。
The explosives used in the present invention have two detonation speeds, for example, a detonation speed of 5,500 m / sec using a plastic explosive containing Pentolitto and an explosive speed of 8 using a plastic explosive including HMX. 400 m
It is conceivable to combine explosives having a speed of 3 sec./sec.

【0019】[0019]

【実施例】以下、実施例によって、本発明を具体的に説
明する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0020】上記の爆速5,500m/secと8,4
00m/secの組合せでθ=30°〜40°の範囲で
の実験を行った結果、爆速5,500m/sec、単独
のものに比し、電流増巾値として、20〜30%の増加
が見られた。又、角度をθ=49°以下にしなかったも
のについては、ライナーの破断と見られる現象により電
流増加が止ったことが観測された。
The above explosion speeds of 5,500 m / sec and 8,4
As a result of conducting an experiment in the range of θ = 30 ° to 40 ° with a combination of 00 m / sec, a detonation speed of 5,500 m / sec, an increase of 20 to 30% as a current amplification value in comparison with a single one. I was seen. In addition, it was observed that the current did not increase due to the phenomenon that was considered to be the breakage of the liner when the angle was not set to θ = 49 ° or less.

【0021】[0021]

【発明の効果】以上説明したように、本発明の爆薬発電
機によって、従来のものより一層大きな電流を得ること
ができる。
As described above, the explosive power generator of the present invention can obtain a larger current than the conventional one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体例のうちコイル型発電機の構成を
示す縦断面の模式図、
FIG. 1 is a schematic vertical cross-sectional view showing a configuration of a coil-type power generator according to a specific example of the present invention,

【図2】本発明の具体例のうち、平板型発電機の構成を
示す縦断面の模式図、
FIG. 2 is a schematic diagram of a vertical cross section showing a configuration of a flat plate generator among specific examples of the present invention,

【図3】図の2の装置の平面の模式図、3 is a schematic plan view of the apparatus of FIG. 2,

【図4】図2とは異なった具体例の縦断面の模式図、FIG. 4 is a schematic view of a vertical cross section of a specific example different from FIG.

【図5】図4の装置の平面の模式図、5 is a schematic plan view of the apparatus of FIG. 4,

【図6】図4とは異なった具体例の縦断面の模式図、FIG. 6 is a schematic view of a vertical cross section of a specific example different from FIG.

【図7】図6の装置の平面の模式図、7 is a schematic plan view of the apparatus of FIG. 6,

【図8】従来のコイル型発電機の構成を示す縦断面の模
式図である。
FIG. 8 is a schematic vertical cross-sectional view showing the configuration of a conventional coil type generator.

【符号の説明】[Explanation of symbols]

1 電機子 2 空隙部 3 固定子 4 コイル巻線 5 起爆装置 6 初期電流源 7 負荷 8 通常爆薬 9 高性能爆薬 1 Armature 2 Air gap 3 Stator 4 Coil winding 5 Detonator 6 Initial current source 7 Load 8 Normal explosive 9 High performance explosive

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000004606 ニチコン株式会社 京都府京都市中京区御池通烏丸東入一筋目 仲保利町191番地の4 上原ビル3階 (74)上記3名の代理人 弁理士 小松 秀岳 (外2名 ) (72)発明者 藤原 修三 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 角舘 洋三 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 薄葉 州 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 吉田 正典 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 青木 勝敏 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 久保田 彰 東京都千代田区有楽町1丁目1番2号 旭 化成工業株式会社内 (72)発明者 佐藤 俊一 宮崎県延岡市旭町6丁目4100番地 旭化成 工業株式会社内 (72)発明者 宮本 昌広 横須賀市長坂2丁目2番1号 株式会社富 士電機総合研究所内 (72)発明者 森田 公 横須賀市長坂2丁目2番1号 株式会社富 士電機総合研究所内 (72)発明者 廣重 宣紀 川崎市川崎区田辺新田1番1号 富士電機 株式会社内 (72)発明者 中澤 徳郎 京都市中京区御池通烏丸東入一筋目仲保利 町191番地の4上原ビル3階ニチコン株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000004606 Nichicon Co., Ltd. Oike Dori Karasuma Higashiiri 1st Line, Nakagyo-ku, Kyoto City, Kyoto Prefecture 4 Uehara Building, 3rd Floor, 191, Nakabori-cho (74) Attorney Komatsu Hidetake (2 outside) (72) Inventor Shuzo Fujiwara, 1-1, Higashi, Tsukuba-shi, Ibaraki Institute of Industrial Science and Technology, Institute of Chemical Research (72) Inventor, Yozo Kakudate, 1-1, Higashi, Tsukuba, Ibaraki In-house (72) Inventor, Yusaba Province, 1-1 Higashi, Tsukuba, Ibaraki Prefecture, Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor, Masanori Yoshida, 1-1, East, Tsukuba City, Ibaraki Institute, Institute of Chemical Technology (72) Aoki Katsutoshi 1-chome, Higashi 1-chome, Tsukuba-shi, Ibaraki Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor Akira Kubota Asahi Kasei Kogyo Co., Ltd. 1-2 1-2 Yurakucho, Chiyoda-ku, Tokyo (72) Inventor Shunichi Sato 6-4100 Asahi-cho, Nobeoka-shi, Miyazaki Prefecture Asahi Kasei Kogyo Co., Ltd. (72) Masahiro Miyamoto 2 Nagasuka, Yokosuka-shi 2-2-1 Fuji Electric Research Institute Co., Ltd. (72) Inventor Ko Morita 2-2-1 Nagasaka, Yokosuka City Fuji Electric Research Institute Co., Ltd. (72) Inventor Noriyuki Hiroshige Arata Tanabe, Kawasaki-ku, Kawasaki-shi No. 1-1 No. 1 in Fuji Electric Co., Ltd. (72) Inventor Tokuro Nakazawa 4th Uehara Building, 3rd floor, Uehara Building, 191, Nakabori-cho, Oike Dori

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電機子に装填する爆薬として、起爆側に
通常爆薬、それに続いて高性能爆薬を装填したことを特
徴とする磁場濃縮型高性能型爆薬発電機。
1. A magnetic field concentrating high-performance explosive power generator characterized in that, as an explosive to be loaded into an armature, a normal explosive is loaded on the detonating side, followed by a high-performance explosive.
JP32181091A 1991-12-05 1991-12-05 High performance explosive generator Expired - Lifetime JP2842460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32181091A JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32181091A JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Publications (2)

Publication Number Publication Date
JPH05227732A true JPH05227732A (en) 1993-09-03
JP2842460B2 JP2842460B2 (en) 1999-01-06

Family

ID=18136673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32181091A Expired - Lifetime JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Country Status (1)

Country Link
JP (1) JP2842460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050047A (en) * 2007-08-14 2009-03-05 Asahi Kasei Chemicals Corp Magnetic concentration type explosive power generator
WO2012162294A2 (en) * 2011-05-26 2012-11-29 Baker Hughes Incorporated Perforating string with magnetohydrodynamic initiation transfer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592169B2 (en) 1990-05-14 1997-03-19 工業技術院長 Explosive generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050047A (en) * 2007-08-14 2009-03-05 Asahi Kasei Chemicals Corp Magnetic concentration type explosive power generator
WO2012162294A2 (en) * 2011-05-26 2012-11-29 Baker Hughes Incorporated Perforating string with magnetohydrodynamic initiation transfer
WO2012162294A3 (en) * 2011-05-26 2013-01-31 Baker Hughes Incorporated Perforating string with magnetohydrodynamic initiation transfer
US8919253B2 (en) 2011-05-26 2014-12-30 Baker Hughes Incorporated Perforating string with magnetohydrodynamic initiation transfer

Also Published As

Publication number Publication date
JP2842460B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US5627419A (en) Self-adjusting airgap motor/generator for flywheel system
US8354768B2 (en) Modular electromagnetic device with reversible generator-motor operation
US20220136415A1 (en) Refrigeration apparatus and method
US3099131A (en) Power generation system for propulsion and method of operating same
JPH05227732A (en) High-performance explosive generator
JPH03168384A (en) Pump with driving motor
US20020158471A1 (en) Power conversion methods and apparatus
US3480811A (en) Magnetic accelerator
JP2592169B2 (en) Explosive generator
JPS5795169A (en) Rotor for synchronous motor with permanent magnet
WO1995028761A2 (en) A system for generating power and propulsive force or lift by use of an electrostatic motor
CN112923799A (en) Explosive welding self-restraint structure explosive
US4841185A (en) Rising frequency generator
JP3286015B2 (en) Explosive generator
Speiser The Dungey model of the magnetosphere, and astro‐geophysical current sheets
US20230038333A1 (en) Methods for creating rapidly changing asymmetric electron surface densities for acceleration without mass ejection
JP3286016B2 (en) Explosive generator
Dremin Discoveries in the study of the detonation of molecular condensed explosives in the 20 th century
CN86102307B (en) The electric break for generator
JPH0947050A (en) Magnetic energy take-out system and energy take-out system employing it
Ziółkowski Evolution of binary stars with mass loss
JPS52156322A (en) Operating induction motor
SU1405882A2 (en) Separator for separating polydispersed system
JPS61271879A (en) Optical sensor using superconducting tunnel
Yamagiwa et al. Experimental study of double stage discharge Hall ion thruster

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term