JP2009050047A - Magnetic concentration type explosive power generator - Google Patents

Magnetic concentration type explosive power generator Download PDF

Info

Publication number
JP2009050047A
JP2009050047A JP2007211303A JP2007211303A JP2009050047A JP 2009050047 A JP2009050047 A JP 2009050047A JP 2007211303 A JP2007211303 A JP 2007211303A JP 2007211303 A JP2007211303 A JP 2007211303A JP 2009050047 A JP2009050047 A JP 2009050047A
Authority
JP
Japan
Prior art keywords
coil
conductor
current
metal tube
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007211303A
Other languages
Japanese (ja)
Inventor
Katsumi Sahashi
勝已 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007211303A priority Critical patent/JP2009050047A/en
Publication of JP2009050047A publication Critical patent/JP2009050047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To raise current amplification factor by increasing the number of turns of a coil and lessening the impact of increase in coil resistance due to coil temperature rise during current amplification process. <P>SOLUTION: The magnetic concentration type explosive power generator including a metal tube incorporating a detonator for exploding an explosive by receiving a trigger signal, and a coil arranged on the outer circumference of the metal tube, performs amplification by feeding a current to the coil. The coil employs a rectangular wire obtained by applying an insulating film to a conductor having a rectangular cross-section shape as a coil conductor. The coil is formed by winding the coil conductor around the outer circumference of the metal tube at a predetermined interval and insulating the coil conductors from each other with an insulating material excepting the surface of the coil conductor facing the metal tube. A plurality of coils of rectangular wire applied with an insulating film from the second half portion are bonded electrically by soldering, for example, and integrated in order to increase the cross section of the coil. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、通電中のコイルを爆薬により順次短絡することにより電流増幅を行い大電流パルスを発生する磁気濃縮型爆薬発電機に関し、特にパルス電流をパルス電圧に変換する装置やパルス電圧を電磁波に変換する装置と組み合わせることにより高出力の電磁波を発生させ、各種の分野での応用が可能な可搬型の電磁波発生装置等に用いられる磁気濃縮型爆薬発電機に関する。   The present invention relates to a magnetic concentration explosive generator that generates a large current pulse by sequentially short-circuiting energized coils with an explosive, and in particular, a device that converts a pulse current into a pulse voltage and a pulse voltage into an electromagnetic wave. The present invention relates to a magnetic concentrated explosive generator used in a portable electromagnetic wave generator that can generate a high output electromagnetic wave by combining with a conversion device and can be applied in various fields.

従来の磁気濃縮型爆薬発電機の動作原理を、図4〜図6を参照して説明する。図4において、1は磁気濃縮型爆薬発電機、2はコイル、8は金属筒、9は雷管、10は爆薬、12は配線、13はスイッチである。図示せぬ入力側装置から入力側の配線12およびスイッチ13を介して流れて来た電流は、コイル2を流れて出力側の配線12を介して図示せぬ出力側装置へ流れ、また、出力側装置から出力側の配線12へ戻ってきた電流は、金属筒8から入力側の配線12へと流れる。   The operation principle of a conventional magnetic concentration type explosive generator will be described with reference to FIGS. In FIG. 4, 1 is a magnetic concentrated explosive generator, 2 is a coil, 8 is a metal cylinder, 9 is a detonator, 10 is an explosive, 12 is a wiring, and 13 is a switch. A current flowing from the input side device (not shown) through the input side wiring 12 and the switch 13 flows through the coil 2 to the output side device (not shown) through the output side wiring 12 and outputs. The current returned from the side device to the output side wiring 12 flows from the metal cylinder 8 to the input side wiring 12.

ここで、コイル2に流れる初期電流をI1とし、コイル2の初期インダクタンスをL1とすると、コイル2にはL1×I1の磁束が生じる。コイル2に流れる電流がピークに達したとき、雷管9を起爆させると同時に爆薬10も起爆し爆ごうを開始する。   Here, assuming that the initial current flowing in the coil 2 is I1 and the initial inductance of the coil 2 is L1, a magnetic flux of L1 × I1 is generated in the coil 2. When the current flowing through the coil 2 reaches a peak, the detonator 9 is detonated and at the same time the explosive 10 is detonated and detonation is started.

これによって、図5に示すように、金属筒8が拡張し、コイル2を順次短絡して行くため、コイル2のインダクタンスLは次第に小さくなって行く。一方、磁束保存則により、コイル2の磁束Lとコイルを流れる電流Iの積L×Iは一定に保持されるため、コイル2に流れる電流は時間とともに増幅される。   As a result, as shown in FIG. 5, the metal tube 8 expands and the coil 2 is sequentially short-circuited, so that the inductance L of the coil 2 gradually decreases. On the other hand, since the product L × I of the magnetic flux L of the coil 2 and the current I flowing through the coil is kept constant according to the magnetic flux conservation law, the current flowing through the coil 2 is amplified with time.

電流が時間とともに増幅される様子を図6に示す。
発電の終期のコイルのインダクタンスをL2、コイルを流れる電流をI2とすると、
発電の初期と終期では磁束は保存されるので、L1×I1=L2×I2となる。
よって、発電終期の電流I2は I2=(L1/L2)×I1 となる。
FIG. 6 shows how the current is amplified with time.
If the inductance of the coil at the end of power generation is L2, and the current flowing through the coil is I2,
Since the magnetic flux is preserved in the initial and final periods of power generation, L1 × I1 = L2 × I2.
Therefore, the current I2 at the end of power generation is I2 = (L1 / L2) × I1.

上述したように電流Iが増幅される割合はコイル2の初期インダクタンスL1と終期インダクタンスL2の比(L1/L2)に概ね比例する。また、コイル2の初期インダクタンスL1はコイル2の巻き数に概ね比例する。従って、出力電流/入力電流で表される電流増幅率を大きくするにはコイル2の巻き数を大きくすればよいことがわかる。   As described above, the rate at which the current I is amplified is substantially proportional to the ratio (L1 / L2) of the initial inductance L1 and the final inductance L2 of the coil 2. The initial inductance L1 of the coil 2 is generally proportional to the number of turns of the coil 2. Therefore, it can be seen that the number of turns of the coil 2 should be increased in order to increase the current amplification factor represented by the output current / input current.

また発電終期のコイルのインダクタンスL2は小さい方が良い。   Further, it is preferable that the inductance L2 of the coil at the end of power generation is small.

また、磁気濃縮型爆薬発電機1のコイル2は、角形導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を金属円筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対面する面を除き、当該コイル導体間を絶縁材料で絶縁して形成されている。   The coil 2 of the magnetic enriched explosive generator 1 uses a rectangular electric wire with an insulating coating applied to a rectangular conductor as a coil conductor, and the coil conductor is wound around the outer circumference of a metal cylinder at a predetermined interval. Except for the surface facing the metal cylinder, the coil conductors are formed by insulating with an insulating material.

上述の平角電線をコイル導体として製作した従来の磁気濃縮型爆薬発電機の断面構成図を図2に示す。但し、図2(a)は長手軸方向の断面図、(b)は(a)のY1−Y2断面図である。   FIG. 2 shows a cross-sectional configuration diagram of a conventional magnetic concentrated explosive generator produced by using the above-described flat electric wire as a coil conductor. 2A is a sectional view in the longitudinal axis direction, and FIG. 2B is a sectional view taken along the line Y1-Y2 in FIG.

図2において、1Bは磁気濃縮型爆薬発電機、2Bは平角電線を用いたコイル、4Bはコイル2Bの導体、5Bはコイル2Bの絶縁被覆、6Bは絶縁体、8は金属筒、9は雷管、10は爆薬、11はフランジである。   In FIG. 2, 1B is a magnetic concentrated explosive generator, 2B is a coil using a rectangular electric wire, 4B is a conductor of coil 2B, 5B is an insulation coating of coil 2B, 6B is an insulator, 8 is a metal cylinder, 9 is a detonator 10 is an explosive and 11 is a flange.

前述したように、コイル2Bのインダクタンスは発電の初期では大きく、発電の終期では小さい方がよいため、コイル2Bの巻数は前半は密に巻き、後半は粗に巻いている。   As described above, since the inductance of the coil 2B is large at the initial stage of power generation and preferably small at the end of power generation, the number of turns of the coil 2B is densely wound in the first half and coarsely wound in the second half.

コイルの電流が増えると、電流の周波数が高くなり、表皮効果により電流はコイル表面に近い部分を流れるようになる。そのため、コイルの見かけ上の抵抗が大きくなる。平角電線は円形電線と比較すると導体の周長が長いため、抵抗の上昇が小さいという利点がある。   When the coil current increases, the frequency of the current increases, and the current flows through a portion close to the coil surface due to the skin effect. This increases the apparent resistance of the coil. A flat electric wire has an advantage that resistance rise is small because the circumference of the conductor is longer than that of a circular electric wire.

この種の従来の装置として、例えば特許文献1に記載のものがある。   As this type of conventional apparatus, there is one described in Patent Document 1, for example.

特許願2006−155001Patent application 2006-155001

しかし、従来の磁気濃縮型爆薬発電機には、次のような問題がある。磁気濃縮型爆薬発電機のコイルには発電の後半に電流が増大し、大きな電流が流れる。それとともにコイル導体にはジュールが発生し、コイル導体は温度が急に上昇し、コイルの抵抗はコイルの温度に比例するため、コイルの抵抗も急に増大する。そのためにコイル電流の増幅は制限を受け、電流の増幅が阻害される。   However, the conventional magnetic concentrated explosive generator has the following problems. The current increases in the latter half of the power generation, and a large current flows through the coil of the magnetic concentrated explosive generator. At the same time, joules are generated in the coil conductor, the temperature of the coil conductor rapidly increases, and the resistance of the coil is proportional to the temperature of the coil, so that the resistance of the coil also increases abruptly. Therefore, the amplification of the coil current is limited, and the current amplification is hindered.

これを防ぐために、コイルの導体を大きくするとコイルの抵抗増大を防ぐことができるが、コイルの断面積が大きくなり、コイルの前半部で巻数を大きくすることができなくなる。   In order to prevent this, if the conductor of the coil is increased, an increase in the resistance of the coil can be prevented, but the cross-sectional area of the coil increases, and the number of turns cannot be increased in the first half of the coil.

本発明は、このような課題に鑑みてなされたものであり、絶縁皮膜を施した平角電線を線材として用い、コイルの巻き数を大きくすると共に、電流の増幅過程でのコイル導体の温度上昇による影響を少なくすることによって電流増幅率を上げることができる磁気濃縮型爆薬発電機を提供することを目的としている。   The present invention has been made in view of such a problem, and uses a rectangular electric wire with an insulating coating as a wire, increases the number of turns of the coil, and increases the temperature of the coil conductor during the current amplification process. An object of the present invention is to provide a magnetic concentrated explosive generator capable of increasing the current amplification factor by reducing the influence.

上記目的を達成するために、本発明の請求項1による磁気濃縮型爆薬発電機は、
起動信号の付与により爆薬を起爆させる雷管を内蔵する金属筒と、この金属筒の外周に配置されたコイルとを有し、このコイルに電流を流して増幅を行う磁気濃縮型爆薬発電機において、
前記コイルは、断面形状が長方形状の角型導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を前記金属筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対向する面を除き、当該コイル導体間を絶縁性材料で絶縁して形成されており、前記コイルは後半部より複数コイルをハンダ付けなどの手段により電気的に接合して一体化し、コイル断面積を増やしたことを特徴とする。
In order to achieve the above object, a magnetic concentrated explosive generator according to claim 1 of the present invention provides:
In a magnetic concentrated explosive generator that has a metal tube containing a detonator for initiating an explosive by giving an activation signal, and a coil disposed on the outer periphery of the metal tube, and amplifies the current by flowing current through the coil,
The coil uses, as a coil conductor, a rectangular electric wire obtained by applying an insulating film to a rectangular conductor having a rectangular cross section, and the coil conductor is wound around the outer periphery of the metal cylinder at a predetermined interval. Is formed by insulating the coil conductors with an insulating material except for the surface facing the coil, and the coils are electrically joined and integrated by means such as soldering from the latter half of the coil. Characterized by increased area.

この構成によれば、コイルの後半部の導体断面積が大きくなるため、コイルを流れる電流が増大しても、コイルの温度上昇が緩和されるため、電流の増幅過程におけるコイル抵抗の増大の影響を軽減することができる。更に、コイルの前半部のコイル導体として、予め絶縁被膜を持つ小断面積の平角電線を使用するため、コイル間隔を小さくし、コイル前半部の巻数を増加させることで初期インダクタンスを大きくすることが可能となり、コイルの初期インダクタンスと終期インダクタンスの比、L1/L2で表される電流増幅率を大きくすることができる。   According to this configuration, since the conductor cross-sectional area of the latter half of the coil increases, even if the current flowing through the coil increases, the temperature rise of the coil is mitigated. Therefore, the influence of the increase in coil resistance during the current amplification process Can be reduced. Furthermore, since a rectangular electric wire with a small cross-sectional area having an insulating film in advance is used as the coil conductor in the first half of the coil, the initial inductance can be increased by reducing the coil interval and increasing the number of turns in the first half of the coil. Thus, the ratio of the initial inductance and the final inductance of the coil, the current amplification factor represented by L1 / L2, can be increased.

以上説明したように本発明の磁気濃縮型爆薬発電機によれば、コイルの巻き数を大きくすると共に、電流の増幅過程でのコイル温度の上昇による影響を少なくすることによって電流増幅率を上げることができるという効果がある。   As described above, according to the magnetic concentrated explosive generator of the present invention, the number of turns of the coil is increased, and the current amplification factor is increased by reducing the influence of the increase in coil temperature in the current amplification process. There is an effect that can be.

以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.

(実施の形態)
図1は、本発明の実施の形態に係る磁気濃縮型爆薬発電機の断面構成を示し、(a)は長手軸方向の断面図、(b)は(a)のX1−X2断面図である。
(Embodiment)
FIG. 1 shows a cross-sectional configuration of a magnetic concentrated explosive generator according to an embodiment of the present invention, where (a) is a cross-sectional view in the longitudinal axis direction, and (b) is a cross-sectional view along X1-X2 in (a). .

図1において、1Aは磁気濃縮型爆薬発電機、2A、3Aはコイルの導体、4Aはコイルの絶縁被覆、5Aはコイルの絶縁被覆、6Aは絶縁体、7Aはコイル2Aと3Aの導体間のハンダ付け部、8は金属筒、9は雷管、10は爆薬、11はフランジである。   In FIG. 1, 1A is a magnetic concentrated explosive generator, 2A and 3A are coil conductors, 4A is a coil insulation coating, 5A is a coil insulation coating, 6A is an insulator, and 7A is a conductor between the coils 2A and 3A. A soldering part, 8 is a metal cylinder, 9 is a detonator, 10 is an explosive, and 11 is a flange.

本実施の形態の磁気濃縮型爆薬発電機1Aが、従来の磁気濃縮型爆薬発電機1Bと異なる点は、コイルの後半部において、コイル2Aの他にコイル3Aを設け、7Aに示すようにコイル2Aと3Aをハンダ付けしてコイル2Aと3Aを電気的に一体化して構成したことにある。   The magnetic enriched explosive generator 1A of the present embodiment is different from the conventional magnetic enriched explosive generator 1B in that a coil 3A is provided in addition to the coil 2A in the latter half of the coil, as shown in 7A. This is because the coils 2A and 3A are electrically integrated by soldering 2A and 3A.

このような構成の磁気濃縮型爆薬発電機1Aによれば、コイルの後半部のコイル導体の断面積が増すため、コイル後半部でコイルに流れる電流値が急上昇しても、コイルの温度上昇が抑制され、コイルの抵抗が大きくならないので、その分、電流増幅率を大きくすることができる。   According to the magnetic concentrated explosive generator 1A having such a configuration, since the cross-sectional area of the coil conductor in the latter half of the coil increases, even if the current value flowing through the coil in the latter half of the coil increases rapidly, the temperature of the coil increases. Since the resistance of the coil is not increased, the current amplification factor can be increased accordingly.

また、コイル前半部はコイル2A単体で構成されるため、コイルの断面積が小さく、コイルの巻数を大きくとることができ、コイルの初期インダクタンス値L1が大きくなり、コイルの初期インダクタンスL1とコイルの終期インダクタンスL2の比、L1/L2で表される電流増幅率を大きくすることができる。   In addition, since the coil first half is composed of the coil 2A alone, the coil cross-sectional area is small, the number of turns of the coil can be increased, the initial inductance value L1 of the coil is increased, the initial inductance L1 of the coil and the coil The current amplification factor represented by the ratio of the final inductance L2, L1 / L2, can be increased.

なお、7Aに示すコイルのハンダ付け部はコイルの全周にわたって行う必要はなく、コイルの数カ所で部分的に行えばよい。これにより、コイル線材の絶縁皮膜を施した平角電線の特徴を生かし、コイル表面積を大幅に増加することが可能であり、コイル後半の表皮効果によるコイルの抵抗値増加がいっそう緩和される。   Note that the soldering portion of the coil shown in 7A does not need to be performed over the entire circumference of the coil, and may be performed partially at several locations of the coil. As a result, it is possible to significantly increase the coil surface area by taking advantage of the characteristics of the flat wire provided with the coil wire insulating film, and the coil resistance increase due to the skin effect in the latter half of the coil can be further alleviated.

次に、本実施の形態の磁気濃縮型爆薬発電機1Aの実施例について説明する。   Next, an example of the magnetic concentrated explosive generator 1A of the present embodiment will be described.

図1において、コイル2Aの導体4Aを縦12mm、横2mmの平角電線を用い、絶縁皮膜5Aとしてポリエステル膜0.03mmとし、内径15mm、ピッチ4mmで、前半のコイルを38ターン、後半をコイル2Aと同じ仕様の平角電線によるコイル3Aを設け、コイル2Aとコイル2Aをハンダ付けし一体とし、ピッチ20mmで4ターンのコイルを形成した。コイルの初期インダクタンスは100μHであった。   In FIG. 1, the conductor 4A of the coil 2A is a rectangular wire having a length of 12 mm and a width of 2 mm, the insulation film 5A is a polyester film 0.03 mm, the inner diameter is 15 mm, the pitch is 4 mm, the first half coil is 38 turns, and the second half is a coil 2A. A coil 3A made of a rectangular electric wire having the same specifications as above was provided, and the coil 2A and the coil 2A were soldered together to form a 4-turn coil with a pitch of 20 mm. The initial inductance of the coil was 100 μH.

ここでコイルの形成方法について説明する。まず、テフロン(登録商標)樹脂のような滑りの良い円筒樹脂上に接して平角電線2Aを、その樹脂の軸方向に対するコイル断面の長辺が垂直となるようにテンションを調整しながら巻く。その後、後半部にコイル3Aを2Aと密着して巻く。さらに、コイル後半の数カ所においてコイル2Aとコイル3Aの絶縁皮膜をはぎ取り、ハンダ付けをする。しかる後にエポキシ樹脂等の電気絶縁性のよい樹脂を流し込み、樹脂が固まった時点でテフロン(登録商標)樹脂の円筒を除去する。   Here, a method of forming the coil will be described. First, the flat wire 2A is wound on a slippery cylindrical resin such as Teflon (registered trademark) resin while adjusting the tension so that the long side of the coil cross section is perpendicular to the axial direction of the resin. Thereafter, the coil 3A is wound in close contact with 2A in the latter half. Further, the insulating coatings of the coils 2A and 3A are stripped off and soldered at several positions in the latter half of the coil. Thereafter, a resin having good electrical insulation such as an epoxy resin is poured, and when the resin is hardened, the Teflon (registered trademark) resin cylinder is removed.

このような磁気濃縮型爆薬発電機1Aを作動させたところ、出力電流/入力電流で表される電流増幅率として100倍を得た。   When such a magnetic concentrated explosive generator 1A was operated, 100 times was obtained as a current amplification factor represented by output current / input current.

次に、本実施の形態の磁気濃縮型爆薬発電機1Aとの比較のため、図2の従来の磁気濃縮型爆薬発電機1Bを製作し、作動させたところ、電流増幅率は50倍であった。   Next, for comparison with the magnetic concentrated explosive generator 1A of the present embodiment, when the conventional magnetic concentrated explosive generator 1B of FIG. 2 was manufactured and operated, the current amplification factor was 50 times. It was.

図3に本発明による磁気濃縮型爆薬発電機1Aと従来技術による磁気濃縮型発電機1Bの電流増幅率の時間的特性図の様子を示す。図に示す曲線(a)は従来技術による電流値、曲線(b)は本発明による電流値を示す。   FIG. 3 shows temporal characteristics of current amplification factors of the magnetic concentrated explosive generator 1A according to the present invention and the conventional magnetic concentrated generator 1B. The curve (a) shown in the figure shows the current value according to the prior art, and the curve (b) shows the current value according to the present invention.

図3で、電流値はコイル後半から差が発生し、本発明による磁気濃縮型爆薬発電機1Aの方が従来技術によるものより電流が大きくなることがわかる。   In FIG. 3, the current value varies from the latter half of the coil, and it can be seen that the current is higher in the magnetic concentrated explosive generator 1 </ b> A according to the present invention than in the prior art.

以上説明したように、本発明の磁気濃縮型爆薬発電機1Aによれば、コイルの巻数を大きくでき、電流の増幅過程でのコイルの温度上昇による影響を少なくできるので、電流増幅率を上げることができる。   As described above, according to the magnetic concentrated explosive generator 1A of the present invention, the number of turns of the coil can be increased and the influence of the temperature rise of the coil in the current amplification process can be reduced, so that the current amplification factor can be increased. Can do.

本発明の実施の形態に係る磁気濃縮型爆薬発電機の断面構成を示し、(a)は長手軸方向の断面図、(b)は(a)のX1−X2断面図である。The cross-sectional structure of the magnetic concentration type explosive generator which concerns on embodiment of this invention is shown, (a) is sectional drawing of a longitudinal-axis direction, (b) is X1-X2 sectional drawing of (a). 従来技術の形態に係る磁気濃縮型爆薬発電機の断面構成を示し、(a)は長手軸方向の断面図、(b)は(a)のY1−Y2断面図である。The cross-sectional structure of the magnetic concentration type explosive generator based on the form of a prior art is shown, (a) is sectional drawing of a longitudinal-axis direction, (b) is Y1-Y2 sectional drawing of (a). 本実施の形態に係る磁気濃縮型爆薬発電機と従来の磁気濃縮型爆薬発電機との電流増幅率の特性図である。It is a characteristic view of the current amplification factor of the magnetic enrichment type explosive generator according to the present embodiment and the conventional magnetic enrichment type explosive generator. 従来の磁気濃縮型爆薬発電機の構成を示す図である。It is a figure which shows the structure of the conventional magnetic concentration type explosive generator. 従来の磁気濃縮型爆薬発電機の作動を示す原理図である。It is a principle figure which shows the action | operation of the conventional magnetic concentration type explosive generator. 従来の磁気濃縮型爆薬発電機の電流増幅率の特性図である。It is a characteristic figure of the current gain of the conventional magnetic concentration type explosive generator.

符号の説明Explanation of symbols

1A,1B 磁気濃縮型爆薬発電機
2A,2B,3A コイル
4A,4B コイルの導体
5A,5B コイルの絶縁体
6A,6B 絶縁体
7A ハンダ付け部
8 金属筒
9 雷管
10 爆薬
11 フランジ
12 配線
13 スイッチ
1A, 1B Magnetic concentrated explosive generator 2A, 2B, 3A Coil 4A, 4B Coil conductor 5A, 5B Coil insulator 6A, 6B Insulator 7A Soldering part 8 Metal cylinder 9 Detonator 10 Explosive 11 Flange 12 Wiring 13 Switch

Claims (1)

起動信号の付与により爆薬を起爆させる雷管を内蔵する金属筒と、この金属筒の外周に配置されたコイルとを有し、このコイルに電流を流して増幅を行う磁気濃縮型爆薬発電機において、
前記コイルは、断面形状が長方形状の角型導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を前記金属筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対向する面を除き、当該コイル導体間を絶縁性材料で絶縁して形成されており、前記コイルは後半部より絶縁皮膜を施した平角電線を線材とした複数のコイルをハンダ付けなどの手段により電気的に接合して一体化し、コイル断面積及びコイル表面積を増やしたことを特徴とする磁気濃縮型爆薬発電機。
In a magnetic concentrated explosive generator that has a metal tube containing a detonator for initiating an explosive by giving an activation signal, and a coil disposed on the outer periphery of the metal tube, and amplifies the current by flowing current through the coil,
The coil uses, as a coil conductor, a rectangular electric wire obtained by applying an insulating film to a rectangular conductor having a rectangular cross section, and the coil conductor is wound around the outer periphery of the metal cylinder at a predetermined interval. Is formed by insulating the coil conductors with an insulating material except for the surface facing the coil, and the coil is a means such as soldering a plurality of coils using a rectangular wire with an insulating film from the latter half as a wire. The magnetically concentrated explosive generator is characterized in that the coil cross-sectional area and coil surface area are increased by electrically joining and integrating with each other.
JP2007211303A 2007-08-14 2007-08-14 Magnetic concentration type explosive power generator Pending JP2009050047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211303A JP2009050047A (en) 2007-08-14 2007-08-14 Magnetic concentration type explosive power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211303A JP2009050047A (en) 2007-08-14 2007-08-14 Magnetic concentration type explosive power generator

Publications (1)

Publication Number Publication Date
JP2009050047A true JP2009050047A (en) 2009-03-05

Family

ID=40501742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211303A Pending JP2009050047A (en) 2007-08-14 2007-08-14 Magnetic concentration type explosive power generator

Country Status (1)

Country Link
JP (1) JP2009050047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2548021C2 (en) * 2013-07-26 2015-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Explosion-magnetic system generating powerful energy impulse
RU2700694C1 (en) * 2018-11-12 2019-09-19 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method and unit for disconnection of disc-type explosive magnetic generator from spiral explosive magnetic generator
RU2746052C1 (en) * 2020-08-10 2021-04-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for forming a current pulse in the load of the inductive electromagnetic energy storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421375A (en) * 1990-05-14 1992-01-24 Agency Of Ind Science & Technol Explosive compound generator
JPH05227732A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol High-performance explosive generator
JPH05227733A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol High-efficiency type explosive generator
JPH05227734A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol Manufacture of stator for explosive generator
JPH06141573A (en) * 1991-12-03 1994-05-20 Agency Of Ind Science & Technol High performance stator for explosives generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421375A (en) * 1990-05-14 1992-01-24 Agency Of Ind Science & Technol Explosive compound generator
JPH06141573A (en) * 1991-12-03 1994-05-20 Agency Of Ind Science & Technol High performance stator for explosives generator
JPH05227732A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol High-performance explosive generator
JPH05227733A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol High-efficiency type explosive generator
JPH05227734A (en) * 1991-12-05 1993-09-03 Agency Of Ind Science & Technol Manufacture of stator for explosive generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2548021C2 (en) * 2013-07-26 2015-04-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Explosion-magnetic system generating powerful energy impulse
RU2700694C1 (en) * 2018-11-12 2019-09-19 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method and unit for disconnection of disc-type explosive magnetic generator from spiral explosive magnetic generator
RU2746052C1 (en) * 2020-08-10 2021-04-06 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for forming a current pulse in the load of the inductive electromagnetic energy storage

Similar Documents

Publication Publication Date Title
WO2008053613A1 (en) Sheet-type transformer and discharge lamp lighting device
US7808353B1 (en) Coil system for plasmoid thruster
JP2009050047A (en) Magnetic concentration type explosive power generator
JP2015082868A (en) Motor stator manufacturing method, and motor
JP2007325457A (en) Magnetic-concentration-type explosive generator
WO2012082012A2 (en) Projectile for a remote-acting electroshock weapon and method for the use thereof
US3231842A (en) Electromagnetic devices
JP2592169B2 (en) Explosive generator
US5137014A (en) Coil for lithotripter
RU2551140C2 (en) Electrical rocket engine
US11692797B2 (en) Permanent magnet seed field system for flux compression generator
WO2015159882A1 (en) SmCo-BASED RARE EARTH SINTERED MAGNET
US3522459A (en) Explosively generating electric pulses
CN107888169B (en) Pulse current booster, pulse current generating device and preparation method thereof
JP5100330B2 (en) Electromagnetic wave generator
RU2185705C1 (en) Spiral explosive magnetic generator
JP2022102201A5 (en)
WO2018216577A1 (en) Pulse power generating device
JP2008055459A (en) Inductor for electromagnetic molding
Bykov et al. Reproducible multimegagauss fields—History of ideas and their realization
RU2169425C2 (en) Magnetic-explosion helical generator
Shkuratov et al. Compact autonomous completely explosive pulsed power system
RU2156026C2 (en) Method and device for explosive cumulation of magnetic energy
JPS6044814A (en) Generating method of ultrasonic wave signal
JP2997777B1 (en) Electromagnetic wave generator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20090724

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Effective date: 20090729

Free format text: JAPANESE INTERMEDIATE CODE: A821

A621 Written request for application examination

Effective date: 20100721

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121030

Free format text: JAPANESE INTERMEDIATE CODE: A02