JP2009050047A - Magnetic concentration type explosive power generator - Google Patents
Magnetic concentration type explosive power generator Download PDFInfo
- Publication number
- JP2009050047A JP2009050047A JP2007211303A JP2007211303A JP2009050047A JP 2009050047 A JP2009050047 A JP 2009050047A JP 2007211303 A JP2007211303 A JP 2007211303A JP 2007211303 A JP2007211303 A JP 2007211303A JP 2009050047 A JP2009050047 A JP 2009050047A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- conductor
- current
- metal tube
- explosive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002360 explosive Substances 0.000 title claims abstract description 46
- 239000004020 conductor Substances 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 18
- 238000005476 soldering Methods 0.000 claims abstract description 7
- 239000011810 insulating material Substances 0.000 claims abstract description 4
- 230000004913 activation Effects 0.000 claims description 2
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 230000003321 amplification Effects 0.000 abstract description 20
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 238000004804 winding Methods 0.000 abstract 1
- 238000010248 power generation Methods 0.000 description 7
- 238000000576 coating method Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Electromagnets (AREA)
Abstract
Description
本発明は、通電中のコイルを爆薬により順次短絡することにより電流増幅を行い大電流パルスを発生する磁気濃縮型爆薬発電機に関し、特にパルス電流をパルス電圧に変換する装置やパルス電圧を電磁波に変換する装置と組み合わせることにより高出力の電磁波を発生させ、各種の分野での応用が可能な可搬型の電磁波発生装置等に用いられる磁気濃縮型爆薬発電機に関する。 The present invention relates to a magnetic concentration explosive generator that generates a large current pulse by sequentially short-circuiting energized coils with an explosive, and in particular, a device that converts a pulse current into a pulse voltage and a pulse voltage into an electromagnetic wave. The present invention relates to a magnetic concentrated explosive generator used in a portable electromagnetic wave generator that can generate a high output electromagnetic wave by combining with a conversion device and can be applied in various fields.
従来の磁気濃縮型爆薬発電機の動作原理を、図4〜図6を参照して説明する。図4において、1は磁気濃縮型爆薬発電機、2はコイル、8は金属筒、9は雷管、10は爆薬、12は配線、13はスイッチである。図示せぬ入力側装置から入力側の配線12およびスイッチ13を介して流れて来た電流は、コイル2を流れて出力側の配線12を介して図示せぬ出力側装置へ流れ、また、出力側装置から出力側の配線12へ戻ってきた電流は、金属筒8から入力側の配線12へと流れる。 The operation principle of a conventional magnetic concentration type explosive generator will be described with reference to FIGS. In FIG. 4, 1 is a magnetic concentrated explosive generator, 2 is a coil, 8 is a metal cylinder, 9 is a detonator, 10 is an explosive, 12 is a wiring, and 13 is a switch. A current flowing from the input side device (not shown) through the input side wiring 12 and the switch 13 flows through the coil 2 to the output side device (not shown) through the output side wiring 12 and outputs. The current returned from the side device to the output side wiring 12 flows from the metal cylinder 8 to the input side wiring 12.
ここで、コイル2に流れる初期電流をI1とし、コイル2の初期インダクタンスをL1とすると、コイル2にはL1×I1の磁束が生じる。コイル2に流れる電流がピークに達したとき、雷管9を起爆させると同時に爆薬10も起爆し爆ごうを開始する。 Here, assuming that the initial current flowing in the coil 2 is I1 and the initial inductance of the coil 2 is L1, a magnetic flux of L1 × I1 is generated in the coil 2. When the current flowing through the coil 2 reaches a peak, the detonator 9 is detonated and at the same time the explosive 10 is detonated and detonation is started.
これによって、図5に示すように、金属筒8が拡張し、コイル2を順次短絡して行くため、コイル2のインダクタンスLは次第に小さくなって行く。一方、磁束保存則により、コイル2の磁束Lとコイルを流れる電流Iの積L×Iは一定に保持されるため、コイル2に流れる電流は時間とともに増幅される。 As a result, as shown in FIG. 5, the metal tube 8 expands and the coil 2 is sequentially short-circuited, so that the inductance L of the coil 2 gradually decreases. On the other hand, since the product L × I of the magnetic flux L of the coil 2 and the current I flowing through the coil is kept constant according to the magnetic flux conservation law, the current flowing through the coil 2 is amplified with time.
電流が時間とともに増幅される様子を図6に示す。
発電の終期のコイルのインダクタンスをL2、コイルを流れる電流をI2とすると、
発電の初期と終期では磁束は保存されるので、L1×I1=L2×I2となる。
よって、発電終期の電流I2は I2=(L1/L2)×I1 となる。
FIG. 6 shows how the current is amplified with time.
If the inductance of the coil at the end of power generation is L2, and the current flowing through the coil is I2,
Since the magnetic flux is preserved in the initial and final periods of power generation, L1 × I1 = L2 × I2.
Therefore, the current I2 at the end of power generation is I2 = (L1 / L2) × I1.
上述したように電流Iが増幅される割合はコイル2の初期インダクタンスL1と終期インダクタンスL2の比(L1/L2)に概ね比例する。また、コイル2の初期インダクタンスL1はコイル2の巻き数に概ね比例する。従って、出力電流/入力電流で表される電流増幅率を大きくするにはコイル2の巻き数を大きくすればよいことがわかる。 As described above, the rate at which the current I is amplified is substantially proportional to the ratio (L1 / L2) of the initial inductance L1 and the final inductance L2 of the coil 2. The initial inductance L1 of the coil 2 is generally proportional to the number of turns of the coil 2. Therefore, it can be seen that the number of turns of the coil 2 should be increased in order to increase the current amplification factor represented by the output current / input current.
また発電終期のコイルのインダクタンスL2は小さい方が良い。 Further, it is preferable that the inductance L2 of the coil at the end of power generation is small.
また、磁気濃縮型爆薬発電機1のコイル2は、角形導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を金属円筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対面する面を除き、当該コイル導体間を絶縁材料で絶縁して形成されている。 The coil 2 of the magnetic enriched explosive generator 1 uses a rectangular electric wire with an insulating coating applied to a rectangular conductor as a coil conductor, and the coil conductor is wound around the outer circumference of a metal cylinder at a predetermined interval. Except for the surface facing the metal cylinder, the coil conductors are formed by insulating with an insulating material.
上述の平角電線をコイル導体として製作した従来の磁気濃縮型爆薬発電機の断面構成図を図2に示す。但し、図2(a)は長手軸方向の断面図、(b)は(a)のY1−Y2断面図である。 FIG. 2 shows a cross-sectional configuration diagram of a conventional magnetic concentrated explosive generator produced by using the above-described flat electric wire as a coil conductor. 2A is a sectional view in the longitudinal axis direction, and FIG. 2B is a sectional view taken along the line Y1-Y2 in FIG.
図2において、1Bは磁気濃縮型爆薬発電機、2Bは平角電線を用いたコイル、4Bはコイル2Bの導体、5Bはコイル2Bの絶縁被覆、6Bは絶縁体、8は金属筒、9は雷管、10は爆薬、11はフランジである。 In FIG. 2, 1B is a magnetic concentrated explosive generator, 2B is a coil using a rectangular electric wire, 4B is a conductor of coil 2B, 5B is an insulation coating of coil 2B, 6B is an insulator, 8 is a metal cylinder, 9 is a detonator 10 is an explosive and 11 is a flange.
前述したように、コイル2Bのインダクタンスは発電の初期では大きく、発電の終期では小さい方がよいため、コイル2Bの巻数は前半は密に巻き、後半は粗に巻いている。 As described above, since the inductance of the coil 2B is large at the initial stage of power generation and preferably small at the end of power generation, the number of turns of the coil 2B is densely wound in the first half and coarsely wound in the second half.
コイルの電流が増えると、電流の周波数が高くなり、表皮効果により電流はコイル表面に近い部分を流れるようになる。そのため、コイルの見かけ上の抵抗が大きくなる。平角電線は円形電線と比較すると導体の周長が長いため、抵抗の上昇が小さいという利点がある。 When the coil current increases, the frequency of the current increases, and the current flows through a portion close to the coil surface due to the skin effect. This increases the apparent resistance of the coil. A flat electric wire has an advantage that resistance rise is small because the circumference of the conductor is longer than that of a circular electric wire.
この種の従来の装置として、例えば特許文献1に記載のものがある。 As this type of conventional apparatus, there is one described in Patent Document 1, for example.
しかし、従来の磁気濃縮型爆薬発電機には、次のような問題がある。磁気濃縮型爆薬発電機のコイルには発電の後半に電流が増大し、大きな電流が流れる。それとともにコイル導体にはジュールが発生し、コイル導体は温度が急に上昇し、コイルの抵抗はコイルの温度に比例するため、コイルの抵抗も急に増大する。そのためにコイル電流の増幅は制限を受け、電流の増幅が阻害される。 However, the conventional magnetic concentrated explosive generator has the following problems. The current increases in the latter half of the power generation, and a large current flows through the coil of the magnetic concentrated explosive generator. At the same time, joules are generated in the coil conductor, the temperature of the coil conductor rapidly increases, and the resistance of the coil is proportional to the temperature of the coil, so that the resistance of the coil also increases abruptly. Therefore, the amplification of the coil current is limited, and the current amplification is hindered.
これを防ぐために、コイルの導体を大きくするとコイルの抵抗増大を防ぐことができるが、コイルの断面積が大きくなり、コイルの前半部で巻数を大きくすることができなくなる。 In order to prevent this, if the conductor of the coil is increased, an increase in the resistance of the coil can be prevented, but the cross-sectional area of the coil increases, and the number of turns cannot be increased in the first half of the coil.
本発明は、このような課題に鑑みてなされたものであり、絶縁皮膜を施した平角電線を線材として用い、コイルの巻き数を大きくすると共に、電流の増幅過程でのコイル導体の温度上昇による影響を少なくすることによって電流増幅率を上げることができる磁気濃縮型爆薬発電機を提供することを目的としている。 The present invention has been made in view of such a problem, and uses a rectangular electric wire with an insulating coating as a wire, increases the number of turns of the coil, and increases the temperature of the coil conductor during the current amplification process. An object of the present invention is to provide a magnetic concentrated explosive generator capable of increasing the current amplification factor by reducing the influence.
上記目的を達成するために、本発明の請求項1による磁気濃縮型爆薬発電機は、
起動信号の付与により爆薬を起爆させる雷管を内蔵する金属筒と、この金属筒の外周に配置されたコイルとを有し、このコイルに電流を流して増幅を行う磁気濃縮型爆薬発電機において、
前記コイルは、断面形状が長方形状の角型導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を前記金属筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対向する面を除き、当該コイル導体間を絶縁性材料で絶縁して形成されており、前記コイルは後半部より複数コイルをハンダ付けなどの手段により電気的に接合して一体化し、コイル断面積を増やしたことを特徴とする。
In order to achieve the above object, a magnetic concentrated explosive generator according to claim 1 of the present invention provides:
In a magnetic concentrated explosive generator that has a metal tube containing a detonator for initiating an explosive by giving an activation signal, and a coil disposed on the outer periphery of the metal tube, and amplifies the current by flowing current through the coil,
The coil uses, as a coil conductor, a rectangular electric wire obtained by applying an insulating film to a rectangular conductor having a rectangular cross section, and the coil conductor is wound around the outer periphery of the metal cylinder at a predetermined interval. Is formed by insulating the coil conductors with an insulating material except for the surface facing the coil, and the coils are electrically joined and integrated by means such as soldering from the latter half of the coil. Characterized by increased area.
この構成によれば、コイルの後半部の導体断面積が大きくなるため、コイルを流れる電流が増大しても、コイルの温度上昇が緩和されるため、電流の増幅過程におけるコイル抵抗の増大の影響を軽減することができる。更に、コイルの前半部のコイル導体として、予め絶縁被膜を持つ小断面積の平角電線を使用するため、コイル間隔を小さくし、コイル前半部の巻数を増加させることで初期インダクタンスを大きくすることが可能となり、コイルの初期インダクタンスと終期インダクタンスの比、L1/L2で表される電流増幅率を大きくすることができる。 According to this configuration, since the conductor cross-sectional area of the latter half of the coil increases, even if the current flowing through the coil increases, the temperature rise of the coil is mitigated. Therefore, the influence of the increase in coil resistance during the current amplification process Can be reduced. Furthermore, since a rectangular electric wire with a small cross-sectional area having an insulating film in advance is used as the coil conductor in the first half of the coil, the initial inductance can be increased by reducing the coil interval and increasing the number of turns in the first half of the coil. Thus, the ratio of the initial inductance and the final inductance of the coil, the current amplification factor represented by L1 / L2, can be increased.
以上説明したように本発明の磁気濃縮型爆薬発電機によれば、コイルの巻き数を大きくすると共に、電流の増幅過程でのコイル温度の上昇による影響を少なくすることによって電流増幅率を上げることができるという効果がある。 As described above, according to the magnetic concentrated explosive generator of the present invention, the number of turns of the coil is increased, and the current amplification factor is increased by reducing the influence of the increase in coil temperature in the current amplification process. There is an effect that can be.
以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
(実施の形態)
図1は、本発明の実施の形態に係る磁気濃縮型爆薬発電機の断面構成を示し、(a)は長手軸方向の断面図、(b)は(a)のX1−X2断面図である。
(Embodiment)
FIG. 1 shows a cross-sectional configuration of a magnetic concentrated explosive generator according to an embodiment of the present invention, where (a) is a cross-sectional view in the longitudinal axis direction, and (b) is a cross-sectional view along X1-X2 in (a). .
図1において、1Aは磁気濃縮型爆薬発電機、2A、3Aはコイルの導体、4Aはコイルの絶縁被覆、5Aはコイルの絶縁被覆、6Aは絶縁体、7Aはコイル2Aと3Aの導体間のハンダ付け部、8は金属筒、9は雷管、10は爆薬、11はフランジである。 In FIG. 1, 1A is a magnetic concentrated explosive generator, 2A and 3A are coil conductors, 4A is a coil insulation coating, 5A is a coil insulation coating, 6A is an insulator, and 7A is a conductor between the coils 2A and 3A. A soldering part, 8 is a metal cylinder, 9 is a detonator, 10 is an explosive, and 11 is a flange.
本実施の形態の磁気濃縮型爆薬発電機1Aが、従来の磁気濃縮型爆薬発電機1Bと異なる点は、コイルの後半部において、コイル2Aの他にコイル3Aを設け、7Aに示すようにコイル2Aと3Aをハンダ付けしてコイル2Aと3Aを電気的に一体化して構成したことにある。 The magnetic enriched explosive generator 1A of the present embodiment is different from the conventional magnetic enriched explosive generator 1B in that a coil 3A is provided in addition to the coil 2A in the latter half of the coil, as shown in 7A. This is because the coils 2A and 3A are electrically integrated by soldering 2A and 3A.
このような構成の磁気濃縮型爆薬発電機1Aによれば、コイルの後半部のコイル導体の断面積が増すため、コイル後半部でコイルに流れる電流値が急上昇しても、コイルの温度上昇が抑制され、コイルの抵抗が大きくならないので、その分、電流増幅率を大きくすることができる。 According to the magnetic concentrated explosive generator 1A having such a configuration, since the cross-sectional area of the coil conductor in the latter half of the coil increases, even if the current value flowing through the coil in the latter half of the coil increases rapidly, the temperature of the coil increases. Since the resistance of the coil is not increased, the current amplification factor can be increased accordingly.
また、コイル前半部はコイル2A単体で構成されるため、コイルの断面積が小さく、コイルの巻数を大きくとることができ、コイルの初期インダクタンス値L1が大きくなり、コイルの初期インダクタンスL1とコイルの終期インダクタンスL2の比、L1/L2で表される電流増幅率を大きくすることができる。 In addition, since the coil first half is composed of the coil 2A alone, the coil cross-sectional area is small, the number of turns of the coil can be increased, the initial inductance value L1 of the coil is increased, the initial inductance L1 of the coil and the coil The current amplification factor represented by the ratio of the final inductance L2, L1 / L2, can be increased.
なお、7Aに示すコイルのハンダ付け部はコイルの全周にわたって行う必要はなく、コイルの数カ所で部分的に行えばよい。これにより、コイル線材の絶縁皮膜を施した平角電線の特徴を生かし、コイル表面積を大幅に増加することが可能であり、コイル後半の表皮効果によるコイルの抵抗値増加がいっそう緩和される。 Note that the soldering portion of the coil shown in 7A does not need to be performed over the entire circumference of the coil, and may be performed partially at several locations of the coil. As a result, it is possible to significantly increase the coil surface area by taking advantage of the characteristics of the flat wire provided with the coil wire insulating film, and the coil resistance increase due to the skin effect in the latter half of the coil can be further alleviated.
次に、本実施の形態の磁気濃縮型爆薬発電機1Aの実施例について説明する。 Next, an example of the magnetic concentrated explosive generator 1A of the present embodiment will be described.
図1において、コイル2Aの導体4Aを縦12mm、横2mmの平角電線を用い、絶縁皮膜5Aとしてポリエステル膜0.03mmとし、内径15mm、ピッチ4mmで、前半のコイルを38ターン、後半をコイル2Aと同じ仕様の平角電線によるコイル3Aを設け、コイル2Aとコイル2Aをハンダ付けし一体とし、ピッチ20mmで4ターンのコイルを形成した。コイルの初期インダクタンスは100μHであった。 In FIG. 1, the conductor 4A of the coil 2A is a rectangular wire having a length of 12 mm and a width of 2 mm, the insulation film 5A is a polyester film 0.03 mm, the inner diameter is 15 mm, the pitch is 4 mm, the first half coil is 38 turns, and the second half is a coil 2A. A coil 3A made of a rectangular electric wire having the same specifications as above was provided, and the coil 2A and the coil 2A were soldered together to form a 4-turn coil with a pitch of 20 mm. The initial inductance of the coil was 100 μH.
ここでコイルの形成方法について説明する。まず、テフロン(登録商標)樹脂のような滑りの良い円筒樹脂上に接して平角電線2Aを、その樹脂の軸方向に対するコイル断面の長辺が垂直となるようにテンションを調整しながら巻く。その後、後半部にコイル3Aを2Aと密着して巻く。さらに、コイル後半の数カ所においてコイル2Aとコイル3Aの絶縁皮膜をはぎ取り、ハンダ付けをする。しかる後にエポキシ樹脂等の電気絶縁性のよい樹脂を流し込み、樹脂が固まった時点でテフロン(登録商標)樹脂の円筒を除去する。 Here, a method of forming the coil will be described. First, the flat wire 2A is wound on a slippery cylindrical resin such as Teflon (registered trademark) resin while adjusting the tension so that the long side of the coil cross section is perpendicular to the axial direction of the resin. Thereafter, the coil 3A is wound in close contact with 2A in the latter half. Further, the insulating coatings of the coils 2A and 3A are stripped off and soldered at several positions in the latter half of the coil. Thereafter, a resin having good electrical insulation such as an epoxy resin is poured, and when the resin is hardened, the Teflon (registered trademark) resin cylinder is removed.
このような磁気濃縮型爆薬発電機1Aを作動させたところ、出力電流/入力電流で表される電流増幅率として100倍を得た。 When such a magnetic concentrated explosive generator 1A was operated, 100 times was obtained as a current amplification factor represented by output current / input current.
次に、本実施の形態の磁気濃縮型爆薬発電機1Aとの比較のため、図2の従来の磁気濃縮型爆薬発電機1Bを製作し、作動させたところ、電流増幅率は50倍であった。 Next, for comparison with the magnetic concentrated explosive generator 1A of the present embodiment, when the conventional magnetic concentrated explosive generator 1B of FIG. 2 was manufactured and operated, the current amplification factor was 50 times. It was.
図3に本発明による磁気濃縮型爆薬発電機1Aと従来技術による磁気濃縮型発電機1Bの電流増幅率の時間的特性図の様子を示す。図に示す曲線(a)は従来技術による電流値、曲線(b)は本発明による電流値を示す。 FIG. 3 shows temporal characteristics of current amplification factors of the magnetic concentrated explosive generator 1A according to the present invention and the conventional magnetic concentrated generator 1B. The curve (a) shown in the figure shows the current value according to the prior art, and the curve (b) shows the current value according to the present invention.
図3で、電流値はコイル後半から差が発生し、本発明による磁気濃縮型爆薬発電機1Aの方が従来技術によるものより電流が大きくなることがわかる。 In FIG. 3, the current value varies from the latter half of the coil, and it can be seen that the current is higher in the magnetic concentrated explosive generator 1 </ b> A according to the present invention than in the prior art.
以上説明したように、本発明の磁気濃縮型爆薬発電機1Aによれば、コイルの巻数を大きくでき、電流の増幅過程でのコイルの温度上昇による影響を少なくできるので、電流増幅率を上げることができる。 As described above, according to the magnetic concentrated explosive generator 1A of the present invention, the number of turns of the coil can be increased and the influence of the temperature rise of the coil in the current amplification process can be reduced, so that the current amplification factor can be increased. Can do.
1A,1B 磁気濃縮型爆薬発電機
2A,2B,3A コイル
4A,4B コイルの導体
5A,5B コイルの絶縁体
6A,6B 絶縁体
7A ハンダ付け部
8 金属筒
9 雷管
10 爆薬
11 フランジ
12 配線
13 スイッチ
1A, 1B Magnetic concentrated explosive generator 2A, 2B, 3A Coil 4A, 4B Coil conductor 5A, 5B Coil insulator 6A, 6B Insulator 7A Soldering part 8 Metal cylinder 9 Detonator 10 Explosive 11 Flange 12 Wiring 13 Switch
Claims (1)
前記コイルは、断面形状が長方形状の角型導体に絶縁皮膜を施した平角電線をコイル導体として用い、このコイル導体を前記金属筒の外周に所定間隔介して巻き付け、このコイル導体が前記金属筒と対向する面を除き、当該コイル導体間を絶縁性材料で絶縁して形成されており、前記コイルは後半部より絶縁皮膜を施した平角電線を線材とした複数のコイルをハンダ付けなどの手段により電気的に接合して一体化し、コイル断面積及びコイル表面積を増やしたことを特徴とする磁気濃縮型爆薬発電機。 In a magnetic concentrated explosive generator that has a metal tube containing a detonator for initiating an explosive by giving an activation signal, and a coil disposed on the outer periphery of the metal tube, and amplifies the current by flowing current through the coil,
The coil uses, as a coil conductor, a rectangular electric wire obtained by applying an insulating film to a rectangular conductor having a rectangular cross section, and the coil conductor is wound around the outer periphery of the metal cylinder at a predetermined interval. Is formed by insulating the coil conductors with an insulating material except for the surface facing the coil, and the coil is a means such as soldering a plurality of coils using a rectangular wire with an insulating film from the latter half as a wire. The magnetically concentrated explosive generator is characterized in that the coil cross-sectional area and coil surface area are increased by electrically joining and integrating with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007211303A JP2009050047A (en) | 2007-08-14 | 2007-08-14 | Magnetic concentration type explosive power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007211303A JP2009050047A (en) | 2007-08-14 | 2007-08-14 | Magnetic concentration type explosive power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009050047A true JP2009050047A (en) | 2009-03-05 |
Family
ID=40501742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007211303A Pending JP2009050047A (en) | 2007-08-14 | 2007-08-14 | Magnetic concentration type explosive power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009050047A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2548021C2 (en) * | 2013-07-26 | 2015-04-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Explosion-magnetic system generating powerful energy impulse |
RU2700694C1 (en) * | 2018-11-12 | 2019-09-19 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method and unit for disconnection of disc-type explosive magnetic generator from spiral explosive magnetic generator |
RU2746052C1 (en) * | 2020-08-10 | 2021-04-06 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method for forming a current pulse in the load of the inductive electromagnetic energy storage |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421375A (en) * | 1990-05-14 | 1992-01-24 | Agency Of Ind Science & Technol | Explosive compound generator |
JPH05227732A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | High-performance explosive generator |
JPH05227733A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | High-efficiency type explosive generator |
JPH05227734A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | Manufacture of stator for explosive generator |
JPH06141573A (en) * | 1991-12-03 | 1994-05-20 | Agency Of Ind Science & Technol | High performance stator for explosives generator |
-
2007
- 2007-08-14 JP JP2007211303A patent/JP2009050047A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421375A (en) * | 1990-05-14 | 1992-01-24 | Agency Of Ind Science & Technol | Explosive compound generator |
JPH06141573A (en) * | 1991-12-03 | 1994-05-20 | Agency Of Ind Science & Technol | High performance stator for explosives generator |
JPH05227732A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | High-performance explosive generator |
JPH05227733A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | High-efficiency type explosive generator |
JPH05227734A (en) * | 1991-12-05 | 1993-09-03 | Agency Of Ind Science & Technol | Manufacture of stator for explosive generator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2548021C2 (en) * | 2013-07-26 | 2015-04-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Explosion-magnetic system generating powerful energy impulse |
RU2700694C1 (en) * | 2018-11-12 | 2019-09-19 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method and unit for disconnection of disc-type explosive magnetic generator from spiral explosive magnetic generator |
RU2746052C1 (en) * | 2020-08-10 | 2021-04-06 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") | Method for forming a current pulse in the load of the inductive electromagnetic energy storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008053613A1 (en) | Sheet-type transformer and discharge lamp lighting device | |
US7808353B1 (en) | Coil system for plasmoid thruster | |
JP2009050047A (en) | Magnetic concentration type explosive power generator | |
JP2015082868A (en) | Motor stator manufacturing method, and motor | |
JP2007325457A (en) | Magnetic-concentration-type explosive generator | |
WO2012082012A2 (en) | Projectile for a remote-acting electroshock weapon and method for the use thereof | |
US3231842A (en) | Electromagnetic devices | |
JP2592169B2 (en) | Explosive generator | |
US5137014A (en) | Coil for lithotripter | |
RU2551140C2 (en) | Electrical rocket engine | |
US11692797B2 (en) | Permanent magnet seed field system for flux compression generator | |
WO2015159882A1 (en) | SmCo-BASED RARE EARTH SINTERED MAGNET | |
US3522459A (en) | Explosively generating electric pulses | |
CN107888169B (en) | Pulse current booster, pulse current generating device and preparation method thereof | |
JP5100330B2 (en) | Electromagnetic wave generator | |
RU2185705C1 (en) | Spiral explosive magnetic generator | |
JP2022102201A5 (en) | ||
WO2018216577A1 (en) | Pulse power generating device | |
JP2008055459A (en) | Inductor for electromagnetic molding | |
Bykov et al. | Reproducible multimegagauss fields—History of ideas and their realization | |
RU2169425C2 (en) | Magnetic-explosion helical generator | |
Shkuratov et al. | Compact autonomous completely explosive pulsed power system | |
RU2156026C2 (en) | Method and device for explosive cumulation of magnetic energy | |
JPS6044814A (en) | Generating method of ultrasonic wave signal | |
JP2997777B1 (en) | Electromagnetic wave generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Effective date: 20090724 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A521 | Written amendment |
Effective date: 20090729 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A621 | Written request for application examination |
Effective date: 20100721 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120703 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20121030 Free format text: JAPANESE INTERMEDIATE CODE: A02 |