JP2842460B2 - High performance explosive generator - Google Patents

High performance explosive generator

Info

Publication number
JP2842460B2
JP2842460B2 JP32181091A JP32181091A JP2842460B2 JP 2842460 B2 JP2842460 B2 JP 2842460B2 JP 32181091 A JP32181091 A JP 32181091A JP 32181091 A JP32181091 A JP 32181091A JP 2842460 B2 JP2842460 B2 JP 2842460B2
Authority
JP
Japan
Prior art keywords
explosive
armature
normal
magnetic field
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32181091A
Other languages
Japanese (ja)
Other versions
JPH05227732A (en
Inventor
修三 藤原
洋三 角舘
州 薄葉
正典 吉田
勝敏 青木
彰 久保田
俊一 佐藤
昌広 宮本
公 森田
宣紀 廣重
徳郎 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Nichikon KK
Original Assignee
Agency of Industrial Science and Technology
Fuji Electric Co Ltd
Nichikon KK
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Electric Co Ltd, Nichikon KK, Asahi Kasei Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP32181091A priority Critical patent/JP2842460B2/en
Publication of JPH05227732A publication Critical patent/JPH05227732A/en
Application granted granted Critical
Publication of JP2842460B2 publication Critical patent/JP2842460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To get a high-performance explosive generator where a large current can flow by charging a normal explosive on initiating side and subsequently highperformance explosive, as the explosive to be charged, in an armature. CONSTITUTION:In case of a coil-type generator, a normal explosive 8 and a highperformance explosive 9 are arranged as explosives inside a cylindrical armature so that the high-performance explosive 9 may become conical at the interface with the normal explosive 9 and pierce the ordinary explosive 8. Moreover, a stator 3 with the normal winding 4 is arranged around an armature 1, and an initial power source 6 and a load 7 are connected, and when the explosion is triggered by the triggering device 5 at one end of the normal explosive, the armature operates by the explosion of the normal explosive 8 at first, and the gap 2 is reduced, and a magnetic field is condensed. And, as the condensation of the magnetic field advances, the explosion of the high- performance explosive 9 begins, and the condensation of the magnetic field advances with great force, as a result, a large current can be supplied to the load 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁場濃縮型(以下MC
型と記す)爆薬発電機、特に高性能爆薬を利用した高出
力の爆薬発電機に関する。
BACKGROUND OF THE INVENTION The present invention relates to a magnetic field concentration type (hereinafter referred to as MC).
The present invention relates to an explosive generator, particularly a high-power explosive generator using a high-performance explosive.

【0002】[0002]

【従来の技術】MC型爆薬発電機は電機子を駆動させる
ための爆薬の爆轟によって電機子と固定子との間隙を縮
小し、磁場を濃縮させることを原理とするものである。
2. Description of the Related Art An MC type explosive generator is based on the principle that a gap between an armature and a stator is reduced by detonation of an explosive for driving an armature and a magnetic field is concentrated.

【0003】その具体的構成を図面を参照して説明する
と図8に断面を示すように、円筒状の電機子1の周囲に
コイル巻線4を内蔵する固定子3を間隙2を有するよう
に配置したコイル型発電機と、図2に示すように、平板
状の電機子1と固定子3とを間隙2を隔てて対向させた
平板型発電機がある。これらの発電機は初期電流源6に
よって電機子1と固定子3を通して負荷7に通電した状
態で、コイル型の場合は電機子1の内部に配置した爆薬
8を起爆装置5によって爆発させるとその爆轟の進行に
従って電機子1が拡大して電機子1と固定子3との間に
存在する空隙部2が縮小し、そこに形成されていた磁場
が濃縮される。平板型発電機の場合は、平板状電機子1
の上に配置した爆薬8を起爆装置5で爆発させると平板
状電機子1が平板状固定子3の方へ押し下げられ、電機
子1と固定子3との間の空隙部2が縮小され、そこに形
成されていた磁場が濃縮される。
[0003] Referring to the drawings, a specific configuration thereof will be described with reference to the drawings. As shown in a cross section in FIG. 8, a stator 3 having a coil winding 4 built around a cylindrical armature 1 is formed so as to have a gap 2. As shown in FIG. 2, there is a coil-type generator arranged and a plate-type generator in which a flat armature 1 and a stator 3 are opposed to each other with a gap 2 therebetween. In a state where these generators are energized to the load 7 through the armature 1 and the stator 3 by the initial current source 6, in the case of the coil type, when the explosive 8 disposed inside the armature 1 is exploded by the detonator 5, As the detonation progresses, the armature 1 expands, the gap 2 existing between the armature 1 and the stator 3 shrinks, and the magnetic field formed therein is concentrated. In the case of a flat generator, the flat armature 1
When the explosive 8 disposed on the explosive device is exploded by the detonator 5, the flat armature 1 is pushed down toward the flat stator 3, and the gap 2 between the armature 1 and the stator 3 is reduced, The magnetic field formed there is concentrated.

【0004】この場合、濃縮された磁場の強さの2乗に
比例して固定子3と電機子1で形成する平行な空隙部2
の縮小に対抗する力(f1)が大きくなってくる。これ
に対して、爆轟力により、コイル型の場合は電機子1を
外側に拡げようとする力(f2)、平板型の場合は電機
子1を下側に押し下げようとする力(f2)を大きくす
る必要がある。
In this case, a parallel gap 2 formed by the stator 3 and the armature 1 is proportional to the square of the strength of the concentrated magnetic field.
The force (f 1 ) against the reduction of becomes larger. On the other hand, the detonation force causes a force (f 2 ) to expand the armature 1 outward in the case of the coil type, and a force (f 2 ) to push the armature 1 downward in the case of the flat type. 2 ) need to be bigger.

【0005】ここでf1=f2になった場合は磁場の濃縮
は停止し、これ以上の電流増幅はできなくなる。
Here, when f 1 = f 2 , concentration of the magnetic field stops, and further current amplification cannot be performed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、爆薬の種類
とその装填方法を特定することによって上記f2を大き
くした高性能型爆薬発電機を提供しようとするものであ
る。
[0008] The present invention is intended to provide a high-performance explosive power generator by increasing the f 2 by identifying and its loading method kind of the explosive.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、特許請求の範囲に記載のとおり、電
機子に装填する爆薬として、起爆側に通常爆薬、それに
続いて高性能爆薬を装填したMC型高性能型爆薬発電機
である。上記通常爆薬とは定常な爆発速度が6.0Km
/sec以下のものであり、それより速いものを高性能
爆薬という。
According to an embodiment of the present invention for solving the above-mentioned problems, an explosive to be loaded into an armature is provided with a normal explosive on a detonating side, followed by a high-performance MC type high performance explosive generator loaded with explosives. The regular explosive has a steady explosion speed of 6.0 km
/ Sec or less, and those faster than that are called high explosives.

【0008】一般に爆轟生成ガスが電機子に及ぼす力
は、爆薬の爆発速度の略二乗に比例する。即ち、本発明
は空隙部2の縮小に対抗する力f1が小さい前半では通
常爆薬を用い、f1力の大きい後半では高性能爆薬を組
み合せて、爆薬を合理的に使用することによって、同一
形状の発電機を用いても大電流が得られる様にしたもの
である。
In general, the force exerted by the detonation gas on the armature is approximately proportional to the square of the explosive speed of the explosive. That is, the present invention is usually used explosives in the first half the force f 1 against the reduction of the gap portion 2 is small, a combination of high explosive in the second half large f 1 force, by rationally using explosives, the same A large current can be obtained even when a generator having a shape is used.

【0009】又、磁場濃縮型発電ではインダクタンスの
変化速度(減少速度)が、磁場濃縮速度に比例し、それ
が電気出力に比例するので、この点からも爆速の速い爆
薬が好ましい。しかし、高性能爆薬は高価であるので、
磁場濃縮の初期には通常爆薬を使用し、後半に高性能爆
薬を使用することにより、効率的な発電を行うことがで
きる。
Further, in magnetic field concentration type power generation, the rate of change (decrease rate) of inductance is proportional to the magnetic field concentration rate, which is proportional to the electric output. However, high explosives are expensive,
Efficient power generation can be achieved by using a normal explosive in the initial stage of magnetic field concentration and using a high-performance explosive in the second half.

【0010】図面を参照して具体点に説明すると、図1
は本発明のコイル型発電機の場合の縦断面の模式図であ
る。円筒形電機子1の内部に爆薬として通常爆薬8と高
性能爆薬9とを、高性能爆薬9が通常爆薬8との界面で
円錐状になって通常爆薬に貫入するように配置する。電
機子1の周囲にはコイル巻線4を内蔵した固定子3が配
置され、初期電流源6と負荷7とが図示のとおりに接続
されている。通常爆薬の一端にある起爆装置5によって
起爆すると、最初(f1が小さい間)は通常爆薬8の爆
轟によって電機子1が作動して空隙部2が縮小され磁場
が濃縮される。磁場の濃縮が進んでf1が大きくなると
高性能爆薬9の爆轟が起り、大きな力で更に磁場の濃縮
が進み、その結果、負荷7に対して大きな電流を供給す
ることができる。
Referring to the drawings, a specific point will be described.
FIG. 2 is a schematic view of a vertical section in the case of a coil-type generator of the present invention. A normal explosive 8 and a high explosive 9 are arranged as explosives inside the cylindrical armature 1 such that the high explosive 9 is conical at the interface with the normal explosive 8 and penetrates the normal explosive. A stator 3 containing a coil winding 4 is arranged around the armature 1, and an initial current source 6 and a load 7 are connected as shown. When detonated by a detonator 5 in the normal end of the explosive, the first (between f 1 is small) is a magnetic field is void section 2 the armature 1 is operated by detonation of normal explosives 8 reduced is concentrated. When the magnetic field concentration increases and f 1 increases, the high explosive 9 detonates, and the magnetic field further increases with a large force. As a result, a large current can be supplied to the load 7.

【0011】図2から図7は平板型発電機の場合を示す
ものである。図2は平板型の発電機の縦断面の模式図、
図3はその平面図である。図2は電機子1の上に通常爆
薬8と高性能爆薬9とを、それ等の界面で通常爆薬8が
高性能爆薬9と電機子1との間に楔形に貫入するように
配置されている。この場合はまず起爆装置5によって通
常爆薬の爆轟が始まり、電機子1を固定子3の方に押し
下げ、空隙部2を縮小し、磁場が濃縮される。磁場の濃
縮が進んでf1が大きくなると高性能爆薬9の爆轟が始
まり、大きな力で更に磁場の濃縮が進行し、負荷7に対
して大きな電流を供給することができる。
FIG. 2 to FIG. 7 show the case of a flat plate type generator. FIG. 2 is a schematic diagram of a vertical cross section of a flat plate type generator,
FIG. 3 is a plan view thereof. FIG. 2 shows that the normal explosive 8 and the high explosive 9 are arranged on the armature 1 such that the normal explosive 8 penetrates between the high explosive 9 and the armature 1 in a wedge shape at the interface between them. I have. In this case, the detonation of the explosive is started by the detonator 5, the armature 1 is pushed down toward the stator 3, the gap 2 is reduced, and the magnetic field is concentrated. When f 1 increases as the concentration of the magnetic field progresses, detonation of the high-performance explosive 9 starts, and the concentration of the magnetic field further proceeds with a large force, so that a large current can be supplied to the load 7.

【0012】図4および図5は図2、図3と同じ趣旨で
あり高性能爆薬9が楔型になって通常爆薬8の中央部に
貫入している例である。
FIGS. 4 and 5 have the same concept as FIGS. 2 and 3, and show an example in which the high-performance explosive 9 is in the form of a wedge and penetrates into the center of the normal explosive 8.

【0013】図6、図7は同じく平板型発電機であり、
高性能爆薬9の先端が角錐状に通常爆薬8の中央に貫入
している具体例である。
FIGS. 6 and 7 show a flat plate type generator,
This is a specific example in which the tip of the high-performance explosive 9 penetrates into the center of the normal explosive 8 in a pyramid shape.

【0014】以上、何れの例も高性能爆薬9と通常爆薬
8の界面では高性能爆薬9が電機子1から離れた位置に
存在し、電機子1には通常爆薬8が接触している。これ
は上記界面で高性能爆薬9が電機子1に接触していると
その接触部で二種類の爆薬の爆速が不連続になって電機
子1が破断するおそれがある。
As described above, in any of the examples, at the interface between the high explosive 9 and the normal explosive 8, the high explosive 9 exists at a position away from the armature 1, and the normal explosive 8 is in contact with the armature 1. If the high explosive 9 is in contact with the armature 1 at the interface, the explosive speeds of the two types of explosives are discontinuous at the contact portion, and the armature 1 may be broken.

【0015】もっとも高性能爆薬9と通常爆薬8の接触
部に両爆薬を混合した爆薬を配置すれば爆速の不連続は
防止できるがそのような爆薬を作製するのは困難である
ので実用性がない。
However, if an explosive in which both explosives are mixed is disposed at the contact portion between the high-performance explosive 9 and the normal explosive 8, discontinuity in the explosive velocity can be prevented, but it is difficult to produce such an explosive. Absent.

【0016】なお、通常爆薬8と高性能爆薬9との界面
で高性能爆薬が通常爆薬内に貫入しているその先端部の
角度(例えば図1のθ)には最適な値があり、下記数式
で表わされる。
At the interface between the normal explosive 8 and the high explosive 9, the angle of the tip (for example, θ in FIG. 1) at which the high explosive penetrates the normal explosive has an optimum value. It is represented by an equation.

【0017】通常爆薬の爆速をd1(m/sec)、高
性能爆薬の爆速をd2(m/sec)とすると、d2・c
osθ≧d1より cosθ≧d1/d2 → θ≦cos-1(d1/d2) が条件となる。
Assuming that the explosive velocity of a normal explosive is d 1 (m / sec) and the explosive velocity of a high-performance explosive is d 2 (m / sec), d 2 · c
osθ ≧ d 1 than cosθ ≧ d 1 / d 2 → θ ≦ cos -1 is (d 1 / d 2) is a condition.

【0018】なお、本発明で用いる爆薬の爆速は二段
階、例えばペントリットを含むプラスティック状爆薬を
用いて爆速が5,500m/secのものと、HMXを
含むプラスティック状爆薬を用いて爆速が8,400m
/secのものを組合せることが考えられるが、三段階
以上の各爆速の爆薬を組合せてもよい。
The explosive used in the present invention has two explosion speeds, for example, a plastic explosive containing pentolit and having an explosion speed of 5,500 m / sec, and a plastic explosive containing HMX having an explosive speed of 8,500 m / sec. 400m
/ Sec, but explosives of each of three or more explosive speeds may be combined.

【0019】[0019]

【実施例】以下、実施例によって、本発明を具体的に説
明する。
The present invention will be described below in detail with reference to examples.

【0020】上記の爆速5,500m/secと8,4
00m/secの組合せでθ=30°〜40°の範囲で
の実験を行った結果、爆速5,500m/sec、単独
のものに比し、電流増巾値として、20〜30%の増加
が見られた。又、角度をθ=49°以下にしなかったも
のについては、ライナーの破断と見られる現象により電
流増加が止ったことが観測された。
The above explosion speed of 5,500 m / sec and 8,4
As a result of conducting an experiment in the range of θ = 30 ° to 40 ° with a combination of 00 m / sec, the explosion velocity was 5,500 m / sec, and the current amplification value increased by 20 to 30% as compared with the single case. Was seen. In the case where the angle was not set to θ = 49 ° or less, it was observed that the increase in current was stopped due to a phenomenon that was considered to be breakage of the liner.

【0021】[0021]

【発明の効果】以上説明したように、本発明の爆薬発電
機によって、従来のものより一層大きな電流を得ること
ができる。
As described above, the explosive generator according to the present invention can obtain a larger current than the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の具体例のうちコイル型発電機の構成を
示す縦断面の模式図、
FIG. 1 is a schematic diagram of a longitudinal section showing a configuration of a coil generator in a specific example of the present invention,

【図2】本発明の具体例のうち、平板型発電機の構成を
示す縦断面の模式図、
FIG. 2 is a schematic view of a longitudinal section showing a configuration of a flat plate type generator in a specific example of the present invention;

【図3】図の2の装置の平面の模式図、FIG. 3 is a schematic plan view of the device of FIG. 2;

【図4】図2とは異なった具体例の縦断面の模式図、FIG. 4 is a schematic view of a longitudinal section of a specific example different from FIG. 2,

【図5】図4の装置の平面の模式図、FIG. 5 is a schematic plan view of the device of FIG. 4;

【図6】図4とは異なった具体例の縦断面の模式図、FIG. 6 is a schematic diagram of a longitudinal section of a specific example different from FIG.

【図7】図6の装置の平面の模式図、FIG. 7 is a schematic plan view of the device of FIG. 6,

【図8】従来のコイル型発電機の構成を示す縦断面の模
式図である。
FIG. 8 is a schematic diagram of a longitudinal section showing a configuration of a conventional coil generator.

【符号の説明】[Explanation of symbols]

1 電機子 2 空隙部 3 固定子 4 コイル巻線 5 起爆装置 6 初期電流源 7 負荷 8 通常爆薬 9 高性能爆薬 DESCRIPTION OF SYMBOLS 1 Armature 2 Air gap 3 Stator 4 Coil winding 5 Detonator 6 Initial current source 7 Load 8 Normal explosive 9 High-performance explosive

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 修三 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 角舘 洋三 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 薄葉 州 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 吉田 正典 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 青木 勝敏 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 久保田 彰 東京都千代田区有楽町1丁目1番2号 旭化成工業株式会社内 (72)発明者 佐藤 俊一 宮崎県延岡市旭町6丁目4100番地 旭化 成工業株式会社内 (72)発明者 宮本 昌広 横須賀市長坂2丁目2番1号 株式会社 富士電機総合研究所内 (72)発明者 森田 公 横須賀市長坂2丁目2番1号 株式会社 富士電機総合研究所内 (72)発明者 廣重 宣紀 川崎市川崎区田辺新田1番1号 富士電 機株式会社内 (72)発明者 中澤 徳郎 京都市中京区御池通烏丸東入一筋目仲保 利町191番地の4上原ビル3階ニチコン 株式会社内 審査官 栗林 敏彦 (56)参考文献 特開 平3−175299(JP,A) 特許2592169(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H02N 11/00 H02K 57/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuzo Fujiwara 1-1, Higashi, Tsukuba, Ibaraki Pref., Industrial Technology Institute Chemical Research Laboratory (72) Inventor Yozo Kakudate, 1-1-1, Higashi, Tsukuba, Ibaraki Pref. Within the Technical Research Institute (72) Inventor, Tsubasa, 1-1-1, Higashi, Tsukuba, Ibaraki Pref.Industrial Technology Institute, Chemical Research Laboratory (72) Inventor, Masanori Yoshida, 1-1-1, Higashi, Tsukuba, Ibaraki Pref. 72) Inventor Katsutoshi Aoki 1-1, Higashi, Tsukuba, Ibaraki Pref., Institute of Chemical Technology, Industrial Technology Institute (72) Inventor Akira Kubota 1-2-1, Yurakucho, Chiyoda-ku, Tokyo Asahi Kasei Kogyo Co., Ltd. (72) Inventor Shunichi Sato 6-4100 Asahicho, Nobeoka-shi, Miyazaki Asahi Kasei Kogyo Co., Ltd. (72) Inventor Masahiro Miyamoto Yokosuka 2-2-1, Nagasaka-shi, Fuji Electric Research Laboratory Co., Ltd. (72) Inventor: Kimi Morita 2-2-1-1, Nagasaka, Yokosuka City, Fuji Electric Research Laboratory Co., Ltd. (72) Inventor: Norihiro Hiroshige Tanabe, Kawasaki-ku, Kawasaki-shi (1) Nitta No. 1 Fuji Electric Co., Ltd. (72) Inventor Tokuo Nakazawa Tokuhiko Kuribayashi, Nichicon Co., Ltd. 56) References JP-A-3-175299 (JP, A) Patent 2592169 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) H02N 11/00 H02K 57/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電機子に装填する爆薬として、起爆側に
通常爆薬、それに続いて高性能爆薬を装填したことを特
徴とする磁場濃縮型高性能型爆薬発電機。
1. A magnetic field-enriched high-performance explosive generator characterized in that a normal explosive and then a high-performance explosive are loaded on the detonating side as the explosive to be loaded on the armature.
JP32181091A 1991-12-05 1991-12-05 High performance explosive generator Expired - Lifetime JP2842460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32181091A JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32181091A JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Publications (2)

Publication Number Publication Date
JPH05227732A JPH05227732A (en) 1993-09-03
JP2842460B2 true JP2842460B2 (en) 1999-01-06

Family

ID=18136673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32181091A Expired - Lifetime JP2842460B2 (en) 1991-12-05 1991-12-05 High performance explosive generator

Country Status (1)

Country Link
JP (1) JP2842460B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050047A (en) * 2007-08-14 2009-03-05 Asahi Kasei Chemicals Corp Magnetic concentration type explosive power generator
US8919253B2 (en) 2011-05-26 2014-12-30 Baker Hughes Incorporated Perforating string with magnetohydrodynamic initiation transfer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592169B2 (en) 1990-05-14 1997-03-19 工業技術院長 Explosive generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2592169B2 (en) 1990-05-14 1997-03-19 工業技術院長 Explosive generator

Also Published As

Publication number Publication date
JPH05227732A (en) 1993-09-03

Similar Documents

Publication Publication Date Title
JP2842460B2 (en) High performance explosive generator
US4723087A (en) Piezoelectric impact sensor
GB1422990A (en) Safety device on an electrical projectile fuze
JP2592169B2 (en) Explosive generator
JPS5795169A (en) Rotor for synchronous motor with permanent magnet
JP2842461B2 (en) High efficiency explosive generator
Bohr et al. The Many Facets of Nuclear Structure: The developing understanding of nuclear structure has revealed a subtle system involving many types of correlations and collective motions
JP3201068B2 (en) Explosive generator
CA1180743A (en) Disc-shaped m.h.d. generator
JP3286015B2 (en) Explosive generator
US4841185A (en) Rising frequency generator
GB1042451A (en) Improvements in machines and methods for producing high intensity electric currents
JPH06327224A (en) Exprosive generator
US3128595A (en) Propulsion method and apparatus
WO1995028761A2 (en) A system for generating power and propulsive force or lift by use of an electrostatic motor
USH148H (en) Shock electromechanical energy converter with permanent magnet
US20230038333A1 (en) Methods for creating rapidly changing asymmetric electron surface densities for acceleration without mass ejection
JP3286016B2 (en) Explosive generator
EP0300979B1 (en) Motor with turning ram jets
US3121815A (en) Self-starting synchronous motor of high torque output
RU2247925C1 (en) Electric detonator
Dremin Discoveries in the study of the detonation of molecular condensed explosives in the 20 th century
SU704405A1 (en) Magnetoaccumulating generator
JPS5628458A (en) Atomic spectrum generating lamp
Turner et al. The C4H Zeeman effect in TMC-1: understanding low-mass star formation

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term