JPH05226326A - Forming method of thermal oxide film - Google Patents
Forming method of thermal oxide filmInfo
- Publication number
- JPH05226326A JPH05226326A JP2386892A JP2386892A JPH05226326A JP H05226326 A JPH05226326 A JP H05226326A JP 2386892 A JP2386892 A JP 2386892A JP 2386892 A JP2386892 A JP 2386892A JP H05226326 A JPH05226326 A JP H05226326A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- thermal oxide
- forming
- thermal
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Element Separation (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコン半導体製造工
程に関し、特にシリコン溝加工後の熱酸化膜の形成方法
の改善に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon semiconductor manufacturing process, and more particularly to improvement of a method for forming a thermal oxide film after processing a silicon groove.
【0002】[0002]
【従来の技術】シリコン半導体の製造工程には、例え
ば、縦型MOSFETやメモリのキャパシタセルなどの
ように、シリコンウェハ上に溝を加工した後に、熱酸化
膜を形成する工程がある。通常の熱酸化工程では、11
00℃程度で熱酸化を行い、SiO2膜(熱酸化膜)を
形成するが、溝の凸部の角と凹部の隅では、熱酸化膜の
膜厚が不均一になる。特に、凹部の隅では、熱酸化膜の
厚みが薄くなるうえ、膜に圧縮応力が加わり、絶縁耐圧
や電気的特性の劣化により、長期的信頼性の面で課題が
あった。2. Description of the Related Art A manufacturing process of a silicon semiconductor includes a step of forming a thermal oxide film after processing a groove on a silicon wafer such as a vertical MOSFET or a capacitor cell of a memory. In the normal thermal oxidation process, 11
Thermal oxidation is performed at about 00 ° C. to form a SiO 2 film (thermal oxide film), but the film thickness of the thermal oxide film becomes uneven at the corners of the convex portion and the concave portion of the groove. In particular, at the corners of the recesses, the thermal oxide film becomes thin, and compressive stress is applied to the film, which causes a problem in terms of long-term reliability due to deterioration of dielectric strength and electrical characteristics.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記従来技
術の課題を踏まえてなされたものであり、溝部に熱酸化
膜を均一に、かつ膜応力を低減して形成することによ
り、絶縁耐圧や電気的特性の劣化を防止して、長期的な
信頼性を向上できる熱酸化膜の形成方法を提供すること
を目的としたものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. By forming a thermal oxide film uniformly in the groove portion while reducing the film stress, the dielectric strength is improved. It is an object of the present invention to provide a method for forming a thermal oxide film capable of improving long-term reliability by preventing deterioration of electrical characteristics.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、シリコン半導体製造工程におけるシ
リコン溝加工後の熱酸化膜の形成方法であって、シリコ
ンウェハ上に前記溝加工を施した後、酸化性ガス雰囲気
中で900℃以下で低温熱酸化して、熱酸化膜を形成す
る工程と、この熱酸化膜をエッチングにより除去する工
程と、再度、酸化性ガス雰囲気中で1050℃以上で高
温熱酸化して、熱酸化膜を形成する工程とにより、前記
溝部に熱酸化膜を均一に形成することを特徴とするもの
である。The structure of the present invention for solving the above-mentioned problems is a method for forming a thermal oxide film after silicon groove processing in a silicon semiconductor manufacturing process, wherein the groove processing is performed on a silicon wafer. After that, a step of forming a thermal oxide film by low-temperature thermal oxidation at 900 ° C. or lower in an oxidizing gas atmosphere, a step of removing the thermal oxide film by etching, and a step of 1050 in an oxidizing gas atmosphere again. A thermal oxide film is formed uniformly in the groove by a step of forming a thermal oxide film by high-temperature thermal oxidation at a temperature of not less than ° C.
【0005】[0005]
【作用】本発明によれば、熱酸化膜厚を溝の凸部の角や
凹部の隅などに関係なく均一に形成することができるた
め、絶縁耐圧を向上することができる。According to the present invention, the thermally-oxidized film thickness can be formed uniformly regardless of the corners of the convex portions of the grooves and the corners of the concave portions, so that the dielectric strength voltage can be improved.
【0006】[0006]
【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明の熱酸化膜の形成方法を示す工程図である。
図1において、(イ)図に示すように、シリコンウェハ
1上にマスクパターンを形成して、ドライエッチングに
より、溝部を形成する。この溝部は、深さ数μm〜数十
μmである。その後、(ロ)図に示す低温熱酸化工程:
酸化性ガス雰囲気中で900℃以下の低温熱酸化を施
し、SiO2膜2(厚さ数百オングストローム〜数μ
m)を形成する。このSiO2膜を(ハ)図に示すよう
に、エッチングして除去する。この時、シリコンウェハ
1の溝の凸部角および凹部隅には、低温熱酸化の特徴で
ある凸部のエッジおよび凹部の湾曲が形成される。ここ
で、必要に応じて、(ニ)図に示すように、ドライエッ
チングで溝の凸部角のエッジを軽くエッチングしてお
く。次に、(ホ)図に示す高温熱酸化工程:酸化性ガス
雰囲気中で1100℃以上の高温熱酸化を施し、所望の
膜厚のSiO2膜2’を形成する。以上の工程により、
シリコンウェハ上に形成された溝部に、所望の膜厚の熱
酸化膜を凹部隅や凸部角などに関係なく均一に形成する
ことができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a process diagram showing a method for forming a thermal oxide film of the present invention.
In FIG. 1, as shown in FIG. 1A, a mask pattern is formed on the silicon wafer 1 and a groove is formed by dry etching. The groove has a depth of several μm to several tens of μm. After that, the low temperature thermal oxidation step shown in FIG.
SiO 2 film 2 (thickness of several hundred angstroms to several μ) is formed by performing low-temperature thermal oxidation at 900 ° C. or lower in an oxidizing gas atmosphere.
m) is formed. This SiO 2 film is etched and removed as shown in FIG. At this time, the edges of the protrusions and the curvature of the recesses, which are characteristic of the low temperature thermal oxidation, are formed at the corners of the protrusions and the recesses of the groove of the silicon wafer 1. Here, if necessary, as shown in (d), the edges of the convex corners of the groove are lightly etched by dry etching. Next, a high temperature thermal oxidation step shown in (e): High temperature thermal oxidation at 1100 ° C. or higher is performed in an oxidizing gas atmosphere to form a SiO 2 film 2 ′ having a desired thickness. Through the above steps,
A thermal oxide film having a desired film thickness can be uniformly formed in the groove portion formed on the silicon wafer regardless of the corners of the concave portion or the corners of the convex portion.
【0007】ここで、図2はシリコンの溝部に熱酸化膜
を形成した場合の凹部隅および凸部角の曲率半径と熱酸
化膜厚の関係を高温(1100℃程度)、低温(900
℃程度)をパラメータにしてそれぞれ表したものであ
る。一般に、シリコンウェハ上に形成された溝を高温、
低温でそれぞれ熱酸化した場合、低温での熱酸化膜厚
は、溝の凹部の隅では、平坦部に比べて薄くなるため、
その他のシリコン部に比べて、シリコンが酸化される度
合いが少なく、凹部の隅は、SiとSiO2との境界が
曲率半径の大きい湾曲構造になる。この断面形状は、高
温と低温の差となって表れ、低温での場合の方が、湾曲
が大きい。さらに、低温での熱酸化により溝形状を形成
した後、高温で熱酸化を行うと、凹部の隅は曲率半径が
大きくなっているため、図2のx軸の原点に近づくこと
により、酸化膜厚は、より均一に形成されるようにな
る。Here, FIG. 2 shows the relationship between the radius of curvature of the concave and convex corners and the thermal oxide film thickness when a thermal oxide film is formed in the silicon groove, at high temperature (about 1100 ° C.) and at low temperature (900).
(° C) is used as a parameter. Generally, a groove formed on a silicon wafer is heated to a high temperature,
When thermal oxidation is performed at each low temperature, the thermal oxide film thickness at low temperature is smaller at the corners of the groove recesses than at the flat portion.
Compared to the other silicon portions, the degree of oxidation of silicon is less, and the corners of the recess have a curved structure in which the boundary between Si and SiO 2 has a large radius of curvature. This cross-sectional shape appears as a difference between high temperature and low temperature, and the curve is larger at low temperature. Furthermore, when the groove shape is formed by thermal oxidation at low temperature and then thermal oxidation is performed at high temperature, the radius of curvature of the corner of the recess becomes large, so that the oxide film moves closer to the origin of the x-axis in FIG. The thickness becomes more uniform.
【0008】このように、本発明によれば、シリコンの
溝部に熱酸化膜を均一に形成することができるため、絶
縁耐圧の劣化を防止でき、長期的な信頼性を向上でき
る。As described above, according to the present invention, the thermal oxide film can be uniformly formed in the groove of silicon, so that the breakdown voltage can be prevented from being deteriorated and the long-term reliability can be improved.
【0009】[0009]
【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、熱酸化膜厚を溝の凸部の角や凹
部の隅に関係なく均一に形成することができると共に、
膜応力を低減することができるため、絶縁耐圧を向上す
ることができる。また、通常のゲート酸化膜を形成する
場合に用いられる前酸化工程を低温熱酸化で行えばよ
く、特に新たな工程を追加することなく、簡単な方法で
所望の酸化膜均一構造が作れるなどの効果を有する熱酸
化膜の形成方法を実現できる。As described above in detail with reference to the embodiments, according to the present invention, the thermal oxide film thickness can be uniformly formed irrespective of the corners of the convex portions or the concave portions of the groove. ,
Since the film stress can be reduced, the withstand voltage can be improved. Further, the pre-oxidation process used when forming a normal gate oxide film may be performed by low temperature thermal oxidation, and a desired oxide film uniform structure can be formed by a simple method without adding a new process. A method of forming a thermal oxide film having an effect can be realized.
【図1】本発明の熱酸化膜の形成方法を示す工程図であ
る。FIG. 1 is a process drawing showing a method for forming a thermal oxide film of the present invention.
【図2】曲率半径と熱酸化膜厚の関係を高温、低温をパ
ラメータにしてそれぞれ表した図である。FIG. 2 is a diagram showing the relationship between the radius of curvature and the thermal oxide film thickness, using high temperature and low temperature as parameters.
1 シリコンウェハ 2、2’ 熱酸化膜(SiO2膜)1 Silicon wafer 2, 2'thermal oxide film (SiO 2 film)
Claims (1)
ン溝加工後の熱酸化膜の形成方法であって、 シリコンウェハ上に前記溝加工を施した後、酸化性ガス
雰囲気中で900℃以下で低温熱酸化して、熱酸化膜を
形成する工程と、 この熱酸化膜をエッチングにより除去する工程と、 再度、酸化性ガス雰囲気中で1050℃以上で高温熱酸
化して、熱酸化膜を形成する工程とにより、前記溝部に
熱酸化膜を均一に形成することを特徴とする熱酸化膜の
形成方法。1. A method of forming a thermal oxide film after processing a silicon groove in a silicon semiconductor manufacturing process, which comprises performing the groove processing on a silicon wafer and then performing low temperature thermal oxidation at 900 ° C. or lower in an oxidizing gas atmosphere. Then, a step of forming a thermal oxide film, a step of removing this thermal oxide film by etching, and a step of forming a thermal oxide film by performing high temperature thermal oxidation again at 1050 ° C. or higher in an oxidizing gas atmosphere. According to the method, a thermal oxide film is uniformly formed in the groove portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2386892A JPH05226326A (en) | 1992-02-10 | 1992-02-10 | Forming method of thermal oxide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2386892A JPH05226326A (en) | 1992-02-10 | 1992-02-10 | Forming method of thermal oxide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05226326A true JPH05226326A (en) | 1993-09-03 |
Family
ID=12122424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2386892A Pending JPH05226326A (en) | 1992-02-10 | 1992-02-10 | Forming method of thermal oxide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05226326A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5723376A (en) * | 1994-06-23 | 1998-03-03 | Nippondenso Co., Ltd. | Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects |
US7473654B2 (en) | 2004-08-26 | 2009-01-06 | Seiko Epson Corporation | Method of forming an oxide film, an oxide film, a component and an electronic apparatus |
-
1992
- 1992-02-10 JP JP2386892A patent/JPH05226326A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5723376A (en) * | 1994-06-23 | 1998-03-03 | Nippondenso Co., Ltd. | Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects |
US7473654B2 (en) | 2004-08-26 | 2009-01-06 | Seiko Epson Corporation | Method of forming an oxide film, an oxide film, a component and an electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5330920A (en) | Method of controlling gate oxide thickness in the fabrication of semiconductor devices | |
JPH11289006A (en) | Method of forming trench isolation in an integrated circuit | |
US4584205A (en) | Method for growing an oxide layer on a silicon surface | |
JP2004006660A (en) | Method for manufacturing semiconductor device | |
JP3544622B2 (en) | Method of forming double oxide film | |
JPH11186376A (en) | Method of isolating semiconductor device through trenches | |
JPH05226326A (en) | Forming method of thermal oxide film | |
KR100211547B1 (en) | Method of forming field oxide film of semiconductor device | |
JP3523048B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP3173114B2 (en) | Thin film transistor | |
KR100381849B1 (en) | Trench isolation method | |
JPS62185353A (en) | Manufacture of semiconductor device | |
JP3071268B2 (en) | Method for manufacturing semiconductor device | |
JP2002076110A (en) | Method for decreasing problems related to recessed plane formation during trench insulating structure formation | |
JPH02271618A (en) | Manufacture of semiconductor device | |
JP3348262B2 (en) | Method for manufacturing semiconductor device | |
JPH0393233A (en) | Manufacture of semiconductor device | |
CN107978606A (en) | A kind of embedded flash memory technology integrating method | |
JPS6349372B2 (en) | ||
JPS58121682A (en) | Method for manufacturing double gate semiconductor device | |
JP3006793B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
KR100422519B1 (en) | Method for manufacturing of semiconductor device | |
JPS61276343A (en) | Manufacture of semiconductor device | |
JPS5910236A (en) | Fabrication of semiconductor device | |
CN117012701A (en) | Method for filling trench |