JPH05226155A - Planar structure transformer and inductor coil - Google Patents

Planar structure transformer and inductor coil

Info

Publication number
JPH05226155A
JPH05226155A JP3026292A JP3026292A JPH05226155A JP H05226155 A JPH05226155 A JP H05226155A JP 3026292 A JP3026292 A JP 3026292A JP 3026292 A JP3026292 A JP 3026292A JP H05226155 A JPH05226155 A JP H05226155A
Authority
JP
Japan
Prior art keywords
coil
coils
turns
planar structure
copper loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3026292A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sakakibara
一彦 榊原
Toshiaki Yanai
利明 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3026292A priority Critical patent/JPH05226155A/en
Publication of JPH05226155A publication Critical patent/JPH05226155A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize a copper loss under limited spatial restrictions and to make generation of heat uniform in all places in regard to a coil for a planar structure transformer and an inductor coil which is suitable for a high-frequency operation. CONSTITUTION:A plurality of doughnut-shaped coils l of a planar structure are so disposed on a plane as to share the center with one another, a cut part 1a is provided in each of the coils 1, the coils 1 are connected in series by connecting parts 4 and thereby a coil part having a desired number of turns is formed. The respective widths W1 to Wi of these coils 1 are made to have values computed by a computation formula which is determined in accordance with the width Ws and the number of turns of the whole of the coil part so that a copper loss of each of the coils 1 be the same value as others, and the widths are made larger as the coils become more distant from the center. According to this constitution, the copper loss of the coil part is made uniform in all places under limited spatial restrictions and the loss of the coil part is made small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波動作に適したト
ランス及びインダクタを構成するプレーナ構造のコイル
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coil having a planar structure which constitutes a transformer and an inductor suitable for high frequency operation.

【0002】[0002]

【従来の技術】近年、集積回路の微細化により電子回路
の小形・軽量化が進められており、高品質な電力が得ら
れるスイッチングコンバータにおいても小形化が必須の
課題である。スイッチング電源の小形化には変換周波数
を高周波化し、磁性部品を小形化する方法が有効である
ことから、スイッチング電源の変換周波数は年々高周波
化されている。しかし、磁性部品のコイルを円形断面の
マグネットワイヤーで構成すると、高周波動作により生
じる渦電流のために銅損が増加し、また、銅損に伴う発
熱を放散させるために磁性部品の小形化が阻害されると
いう問題が生じる。そこで、高周波動作により生ずる渦
電流を減少するために考案されているのが、導体の厚さ
を表皮の深さ程度としたプレーナ構造のコイルである。
2. Description of the Related Art In recent years, miniaturization of integrated circuits has made electronic circuits smaller and lighter, and miniaturization is an essential issue in switching converters that can obtain high-quality electric power. The conversion frequency of the switching power supply is increasing year by year because it is effective to miniaturize the switching power supply by increasing the conversion frequency and reducing the size of the magnetic parts. However, if the coil of the magnetic component is composed of a magnet wire with a circular cross section, copper loss will increase due to eddy currents generated by high frequency operation, and heat generation due to copper loss will be dissipated, which will hinder miniaturization of the magnetic component. The problem arises that Therefore, a coil having a planar structure in which the thickness of the conductor is set to the depth of the skin is devised to reduce the eddy current generated by the high frequency operation.

【0003】このプレーナ構造のコイルをトランス及び
インダクタ用に設計した例が、A.F.Goldber
g,J.G.Kassakian,M.F.Schle
cht氏による論文「Issues Related
to 1−10−MHZ Transformer D
esign」(IEEE Trans.PowerEl
ectronics,Vol.4,No.1,pp.1
13−123,January,1989)に示されて
いる。
An example of designing a coil of this planar structure for a transformer and an inductor is described in A. F. Goldber
g, J. G. Kassakian, M .; F. Schle
The paper "Issues Related
to 1-10-MHZ Transformer D
design "(IEEE Trans. PowerEl
electronics, Vol. 4, No. 1, pp. 1
13-123, January, 1989).

【0004】上記の論文には、図4(a),(b)の構
造図に示すようなドーナツ状コイルを6ターン巻いた場
合の銅損の分布が示されている。図4において、(a)
は上面図、(b)は半部の断面図を示しており、図中、
1はプレーナ構造のコイル、2はコア、3は絶縁物、4
は接続部を示している。コイル1はドーナツ状に形成さ
れ、複数が中心を共用するように平面的に配置されて、
コイル部が形成されている。さらに、コイル部は、絶縁
物3に被われてコア2で囲まれた構造となっている。従
来、これらのドーナツ状コイル1の幅は、内側に配置さ
れたコイル1でも外側に配置されたコイル1でも全て同
じ値に作製していた。そしてドーナツ状のコイル1がシ
ョートコイルとならないように、各コイル1の一部には
切断部1aが設けられ、この切断部1a付近で内側と外
側のコイル1を接続部4により直列接続し、その直列接
続するコイル1の数を変えて所望のターン数のコイル部
を作製していた。
The above-mentioned paper shows the distribution of copper loss when a donut coil as shown in the structural diagrams of FIGS. 4A and 4B is wound 6 turns. In FIG. 4, (a)
Shows a top view, and (b) shows a sectional view of a half part.
1 is a coil having a planar structure, 2 is a core, 3 is an insulator, 4
Indicates a connecting portion. The coil 1 is formed in a donut shape, and a plurality of the coils 1 are arranged in a plane so as to share the center,
A coil portion is formed. Further, the coil portion is covered with the insulator 3 and surrounded by the core 2. Conventionally, the width of each of these donut-shaped coils 1 has been made to be the same value for both the coil 1 arranged inside and the coil 1 arranged outside. Then, in order to prevent the doughnut-shaped coil 1 from becoming a short coil, a cutting portion 1a is provided in a part of each coil 1, and the inner and outer coils 1 are connected in series by the connecting portion 4 near the cutting portion 1a, The number of coils 1 connected in series was changed to produce a coil portion having a desired number of turns.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来技術によりプレーナ構造トランス及びインダクタ用コ
イルを構成した場合には、外側に配置されたドーナツ状
コイル1の抵抗は、内側に配置されたドーナツ状コイル
1の抵抗より大きくなるので、内側と外側のコイル1で
銅損が異なり、発熱が不均一になるという問題があっ
た。また、プレーナ構造トランス及びインダクタ用コイ
ルの銅損が、場所により異なるということは、損失の均
一性を要求する自然界の法則に適合しておらず、コイル
部全体の銅損が最小となるように設計されていないとい
う問題があった。
However, in the case where the planar structure transformer and the inductor coil are constructed by the above-mentioned prior art, the resistance of the donut-shaped coil 1 arranged on the outer side is the resistance of the donut-shaped coil arranged on the inner side. Since the resistance is higher than the resistance of No. 1, the inner and outer coils 1 have different copper losses, and there is a problem that heat generation becomes non-uniform. Also, the fact that the copper loss of the planar structure transformer and the inductor coil differs depending on the location does not comply with the law of nature that requires the uniformity of loss, so that the copper loss of the entire coil section should be minimized. There was a problem that it was not designed.

【0006】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、限られた空間的制約の
下で銅損が最小で、発熱がいたるところで均一なプレー
ナ構造トランス及びインダクタ用コイルを提供すること
にある。
The present invention has been made to solve the above problems, and its object is to provide a planar structure transformer having a minimum copper loss under a limited space constraint and a uniform heat generation everywhere. It is to provide a coil for an inductor.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のプレーナ構造トランス及びインダクタ用コ
イルは、中心を共用する直列接続の複数のドーナツ状の
巻線またはスパイラル状の巻線から成り、前記巻線の幅
が中心から遠ざかるに従い該巻線の各部分の銅損が同一
の値となる計算式に従ってまたは該計算式に概ね従って
増大されていることを特徴としている。
In order to achieve the above object, the planar structure transformer and inductor coil of the present invention comprises a plurality of series-connected donut-shaped windings or spiral windings sharing a center. It is characterized in that the copper loss of each portion of the winding is increased according to a calculation formula that becomes the same value as the width of the winding becomes farther from the center, or substantially according to the calculation formula.

【0008】[0008]

【作用】本発明のプレーナ構造トランス及びインダクタ
用コイルでは、中心を共用する複数のドーナツ状巻線の
幅を中心から遠ざかるほど増大させる。すなわち、銅損
を同一の値にするために複数のドーナツ状巻線の幅は、
各巻線の銅損が同じ値となるように求めた計算式で計算
した値とし、限られた空間的制約下でコイル部の銅損を
いたる所で均一とし、コイル部の低損失化を図ってい
る。
In the planar structure transformer and inductor coil of the present invention, the width of the plurality of donut-shaped windings sharing the center is increased as the distance from the center increases. That is, the width of the doughnut-shaped windings in order to make the copper loss the same,
Use the value calculated using the formula to obtain the same copper loss for each winding, and make the copper loss uniform throughout the coil under limited space restrictions to reduce the loss in the coil. ing.

【0009】[0009]

【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0010】図1は本発明の一実施例の構成を示す上面
図である。図中、1はプレーナ構造のコイル、4は接続
部、W1は最も内側のコイル1の幅、W2,W3…Wi
は順にその外側のコイル1の幅、Wsはコイル部全体の
幅、Dはコイル間の絶縁距離、Rは最も内側のコイル1
の内半径である。
FIG. 1 is a top view showing the structure of an embodiment of the present invention. In the figure, 1 is a coil having a planar structure, 4 is a connecting portion, W1 is the width of the innermost coil 1, W2, W3 ... Wi.
Is the width of the outer coil 1, Ws is the width of the entire coil, D is the insulation distance between the coils, and R is the innermost coil 1.
Is the inner radius of.

【0011】コイル1はドーナツ状に形成され、複数が
中心を共用するように径を変えて平面的に配置される。
各コイル1は切断部1aを有し、その切断部1aにおけ
るコイル1の一端が接続部4を介して隣り合う他のコイ
ル1の切断部1aにおけるコイル1の一端に直列接続さ
れて、所定ターン数のトンラス用またはインダクタ用の
コイル部が形成される。本実施例では、限られた空間的
制約の下で銅損が最小で、発熱が均一になるようにする
ために、ドーナツ状の各コイル1の幅W1,W2,W
3,…Wiを、以下の計算式に従って中心から遠ざかる
ほど増大させる。
The coil 1 is formed in a donut shape, and a plurality of coils 1 are arranged in a plane so that their diameters are changed so as to share the center.
Each coil 1 has a cut portion 1a, and one end of the coil 1 in the cut portion 1a is connected in series to one end of the coil 1 in the cut portion 1a of another adjacent coil 1 via the connection portion 4 to make a predetermined turn. A coil portion for several tunnels or inductors is formed. In this embodiment, the width W1, W2, W of each doughnut-shaped coil 1 is set so that the copper loss is minimized and the heat generation is uniform under the limited space constraints.
3, ... Wi is increased as it moves away from the center according to the following calculation formula.

【0012】ここで、各コイル1の幅はコイル部の巻数
を2ターンから10ターンの範囲で製造するものとし
て、以下のように決定する。最も外側のコイル1の外周
上の一点とこの点から中心に向けて下ろした垂線が最も
内側のコイル1の内周と交わる点との距離をWSとし、
この垂線と交わる各コイル1の外周上の点と内周上の点
との距離を同心円の内側から順にW1からWi(iはコ
イルのターン数を示す2以上で10以下の整数)とし、
最も内側のコイル1の内周上の一点と円の中心との距離
をRとし、さらに各コイル間に絶縁のために設けた巻線
間絶縁距離をDとした場合に、W1をコイル部の巻数
(ターン数)に応じて(1)から(9)式のいずれかを
満足するように設定し、W1以外を(10)式により決
める。
Here, the width of each coil 1 is determined as follows, assuming that the number of turns of the coil portion is 2 to 10 turns. The distance between a point on the outer circumference of the outermost coil 1 and a point where a perpendicular line drawn from this point toward the center intersects with the inner circumference of the innermost coil 1 is W S ,
The distance between the point on the outer circumference and the point on the inner circumference of each coil 1 that intersects this perpendicular is W1 to Wi (i is an integer of 2 or more and 10 or less indicating the number of turns of the coil) in order from the inside of the concentric circle,
When the distance between a point on the inner circumference of the innermost coil 1 and the center of the circle is R, and the insulation distance between windings provided for insulation between the coils is D, W1 is the coil portion. Depending on the number of turns (the number of turns), it is set so as to satisfy any of the expressions (1) to (9), and other than W1 is determined by the expression (10).

【0013】(2ターンの場合の条件式) W12/R+(2+D/R)W1=WS …(1) (3ターンの場合の条件式) W13/R2+(D/R2+3/R)W12+(3D/R+
3)W1=WS …(2) (4ターンの場合の条件式) W14/R3+(D/R3+4/R2)W13+(4D/R2
+6/R)W12+(6D/R+4)W1=WS
(3) (5ターンの場合の条件式) W15/R4+(D/R4+5/R3)W14+(5D/R3
+10/R2)W13+(10D/R2+10/R)W12
+(10D/R+5)W1=WS …(4) (6ターンの場合の条件式) W16/R5+(D/R5+6/R4)W15+(6D/R4
+15/R3)W14+(15D/R3+20/R2)W1
3+(20D/R2+15/R)W12+(15D/R+
6)W1=WS …(5) (7ターンの場合の条件式) W17/R6+(D/R6+7/R5)W16+(7D/R5
+21/R4)W15+(21D/R4+35/R3)W1
4+(35D/R3+35/R2)W13+(35D/R2
+21/R)W12+(21D/R+7)W1=WS
(6) (8ターンの場合の条件式) W18/R7+(D/R7+8/R6)W17+(8D/R6
+28/R5)W16+(28D/R5+56/R4)W1
5+(56D/R4+70/R3)W14+(70D/R3
+56/R2)W13+(56D/R2+28/R)W12
+(28D/R+8)W1=WS …(7) (9ターンの場合の条件式) W19/R8+(D/R8+9/R7)W18+(9D/R7
+36/R6)W17+(36D/R6+84/R5)W1
6+(84D/R5+126/R4)W15+(126D/
4+126/R3)W14+(126D/R3+84/R
2)W13+(84D/R2+36/R)W12+(36D
/R+9)W1=WS …(8) (10ターンの場合の条件式) W110/R9+(D/R9+10/R8)W19+(10D
/R8+45/R7)W18+(45D/R7+120/R
6)W17+(120D/R6+210/R5)W16
(210D/R5+252/R4)W15+(252D/
4+210/R3)W14+(210D/R3+120/
2)W13+(120D/R2+45/R)W12+(4
5D/R+10)W1=WS …(9) WK=W1[R+W1…+WK-1+(K−1)D]/R
(但し、K=2〜10)…(10) 以上のように構成した実施例の作用を述べる。
(Conditional expression for 2 turns) W1 2 / R + (2 + D / R) W1 = W S (1) (Condition expression for 3 turns) W1 3 / R 2 + (D / R 2 +3) / R) W1 2 + (3D / R +
3) W1 = W S ... ( 2) (4 condition in the case of the turn) W1 4 / R 3 + ( D / R 3 + 4 / R 2) W1 3 + (4D / R 2
+ 6 / R) W1 2 + (6D / R + 4) W1 = W S ...
(3) (conditional expression for 5 turns) W1 5 / R 4 + (D / R 4 + 5 / R 3 ) W1 4 + (5D / R 3
+ 10 / R 2 ) W1 3 + (10D / R 2 + 10 / R) W1 2
+ (10D / R + 5) W1 = W S ... (4) ( conditional expression in the case of 6 turns) W1 6 / R 5 + ( D / R 5 + 6 / R 4) W1 5 + (6D / R 4
+ 15 / R 3 ) W1 4 + (15D / R 3 + 20 / R 2 ) W1
3 + (20D / R 2 + 15 / R) W1 2 + (15D / R +
6) W1 = W S (5) (conditional expression for 7 turns) W1 7 / R 6 + (D / R 6 + 7 / R 5 ) W1 6 + (7D / R 5
+ 21 / R 4 ) W1 5 + (21D / R 4 + 35 / R 3 ) W1
4 + (35D / R 3 + 35 / R 2 ) W1 3 + (35D / R 2
+ 21 / R) W1 2 + (21D / R + 7) W1 = W S ...
(6) (Conditional expression for 8 turns) W1 8 / R 7 + (D / R 7 + 8 / R 6 ) W1 7 + (8D / R 6
+ 28 / R 5 ) W1 6 + (28D / R 5 + 56 / R 4 ) W1
5 + (56D / R 4 + 70 / R 3 ) W1 4 + (70D / R 3
+ 56 / R 2 ) W1 3 + (56D / R 2 + 28 / R) W1 2
+ (28D / R + 8) W1 = W S (7) (conditional expression for 9 turns) W1 9 / R 8 + (D / R 8 + 9 / R 7 ) W1 8 + (9D / R 7
+ 36 / R 6 ) W1 7 + (36D / R 6 + 84 / R 5 ) W1
6 + (84D / R 5 + 126 / R 4 ) W1 5 + (126D /
R 4 + 126 / R 3 ) W1 4 + (126D / R 3 + 84 / R
2 ) W1 3 + (84D / R 2 + 36 / R) W1 2 + (36D
/ R + 9) W1 = W S ... (8) ( conditional expression in the case of 10 turns) W1 10 / R 9 + ( D / R 9 + 10 / R 8) W1 9 + (10D
/ R 8 + 45 / R 7 ) W1 8 + (45D / R 7 + 120 / R
6) W1 7 + (120D / R 6 + 210 / R 5) W1 6 +
(210D / R 5 + 252 / R 4 ) W1 5 + (252D /
R 4 + 210 / R 3 ) W1 4 + (210D / R 3 + 120 /
R 2 ) W1 3 + (120D / R 2 + 45 / R) W1 2 + (4
5D / R + 10) W1 = W S ... (9) W K = W1 [R + W1 ... + W K-1 + (K-1) D] / R
(However, K = 2 to 10) (10) The operation of the embodiment configured as described above will be described.

【0014】本実施例では、プレーナ構造トランス及び
インダクタ用コイルの銅損を最小にするため、中心を共
用する複数のドーナツ状コイル1の銅損の計算式を2タ
ーンから10ターンの範囲で導出する。この時、ドーナ
ツ状コイル1の一部に設ける半径方向の切断部1aの幅
は、ドーナツ状コイル1の巻線の平均的な周回路に比べ
て十分小さいものとする。そして、外側のコイル1の銅
損が、内側のコイル1の銅損と等しいという関係を利用
して、外側のコイル1の幅をそれより内側のコイル1の
幅を利用して表示する。この関係が前記(10)式であ
る。最も内側のコイル1の幅Wは、コイル部全体の幅お
よび巻数に応じて(1)から(9)式のように求めるこ
とができる。
In this embodiment, in order to minimize the copper loss of the planar structure transformer and the inductor coil, the formula for calculating the copper loss of the plurality of donut-shaped coils 1 sharing the center is derived in the range of 2 to 10 turns. To do. At this time, the width of the radial cut portion 1a provided in a part of the donut-shaped coil 1 is sufficiently smaller than the average peripheral circuit of the winding of the donut-shaped coil 1. Then, the width of the outer coil 1 is displayed using the width of the inner coil 1 by utilizing the relationship that the copper loss of the outer coil 1 is equal to the copper loss of the inner coil 1. This relationship is the expression (10). The width W of the innermost coil 1 can be obtained from equations (1) to (9) according to the width of the entire coil portion and the number of turns.

【0015】(1)から(9)式は、最も内側のコイル
1の幅W1、各コイル間に絶縁のために設けた巻線間絶
縁距離D、最も内側のコイル1の内半径R、コイル部全
体の幅Wsの関係を与えており、W1に関する高次方程
式である。コイル部の巻数が4ターンまでのW1は4次
式を代数的に解いて求めることができるが、5ターン以
上のW1を代数的に求めることはできない。そこで巻数
が5ターン以上の場合にW1を求めるためには、ニュー
トン法やベアストウ法などの数値計算を使用する。この
ようにして求めたW1から、今度は逆にW2(,W3,
…,W10)の順で各コイル1の幅を求める。以上の手
順に従ってプレーナ構造トランス及びインダクタ用コイ
ルの幅を設計すれば、限られた空間的制約の下で銅損が
最小で、発熱がいたるところで均一なコイルを得ること
ができる。
Equations (1) to (9) are expressed by the width W1 of the innermost coil 1, the insulation distance D between windings provided for insulation between the coils, the inner radius R of the innermost coil 1, and the coil It gives the relation of the width Ws of the whole part, and is a high-order equation regarding W1. W1 up to 4 turns of the coil can be obtained by algebraically solving a quartic equation, but W1 of 5 turns or more cannot be obtained algebraically. Therefore, in order to obtain W1 when the number of turns is 5 turns or more, numerical calculation such as the Newton method or the Bearstow method is used. From W1 obtained in this way, W2 (, W3,
The width of each coil 1 is obtained in the order of ..., W10). By designing the widths of the planar structure transformer and the inductor coil according to the above procedure, it is possible to obtain a coil having a minimum copper loss and a uniform coil where heat is generated under limited space constraints.

【0016】次に、上記実施例の具体的な作製例によ
り、本実施例の効果を説明する。
Next, the effects of this embodiment will be described with reference to a concrete manufacturing example of the above embodiment.

【0017】図2は、本発明の実施例による第1の作製
例を示すプレーナ構造トランス及びインダクタ用コイル
の上面図である。本図において、コイル部の巻数は2タ
ーン、各コイル1に絶縁のために設ける離隔距離Dは
0.01cm、最も内側のドーナツ状コイル1の内半径
Rは1cm、コイル部全体の幅Wsは5cmとしてい
る。この条件を(1)式に代入してW1を求めると、W
1は1.44cmとなる。さらに、(10)式によりW
2を求めると、3.55cmとなる。W1とW2が2.
5cmと等しく設計された従来の場合のコイルの抵抗と
本作製例の抵抗をAnsoft社(米国、Pittsb
urgh)の有限要素法による抵抗計算プログラムDC
Conduction Solverにより計算する
と、本発明の実施例によるコイルの抵抗は従来例の70
%に減少している。
FIG. 2 is a top view of a planar structure transformer and an inductor coil showing a first manufacturing example according to the embodiment of the present invention. In this figure, the number of turns of the coil portion is 2, the distance D provided for insulation in each coil 1 is 0.01 cm, the inner radius R of the innermost donut-shaped coil 1 is 1 cm, and the width Ws of the entire coil portion is It is set to 5 cm. Substituting this condition into equation (1) to obtain W1,
1 is 1.44 cm. Furthermore, by the formula (10), W
Obtaining 2 gives 3.55 cm. W1 and W2 are 2.
The resistance of the coil in the conventional case designed to be equal to 5 cm and the resistance of this manufacturing example are compared with those of Ansoft (Pittsb, USA).
urg) finite element method resistance calculation program DC
When calculated by the Condition Solver, the resistance of the coil according to the embodiment of the present invention is 70% that of the conventional example.
It has been reduced to%.

【0018】図3は、本実施例による第2の作製例を示
すプレーナ構造トランス及びインダクタ用コイルの上面
図である。本図において、コイル部の巻数は3ターン、
各コイルに絶縁のために設ける離隔距離Dは0.01c
m、最も内側のドーナツ状コイルの内半径Rは1cm、
コイル部全体の幅Wsは5cmとしている。この条件を
(2)式に代入してW1を求めると、W1は0.82c
mとなる。さらに、(10)式によりW2,W3を求め
ると、W2は1.47cm、W3は2.69cmとな
る。W1からW3が1.66cmと等しく設計された従
来の場合のコイルの抵抗と本実施例の抵抗をAnsof
t社(米国、Pittsburgh)の有限要素法によ
る抵抗計算プログラムDC Conduction S
olverにより計算すると、本発明の実施例によるコ
イルの抵抗は従来例の82%に減少している。
FIG. 3 is a top view of a planar structure transformer and an inductor coil showing a second manufacturing example according to this embodiment. In this figure, the number of turns of the coil is 3 turns,
The separation distance D provided for insulation in each coil is 0.01c.
m, the inner radius R of the innermost donut coil is 1 cm,
The width Ws of the entire coil portion is 5 cm. Substituting this condition into the equation (2) to obtain W1, W1 is 0.82c.
m. Further, when W2 and W3 are obtained by the equation (10), W2 is 1.47 cm and W3 is 2.69 cm. The resistance of the coil and the resistance of this embodiment in the conventional case in which W1 to W3 are designed to be equal to 1.66 cm are Ansof.
DC Calculation S, a resistance calculation program by the finite element method of the t company (Pittsburgh, USA)
When calculated by the solver, the resistance of the coil according to the embodiment of the present invention is reduced to 82% of that of the conventional example.

【0019】以上、本発明の実施例の作製例を2件示し
たが、本実施例の計算式と同様の方法で導出された
(3)から(9)式が同様に有効であることは明らかで
ある。また、本実施例ではコイルが真円の場合を示して
いるが、スパイラルコイルのように多少いびつな形状で
あっても、半径や円周を等価的に真円に合わせて本発明
を適用できるのは、言うまでもない。このように本発明
は、その主旨に沿って種々に応用され、種々の実施態様
を取り得るものである。
As described above, two manufacturing examples of the embodiment of the present invention have been shown, but it is found that the expressions (3) to (9) derived by the same method as the calculation expression of this embodiment are similarly effective. it is obvious. Further, although the present embodiment shows the case where the coil is a perfect circle, the present invention can be applied even if the coil has a somewhat distorted shape such as a spiral coil by equivalently matching the radius and circumference with the perfect circle. Needless to say. As described above, the present invention can be applied in various ways in accordance with the gist thereof and can take various embodiments.

【0020】[0020]

【発明の効果】以上の説明で明らかなように、本発明の
プレーナ構造トランス及びインダクタ用コイルによれ
ば、限られた空間的制約の下で銅損が最小で、発熱がい
たるところで均一なコイルを得ることができる。
As is apparent from the above description, according to the planar structure transformer and inductor coil of the present invention, the copper loss is minimum and the heat generation is uniform under the limited space constraint. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す上面図FIG. 1 is a top view showing an embodiment of the present invention.

【図2】上記実施例による具体的な作製例を示す上面図FIG. 2 is a top view showing a specific manufacturing example according to the above embodiment.

【図3】上記実施例による別な具体的作製例を示す上面
FIG. 3 is a top view showing another specific manufacturing example according to the above embodiment.

【図4】(a),(b)は従来の技術を示す構造図4A and 4B are structural views showing a conventional technique.

【符号の説明】[Explanation of symbols]

1…コイル、1a…断面図、4…接続部。 1 ... Coil, 1a ... Sectional view, 4 ... Connection part.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中心を共用する直列接続の複数のドーナ
ツ状の巻線またはスパイラル状の巻線から成り、前記巻
線の幅が中心から遠ざかるに従い該巻線の各部分の銅損
が同一の値となる計算式に従ってまたは該計算式に概ね
従って増大されていることを特徴とするプレーナ構造ト
ランス及びインダクタ用コイル。
1. A plurality of series-connected toroidal windings or spiral windings sharing a center, wherein the copper loss of each portion of the windings is the same as the width of the winding becomes farther from the center. A coil for a planar structure transformer and inductor, which is increased according to or substantially in accordance with a calculation formula having a value.
JP3026292A 1992-02-18 1992-02-18 Planar structure transformer and inductor coil Pending JPH05226155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3026292A JPH05226155A (en) 1992-02-18 1992-02-18 Planar structure transformer and inductor coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3026292A JPH05226155A (en) 1992-02-18 1992-02-18 Planar structure transformer and inductor coil

Publications (1)

Publication Number Publication Date
JPH05226155A true JPH05226155A (en) 1993-09-03

Family

ID=12298794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3026292A Pending JPH05226155A (en) 1992-02-18 1992-02-18 Planar structure transformer and inductor coil

Country Status (1)

Country Link
JP (1) JPH05226155A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071422A1 (en) * 2001-03-05 2002-09-12 Tdk Corporation Planar coil and planar transformer
JP2007227566A (en) * 2006-02-22 2007-09-06 Tdk Corp Coil component
JP2009117546A (en) * 2007-11-05 2009-05-28 Asahi Kasei Electronics Co Ltd Planar coil, and manufacturing method thereof
CN105590735A (en) * 2016-03-14 2016-05-18 饶波 Planar transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071422A1 (en) * 2001-03-05 2002-09-12 Tdk Corporation Planar coil and planar transformer
US6847284B2 (en) 2001-03-05 2005-01-25 Tdk Corporation Planar coil and planar transformer
JP2007227566A (en) * 2006-02-22 2007-09-06 Tdk Corp Coil component
JP2009117546A (en) * 2007-11-05 2009-05-28 Asahi Kasei Electronics Co Ltd Planar coil, and manufacturing method thereof
CN105590735A (en) * 2016-03-14 2016-05-18 饶波 Planar transformer
CN105590735B (en) * 2016-03-14 2018-09-07 饶波 A kind of flat surface transformer

Similar Documents

Publication Publication Date Title
US3528046A (en) Interlaced disk winding with improved impulse voltage gradient
US20210035721A1 (en) Compact inductor employing redistributed magnetic flux
US20220130602A1 (en) Transformer And Method For Manufacturing Transformer
JP2016192489A (en) Coil device and manufacturing method for coil device
CN109767892A (en) Choke coil
JPH0737728A (en) Thin film inductor and thin film transformer
JPH09306757A (en) Low profile coil and magnetic product
JPH05226155A (en) Planar structure transformer and inductor coil
US3353129A (en) High voltage electric induction apparatus
US4460885A (en) Power transformer
US2686905A (en) High-voltage transformer
JP6171384B2 (en) Trance
WO2022154028A1 (en) Wireless power transmission coil
CN111029133B (en) Winding method of high-frequency high-power low-leakage-inductance transformer
CN116933696B (en) Current distribution calculation method for multi-strand multi-wire parallel structure of transformer
KR102555275B1 (en) iron core structure of transformer
KR102561384B1 (en) Electrical components, especially transformers or inductors
US3195089A (en) High voltage transformer with enhanced high frequency band-pass characteristics
JPS6012257Y2 (en) electromagnetic induction winding
JP2002231535A (en) Coil for large current
JPH06151213A (en) Twist thin type voltage converter and its use
PL181561B1 (en) High-frequency transformer
JP2002198237A (en) Leakage flux type power converter/transformer
JPS63211711A (en) High frequency transformer
RU2004023C1 (en) Transformer for secondary power supplies