JP2002231535A - Coil for large current - Google Patents

Coil for large current

Info

Publication number
JP2002231535A
JP2002231535A JP2001029200A JP2001029200A JP2002231535A JP 2002231535 A JP2002231535 A JP 2002231535A JP 2001029200 A JP2001029200 A JP 2001029200A JP 2001029200 A JP2001029200 A JP 2001029200A JP 2002231535 A JP2002231535 A JP 2002231535A
Authority
JP
Japan
Prior art keywords
coil
core
copper wire
large current
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001029200A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kumon
良昭 公文
Kenichi Tateyama
健一 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soshin Electric Co Ltd
Original Assignee
Soshin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soshin Electric Co Ltd filed Critical Soshin Electric Co Ltd
Priority to JP2001029200A priority Critical patent/JP2002231535A/en
Publication of JP2002231535A publication Critical patent/JP2002231535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To form such a coil for a large current by using a compact core superior in a magnetic characteristic that can ease winding work and is superior in a noise reduction characteristic up in a wide range to high-frequency band. SOLUTION: A core is wound by a hyperfine crystal alloy, insulatively covered and wound again by a flat tint copper wire to form a coil for large current. When the number of overlapping windings is increased, an electrostatic shield layer is arranged in an interlayer of the insulation covered flat tint copper wire coil, and a grounding terminal is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源回路に挿入さ
れるフィルタに用いる大電流用のコイルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large current coil used for a filter inserted into a power supply circuit.

【0002】[0002]

【従来の技術】従来、電源回路に挿入されるフィルタに
用いる大電流用コイルの磁性体には積層珪素鋼板また
は、Mn、Zn系フェライトコア等が用いられる。その周
囲に巻回されるコイル導線に電流容量の小さいものには
撚り線が、電流容量の大きいものには、交流磁界による
渦電流損失を低減するため,また巻き線の作業性を向上
させるため、絶縁された単線を並列にした複線や、太い
丸線が用いられる。 さらに大電流用には平角銅線が
用いられている。
2. Description of the Related Art Conventionally, a laminated silicon steel sheet or an Mn / Zn-based ferrite core is used as a magnetic material of a large current coil used for a filter inserted into a power supply circuit. A stranded wire is used for a coil wire with a small current capacity around the coil conductor wound around it, to reduce eddy current loss due to AC magnetic field for a large current capacity, and to improve the workability of the winding wire. For example, a double wire in which insulated single wires are arranged in parallel or a thick round wire is used. Further, a rectangular copper wire is used for a large current.

【0003】形状は、積層珪素鋼板の場合はC−Cコア
を一体化したコアや、またフェライトコアの場合はリン
グ状のコアなどが用いられるが、積層珪素鋼板コアは、
減衰量の周波数特性が高周波領域まで伸びず、フェライ
トコアの場合は、飽和磁束密度があまり大きくないた
め、磁気飽和し易いので大電流用はコア断面積を大きく
せざるを得ず、大型なコイルにならざるを得なかった。
その他のコアには、日の字型、ロの字型などがあり、
トランスの形成は閉磁路コアを2分割し、それぞれに1
次コイル、2次コイルを巻回してから、分割コアを一体
に接合して閉磁路コアを形成することもできる。 また
磁気飽和を避けるため、コアの一部に間隙を形成した開
磁路コアを用いることもある.
[0003] In the case of a laminated silicon steel sheet, a core obtained by integrating a C-C core, and in the case of a ferrite core, a ring-shaped core is used.
In the case of ferrite cores, the saturation magnetic flux density is not so large, and magnetic saturation tends to occur in the case of a ferrite core. I had to become.
Other cores include a Japanese character, a square character, etc.
The transformer is formed by dividing the closed magnetic circuit core into two parts,
After winding the secondary coil and the secondary coil, the split cores can be joined together to form a closed magnetic circuit core. In order to avoid magnetic saturation, an open magnetic path core with a gap formed in a part of the core may be used.

【0004】平角線の巻線方法は,平角線は硬いために
リングコアに直接巻きつけることは困難であり、特開2
000―100643に開示されているように予め平角
線を巻線機にかけてソレノイド状に巻いておき、図3の
説明図に示すように、リング状コア1に前記ソレノイド
状コイル6を回転させながら巻き移す方法で巻かれてい
た。 巻き移した状態と、その部分拡大断面図を図4に
示す。
In the flat wire winding method, it is difficult to wind the flat wire directly around the ring core because the flat wire is hard.
As disclosed in US Pat. No. 000-100643, a flat wire is wound in a solenoid shape in advance by a winding machine, and as shown in the explanatory view of FIG. It was wound in the way of transferring. FIG. 4 shows the rolled state and a partially enlarged sectional view thereof.

【0005】断面が矩形のリングコアであっても前記ソ
レノイドコイルを回転させながら巻移すので、リングコ
ア断面の最大径よりも大きい直径の円筒状ソレノイドコ
イルに形成せざるを得ず、図4のA−A‘の拡大断面図
のように、断面矩形のリングコアの対角線8と、ソレノ
イドコイル6の内径7との間に、コアケースの肉厚の数
倍の余分な間隙を設けざるをえないため小型化は困難で
あり、またコイルは余分な長さを必要とするため、その
分の導体抵抗が増加し電力の損失となっていた。
[0005] Even when a ring core has a rectangular cross section, the coil is wound while rotating the solenoid coil, so that it must be formed into a cylindrical solenoid coil having a diameter larger than the maximum diameter of the cross section of the ring core. As shown in the enlarged cross-sectional view of A ′, an extra gap several times the thickness of the core case has to be provided between the diagonal line 8 of the ring core having a rectangular cross section and the inner diameter 7 of the solenoid coil 6. It is difficult to realize such a structure, and the coil requires an extra length, so that the conductor resistance increases and the power is lost.

【0006】[0006]

【発明が解決しようとする課題】大電流用のコイルにお
いて、巻線作業を容易にしコアと巻線間の余分な間隙を
無くした小型な大電流用のコイルを形成し、かつ電力の
損失を少なくすることである。 また、コイル巻線の層
間の浮遊容量を小さくし、さらに小型でノイズ減衰特性
を高周波帯まで広げた大電流用コイルを提供することで
ある。
SUMMARY OF THE INVENTION In a coil for a large current, a small coil for a large current which facilitates winding work and eliminates an extra gap between a core and a winding is formed, and a power loss is reduced. It is to reduce. Another object of the present invention is to provide a large-current coil in which stray capacitance between layers of a coil winding is reduced, and which is small in size and whose noise attenuation characteristics are extended to a high frequency band.

【0007】[0007]

【課題を解決するための手段】本発明は、電源回路のフ
ィルタを構成するコイルにおいて、コアに絶縁被覆平編
銅線が巻回されてなることを特徴とする大電流用コイル
である。
SUMMARY OF THE INVENTION The present invention relates to a coil for forming a filter for a power supply circuit, wherein a coil for a large current is formed by winding an insulation-coated flat knitted copper wire around a core.

【0008】フェライトまたは、磁性鋼板を巻回または
積層してなるコアに、絶縁被覆した平編銅線を巻回して
コイルを形成する。 トランスまたはコイル製品の定格
電流に応じた電流容量の平編銅線を、熱収縮性の絶縁チ
ューブに挿入してチューブを加熱収縮させるか、あるい
は平編銅線に絶縁テープを巻きつける等して絶縁被覆平
編銅線を形成し、コアに巻回して大電流用コイルを形成
する。 絶縁被覆平編銅線は、柔らかく可撓性に富むた
め、1ターン毎にリングコアの内部に絶縁被覆平編銅線
を挿通して巻回する作業が容易にできる。
[0008] A coil is formed by winding an insulated flat braided copper wire around a core formed by winding or laminating ferrite or a magnetic steel sheet. Insert a flat knitted copper wire with a current capacity according to the rated current of the transformer or coil product into a heat-shrinkable insulating tube and heat shrink the tube, or wrap an insulating tape around the flat knitted copper wire. An insulated flat braided copper wire is formed and wound around a core to form a large current coil. Since the insulated flat braided copper wire is soft and rich in flexibility, it is easy to insert and wind the insulated flat braided copper wire inside the ring core every turn.

【0009】また本発明は、前記のコイルにおいて、重
ね巻きした絶縁被覆平編銅線の層間に、静電シールド層
を配置し接地端子を備えたことを特徴とする大電流用コ
イルである。
[0009] The present invention is also a large current coil characterized in that, in the above-mentioned coil, an electrostatic shield layer is arranged between the layers of the wrapped insulating-coated flat braided copper wire and a ground terminal is provided.

【0010】絶縁被覆平編銅線を重ね巻きした場合に、
線幅が広いため層間の浮遊容量が大きくなり、コイルで
は自己共振周波数が低くなり、トランスでは1次側から
2次側への高周波ノイズの突き抜けが大きくなる。この
問題の対策として、1層めのコイルの上に静電シールド
層を配置し、その上に2層めのコイルを巻回すること
を、所定の層数まで繰り返して、各層間の静電シールド
層を導通させ引き出し端子を設けて接地する。これによ
り、コイル層間の浮遊容量が小さくなり、コイルでは自
己共振周波数が高くなり、トランスでは高周波ノイズの
突き抜けが小さくなる。シールド層の形成は1層めを巻
回した後、その外形に合わせた接地端子付の導体ケース
に入れてから、2層めを巻回してもよく、また、絶縁被
覆平編銅線をさらに導電編線で被覆したシールド線を巻
回することもできる。このとき、シールド層でループを
形成することなく、接地端子を一個所に設ける、いわゆ
る、一点接地をすることが望ましい。
When an insulated flat braided copper wire is wrapped around,
Since the line width is large, the stray capacitance between the layers is large, the self-resonant frequency is low in the coil, and the penetration of high-frequency noise from the primary side to the secondary side is large in the transformer. As a countermeasure for this problem, an electrostatic shield layer is arranged on the first coil, and the winding of the second coil thereon is repeated up to a predetermined number of layers. The shield layer is made conductive, a lead-out terminal is provided and grounded. This reduces the stray capacitance between the coil layers, increases the self-resonant frequency in the coil, and reduces penetration of high-frequency noise in the transformer. The shield layer may be formed by winding the first layer, placing it in a conductor case with a ground terminal according to its outer shape, and then winding the second layer. It is also possible to wind a shielded wire covered with a conductive knitted wire. At this time, it is desirable to provide a ground terminal at one place without forming a loop in the shield layer, that is, to perform so-called single-point grounding.

【0011】また本発明は、前記のコイルにおいて、前
記コアが超微細結晶合金を巻回されてなることを特徴と
する大電流用コイルである。
Further, the present invention is the above-mentioned coil, wherein the core is formed by winding an ultrafine crystalline alloy.

【0012】図5に示すように、超微細結晶合金の磁性
薄板を巻回してなるコアを用いた場合、従来のマンガン
亜鉛(Mn、Zn)系フェライトコアにくらべて、飽和
磁束密度が高く透磁率も大きいので磁路断面積の小さい
小型なコアが形成できる。参考までに、断面が矩形の同
一形状(外形:25mmφ、内径:13mmφ、厚み:
15mm)のMnZnフェライトコアと超微細結晶合金
コアに、0.5mmφの被覆銅線をそれぞれ20ターン
巻線したコイルのノイズ減衰量の比較を周波数特性で図
6に示す。また超微細結晶合金の磁性薄板を巻回してな
るコアは、同一形状の珪素鋼板に比較しても、透磁率お
よびQの周波数特性が高周波まで伸びているので高周波
トランスのコア材料にも適している。
As shown in FIG. 5, when a core formed by winding a magnetic thin plate of an ultrafine crystalline alloy is used, the saturation magnetic flux density is higher than that of a conventional manganese zinc (Mn, Zn) ferrite core. Since the magnetic susceptibility is large, a small core having a small magnetic path cross-sectional area can be formed. For reference, the same shape with a rectangular cross section (outer diameter: 25 mmφ, inner diameter: 13 mmφ, thickness:
FIG. 6 shows a comparison of the noise attenuation of a coil in which a 0.5 mmφ coated copper wire is wound 20 turns on a MnZn ferrite core (15 mm) and an ultrafine crystal alloy core, respectively, in terms of frequency characteristics. In addition, the core formed by winding a magnetic thin plate of an ultrafine crystal alloy is suitable for the core material of a high-frequency transformer because the magnetic permeability and the frequency characteristics of Q extend to high frequencies, even when compared with a silicon steel plate of the same shape. I have.

【0013】[0013]

【発明の実施の形態】平編銅線に絶縁被膜を形成し、コ
アに巻回して大電流用コイルを形成する。重ね巻きする
場合は、巻回した絶縁被覆平編銅線の層間に、金属箔な
どのシールド層を配置し接地用端子を設ける。さらに、
超微細結晶合金を巻回した小型なコアを用いて大電流用
コイルを形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An insulating coating is formed on a flat knitted copper wire and wound around a core to form a large current coil. In the case of lap winding, a grounding terminal is provided by disposing a shield layer such as a metal foil between layers of the wound insulating-coated flat braided copper wire. further,
A large current coil is formed using a small core wound with an ultrafine crystal alloy.

【0014】[0014]

【実施例1】先ず、厚さ:20μm、幅:25mmの超
微細結晶合金薄帯(アルプス電気株式会社製;ナノパー
ム)を巻回し、肉厚;1mmのポリブチルテレフタレー
トの樹脂ケースに収納して、外径:98mmΦ、内径:
72mmΦ、高さ25mmのリング状コアを形成した。
つぎに、幅:30mm、厚さ:27mmの平編銅線
(JCS236)を熱収縮性チューブ(住友電気工業株
式会社製:スミチューブ)に挿通させて、95℃の恒温
槽に30分間放置して、前記チューブを収縮させて絶縁
被膜平編銅線を形成した。次いで、前記の絶縁被膜平編
銅線を、各ターン毎に前記樹脂ケース入りのリング状コ
アの内径に挿通させることを8ターン繰り返して前記コ
アの周囲をほぼ全周に亘り巻線し、図1に示す大電流用
コイルを形成した。
Example 1 First, an ultrafine crystalline alloy ribbon (manufactured by Alps Electric Co., Ltd .; Nanopalm) having a thickness of 20 μm and a width of 25 mm was wound and stored in a polybutyl terephthalate resin case having a thickness of 1 mm. , Outer diameter: 98mmΦ, inner diameter:
A ring-shaped core having a diameter of 72 mm and a height of 25 mm was formed.
Next, a flat knitted copper wire (JCS236) having a width of 30 mm and a thickness of 27 mm is passed through a heat-shrinkable tube (Sumitube manufactured by Sumitomo Electric Industries, Ltd.) and left in a thermostat at 95 ° C. for 30 minutes. Then, the tube was shrunk to form an insulating-coated flat knitted copper wire. Then, the insulation-coated flat braided copper wire was inserted through the inner diameter of the ring-shaped core containing the resin case every turn for 8 turns, thereby winding around the entire circumference of the core. The large current coil shown in FIG.

【0015】[0015]

【実施例2】実施例1で形成した1層巻きのコイルに静
電シールド層として、厚み:0.5mmのドーナッツ状
の銅板2枚を、それぞれ上下両面に当接させてから中心
軸に対称なそれぞれの2ヵ所にリード線をはんだ接続し
て導通、固定してから、さらに2層目のコイルを前記と
同様に巻線して図2に示す大電流用のコモンモードコイ
ルを形成した。。
Embodiment 2 Two 0.5-mm-thick donut-shaped copper plates as an electrostatic shield layer are abutted on both upper and lower surfaces of the single-layer wound coil formed in Embodiment 1 and then symmetrical about the center axis. A lead wire was soldered to each of the two places to conduct and fix, and then a second layer coil was wound in the same manner as described above to form a large current common mode coil shown in FIG. .

【0016】[0016]

【実施例3】実施例1と同様にコアの全周に1層の巻線
をしたのち、実施例2と同様に静電シールド層として、
銅板2枚をそれぞれコイル上下面に当接させ、両者をリ
ード線で接続して導通させ固定してから、さらに1層め
のコイルの1端を他端の上層に巻き進んで、巻数が実施
例1のコイルのほぼ2倍の巻数の15ターンの大電流コ
イルを形成した。(図示せず)
[Embodiment 3] A single-layer winding is formed on the entire circumference of the core as in Embodiment 1, and then, as in Embodiment 2, an electrostatic shield layer is formed.
The two copper plates are respectively brought into contact with the upper and lower surfaces of the coil, and the two are connected by a lead wire to conduct and fix. Then, one end of the first layer coil is further wound on the upper layer of the other end, and the number of turns is adjusted A 15-turn high-current coil having approximately twice the number of turns of the coil of Example 1 was formed. (Not shown)

【0017】[0017]

【発明の効果】本発明の方法によれば、磁気特性に優れ
た小型なコアに柔らかい絶縁被覆平編銅線を巻くので巻
線作業が容易になり、断面矩形のコアに巻くときも角部
の巻線の曲率半径が小さく巻けるので、容積の小さい小
型な大電流用のコイルが形成できる。さらに、多層に巻
く場合も層間を静電シールドすることで浮遊容量を小さ
くし、高周波帯域まで減衰特性に優れた大電流用コイル
を形成することができる。
According to the method of the present invention, the winding operation is facilitated by winding a soft insulation-coated flat knitted copper wire around a small core having excellent magnetic properties, and the winding operation is easy even when winding around a core having a rectangular cross section. Since the winding can be wound with a small radius of curvature, a small-sized, large-current coil having a small volume can be formed. Furthermore, even in the case of winding in multiple layers, a stray capacitance can be reduced by electrostatically shielding between layers, and a large current coil excellent in attenuation characteristics up to a high frequency band can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の大電流用コイルを示すFIG. 1 shows a coil for a large current according to a first embodiment.

【図2】実施例2の大電流用コイルを示すFIG. 2 shows a large current coil according to a second embodiment.

【図3】平角線を巻回する説明図を示すFIG. 3 shows an explanatory view of winding a flat wire.

【図4】従来の平角線巻回コイルの平面図と拡大断面図
を示す
FIG. 4 shows a plan view and an enlarged sectional view of a conventional flat wire wound coil.

【図5】MnZnフェライトコアと超微細結晶合金コア
とのB―H特性の比較図を示す
FIG. 5 shows a comparison diagram of BH characteristics between a MnZn ferrite core and an ultrafine crystal alloy core.

【図6】MnZnフェライトコアと超微細結晶合金コア
を用いたコイルの比較をノイズ減衰量の周波数特性で示
FIG. 6 shows a comparison between a coil using a MnZn ferrite core and a coil using an ultrafine crystal alloy core by frequency characteristics of noise attenuation.

【符号の説明】[Explanation of symbols]

1……リング状コア 2……1次コイルの平編銅線 2’ …2次コイルの平編銅線 3……絶縁被覆 4……シールド層(金属箔) 5……接地端子 6……平角線 7……平角線ソレノイドコイルの内径 8……コア断面の対角線 DESCRIPTION OF SYMBOLS 1 ... Ring core 2 ... Plain braided copper wire of primary coil 2 '... Plain braided copper wire of secondary coil 3 ... Insulation coating 4 ... Shield layer (metal foil) 5 ... Ground terminal 6 ... Flat wire 7: Inside diameter of flat wire solenoid coil 8: Diagonal line of core cross section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電源回路のフィルタを構成するコイルにお
いて、絶縁被覆平編銅線が巻回されてなることを特徴と
する大電流用コイル。
1. A coil for a large current, wherein a coil constituting a filter of a power supply circuit is formed by winding an insulated flat braided copper wire.
【請求項2】電源回路のフィルタを構成するコイルにお
いて、絶縁被覆平編銅線が巻回され、重ね巻きした絶縁
被覆平編銅線の層間に、静電シールド層を配置し接地端
子を備えたことを特徴とする大電流用コイル。
2. A coil constituting a filter of a power supply circuit, wherein an insulated flat braided copper wire is wound, an electrostatic shield layer is arranged between layers of the insulated insulated flat braided copper wire, and a ground terminal is provided. A large current coil characterized by the following.
【請求項3】電源回路のフィルタを構成するコイルにお
いて、超微細結晶合金を巻回されてなるコアに絶縁被覆
平編銅線が巻回されてなることを特徴とする大電流用コ
イル。
3. A coil for forming a filter for a power supply circuit, wherein a coil made of an ultrafine crystal alloy is wound with an insulated flat knitted copper wire around the core.
JP2001029200A 2001-02-06 2001-02-06 Coil for large current Pending JP2002231535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029200A JP2002231535A (en) 2001-02-06 2001-02-06 Coil for large current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029200A JP2002231535A (en) 2001-02-06 2001-02-06 Coil for large current

Publications (1)

Publication Number Publication Date
JP2002231535A true JP2002231535A (en) 2002-08-16

Family

ID=18893575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029200A Pending JP2002231535A (en) 2001-02-06 2001-02-06 Coil for large current

Country Status (1)

Country Link
JP (1) JP2002231535A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147199A (en) * 2008-12-18 2010-07-01 Totoku Electric Co Ltd Braided-wire toroidal coil
JP2015220391A (en) * 2014-05-20 2015-12-07 矢崎総業株式会社 Surge suppression module
CN106601446A (en) * 2016-12-21 2017-04-26 宁夏银利电气股份有限公司 High-power annular high-frequency inductor
CN111141939A (en) * 2018-11-02 2020-05-12 亚德诺半导体国际无限责任公司 Electrostatic shielding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147199A (en) * 2008-12-18 2010-07-01 Totoku Electric Co Ltd Braided-wire toroidal coil
JP2015220391A (en) * 2014-05-20 2015-12-07 矢崎総業株式会社 Surge suppression module
CN106601446A (en) * 2016-12-21 2017-04-26 宁夏银利电气股份有限公司 High-power annular high-frequency inductor
CN111141939A (en) * 2018-11-02 2020-05-12 亚德诺半导体国际无限责任公司 Electrostatic shielding
CN111141939B (en) * 2018-11-02 2022-04-12 亚德诺半导体国际无限责任公司 Electrostatic shielding device
US11315725B2 (en) 2018-11-02 2022-04-26 Analog Devices International Unlimited Company Current sensing coil electrostatic shielding

Similar Documents

Publication Publication Date Title
US5400005A (en) Toroidal transformer with magnetic shunt
EP3026683B1 (en) Transformer, power supply device, and method for manufacturing transformer
JPH0855738A (en) Transformer
JP2013501369A (en) Current compensation choke and method of manufacturing current compensation choke
JP2001274030A (en) Choke coil for large current
JPH10308315A (en) Inductance element part
WO2011145299A1 (en) Reactor
JPH1174138A (en) High-voltage transformer
JP2002231535A (en) Coil for large current
JP3079446U (en) Large current coil.
JP2001068364A (en) Toroidal coil and its manufacturing method
JPH06231985A (en) Common-mode choke coil
JPH0998045A (en) Noise filter
JPH0729755A (en) Common mode choke coil
CN219642645U (en) Ring resonant inductor and control circuit
JP2001257120A (en) Multiple cylindrical choke coil
WO2006070357A2 (en) Inductive electro-communication component core from ferro-magnetic wire
JPH0311534B2 (en)
JP5010672B2 (en) Transformers and transformer systems
JPH0429542Y2 (en)
JPH09306741A (en) Line filter
JP2751228B2 (en) Converter transformer
JPH07211549A (en) Electromagnetic equipment
JPH09260161A (en) Inductor
JPH0376104A (en) High-frequency transformer