JPH0522446B2 - - Google Patents

Info

Publication number
JPH0522446B2
JPH0522446B2 JP57022618A JP2261882A JPH0522446B2 JP H0522446 B2 JPH0522446 B2 JP H0522446B2 JP 57022618 A JP57022618 A JP 57022618A JP 2261882 A JP2261882 A JP 2261882A JP H0522446 B2 JPH0522446 B2 JP H0522446B2
Authority
JP
Japan
Prior art keywords
field current
current
circuit
value
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57022618A
Other languages
Japanese (ja)
Other versions
JPS58141607A (en
Inventor
Katsuji Marumoto
Tsutomu Oomae
Hirohisa Yamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57022618A priority Critical patent/JPS58141607A/en
Publication of JPS58141607A publication Critical patent/JPS58141607A/en
Publication of JPH0522446B2 publication Critical patent/JPH0522446B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motor And Converter Starters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は分巻電動機を用いた電気自動車制御装
置に係り、特に、発進加速の界磁電流の応答特性
を速くし、加速時の性能を向上することのできる
電気自動車制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device using a shunt motor, and in particular to an electric vehicle that can speed up the response characteristics of field current during start acceleration and improve performance during acceleration. Regarding a control device.

特開昭55−94502号公報等にみられるように従
来の直流分割巻電動機を用いた電気自動車用駆動
装置は第1図に示す構成となつている。
As seen in Japanese Unexamined Patent Publication No. 55-94502, a conventional electric vehicle drive device using a DC split-winding motor has a configuration shown in FIG.

電動機の電機子1は電機子用チヨツパ3によつ
て、また、界磁2は界磁チヨツパ4によつて制御
される。そして、電源のバツテリ5から電機子1
と界磁2に流れる電流を断続制御し、電動機の速
度制御を行う。また、界磁チヨツパ4及び電機子
チヨツパ3は、それぞれ、界磁電流制御回路9と
電機子電流制御回路8によつて通流率制御が行わ
れる。界磁電流制御回路9には比例、積分補償か
らなる補償回路91と通流率制御発振回路92
と、界磁電流検出器7の信号を変換する電流検出
回路932と、電流平均値化回路931と、指令
値Ifcと帰還値との偏差を求めるつき合わせ回路9
4とによつて構成されている。また、電機子の電
流制御回路8も同様に電機子電流検出器6、電流
検出回路832、電流平均値化回路831、つき
合わせ回路84、補償回路81、チヨツパ周波
数、通流率制御発振回路82で構成される。そし
て、電機子電流の指令Incは電機子電流指令発生
回路10で、界磁電流指令Ifcは界磁電流指令発生
回路11により、それぞれ与えられる。
The armature 1 of the motor is controlled by an armature chopper 3, and the field 2 is controlled by a field chopper 4. Then, from the power supply battery 5 to the armature 1
The current flowing through the field 2 is controlled intermittently to control the speed of the motor. Further, the field chopper 4 and the armature chopper 3 have their conductivity controlled by a field current control circuit 9 and an armature current control circuit 8, respectively. The field current control circuit 9 includes a compensation circuit 91 consisting of proportional and integral compensation and a conduction rate control oscillation circuit 92.
, a current detection circuit 932 that converts the signal of the field current detector 7, a current averaging circuit 931, and a matching circuit 9 that calculates the deviation between the command value I fc and the feedback value.
It is composed of 4 and 4. Similarly, the armature current control circuit 8 includes an armature current detector 6, a current detection circuit 832, a current averaging circuit 831, a matching circuit 84, a compensation circuit 81, a chopper frequency, and a duty ratio control oscillation circuit 82. Consists of. The armature current command I nc is given by an armature current command generation circuit 10 , and the field current command I fc is given by a field current command generation circuit 11 .

次に界磁チヨツパ4及び電機子チヨツパ3の詳
細構成について説明する。第2図がチヨツパ主回
路の詳細図であり、41は界磁チヨツパ用パワー
トランジスタ、42は界磁回路用フリーホイール
ダイオードである。また、12は電機子電流inf
の脈動平滑用直流リアクトル、38は電機子用フ
リーホイールダイオード、31は主サイリスタ、
32は転流用サイリスタ、33は転流用ダイオー
ド、34は転流コンデンサ、35は転流リアクト
ル、37は補充電用抵抗、36は補充電用ダイオ
ードである。
Next, detailed configurations of the field chopper 4 and armature chopper 3 will be explained. FIG. 2 is a detailed diagram of the chopper main circuit, where 41 is a power transistor for the field chopper, and 42 is a freewheel diode for the field circuit. In addition, 12 is armature current i nf
DC reactor for smoothing pulsation, 38 is a freewheel diode for armature, 31 is a main thyristor,
32 is a commutating thyristor, 33 is a commutating diode, 34 is a commutating capacitor, 35 is a commutating reactor, 37 is a supplementary charging resistor, and 36 is a supplementary charging diode.

上記構成の主回路において、第1図に示した通
流率制御発振回路92より第2図の界磁チヨツパ
用トランジスタ41のベースへON、OFF信号が
与えられるとトランジスタ41には第3図に示す
チヨツピング電流icHfが界磁コイル2を介して流
れる。その時の界磁コイル電流iff、フリーホイー
ル電流iDfも第3図のごとく流れる。一方、第2図
の主サイリスタ31に第1図に示した通流率制御
発振回路82よりオンゲートパルスが与えられる
と第4図に示すチヨツパ電流icHが、バツテリ5、
電機子1、直流リアクトル12、主サイリスタ3
1を介して流れる。また、転流用サイリスタ32
にゲートパルスが与えられると主サイリスタ31
がターンオフし、ダイオード38には第4図に示
すフリーホイール電流iDが流れる。なお、主サイ
リスタ31の転流は、補助サイリスタ32を点弧
することにより、補充電抵抗37、ダイオード3
6を介して転流コンデンサ34に蓄えられたエネ
ルギーを、転流コンデンサ34、転流リアクトル
35、転流サイリスタ32の閉回路で振動電流を
流し、電流が反転しサイリスタ31が逆バイアス
されることが行われる。上記のチヨツパ動作にお
いて電機子1には第4図に示したinfの脈動電流
を流す。
In the main circuit of the above configuration, when ON and OFF signals are applied from the duty ratio control oscillator circuit 92 shown in FIG. 1 to the base of the field chopper transistor 41 shown in FIG. A chopping current i cHf shown flows through the field coil 2. At that time, the field coil current i ff and freewheel current i Df also flow as shown in FIG. On the other hand, when an on-gate pulse is applied to the main thyristor 31 in FIG. 2 from the duty ratio control oscillation circuit 82 shown in FIG. 1, the chopper current i cH shown in FIG.
Armature 1, DC reactor 12, main thyristor 3
Flows through 1. In addition, the commutation thyristor 32
When a gate pulse is applied to the main thyristor 31
is turned off, and a freewheel current i D shown in FIG. 4 flows through the diode 38. Note that the commutation of the main thyristor 31 is achieved by firing the auxiliary thyristor 32, which causes the auxiliary charging resistor 37 and the diode 3 to
6, the energy stored in the commutation capacitor 34 is passed through the closed circuit of the commutation capacitor 34, the commutation reactor 35, and the commutation thyristor 32, and the current is reversed to reverse bias the thyristor 31. will be held. In the above chopper operation, a pulsating current of i nf shown in FIG. 4 is passed through the armature 1.

次に、制御回路全体の動作を説明する。第1図
に戻つて、今、アクセル開度信号ACCがアクセ
ルペダルを踏込むことで発生し、電機子電流指令
発生回路10より電流指令値Incが与えられる。
電流制御回路8においては、電流検出器6で検出
される電流infが指令値Incと同じくなるようにフ
イードバツク制御を行う。この電流検出器6で検
出される電流infは脈動電流である。一方、電流
の指令値Incは平均値として与えている。そこで、
電流検出器6で検出される電流を平均値とする必
要があり、電流平均値化回路831を介して平均
値化している。
Next, the operation of the entire control circuit will be explained. Returning to FIG. 1, the accelerator opening signal ACC is now generated by depressing the accelerator pedal, and the armature current command generation circuit 10 gives the current command value Inc.
In the current control circuit 8, feedback control is performed so that the current inf detected by the current detector 6 becomes equal to the command value Inc. The current i nf detected by this current detector 6 is a pulsating current. On the other hand, the current command value I nc is given as an average value. Therefore,
It is necessary to average the current detected by the current detector 6, and the current is averaged via a current averaging circuit 831.

一方、界磁電流の場合は電機子電流infを平均
値化した信号Inffが指令値となる。界磁電流指令
発生回路11に与えられる。界磁電流制御回路9
においては、界磁電流iffが検出器7及び検出回路
932でiffdの信号が検出され、さらに、平均値
化回路931でIfffの信号に変換される。
On the other hand, in the case of field current, the command value is a signal I nff obtained by averaging the armature current i nf . It is given to the field current command generation circuit 11. Field current control circuit 9
In the field current i ff , a signal of i ffd is detected by the detector 7 and a detection circuit 932 , and further converted into a signal of I fff by an averaging circuit 931 .

これらの検出波形を第5図に示す。つき合わせ
回路94では界磁電流指令Ifcと帰還値Ifffとをつ
き合わせを行い、界磁電流iffが指令値Ifcと同じく
なるようフイードバツク制御を行う。この場合に
界磁巻線2に流れる電流iffは第5図に示したよう
な脈動電流である。一方、電流の指令値Ifcは平均
値として与えられる。したがつて、電流の検出信
号はできるだけ平均値化する必要があり、第5図
に示した検出値Ifffのように脈動の少ない検出信
号にすることが必要である。ところで、電流検出
値を平均化することは電流変換回路93の応答時
間が遅くなることを意味する。すなわち、第1図
に示した界磁電流制御回路9は補償回路91の補
償ゲインを小さくし、系を安定化することが必要
となる。このような方法を用いると次に示すよう
な問題点が生じる。
These detected waveforms are shown in FIG. A matching circuit 94 matches the field current command I fc and the feedback value I fff and performs feedback control so that the field current i ff becomes equal to the command value I fc . In this case, the current i ff flowing through the field winding 2 is a pulsating current as shown in FIG. On the other hand, the current command value I fc is given as an average value. Therefore, it is necessary to average the current detection signal as much as possible, and it is necessary to make the detection signal less pulsating as in the detection value I fff shown in FIG. By the way, averaging the detected current values means that the response time of the current conversion circuit 93 becomes slower. That is, the field current control circuit 9 shown in FIG. 1 needs to reduce the compensation gain of the compensation circuit 91 to stabilize the system. When such a method is used, the following problems arise.

すなわち、制御系の安定化を図ると系の応答が
遅くなり、第6図に示すように指令の電機子電流
infが変化したにもかかわらず、界磁電流iffの応答
は遅い。したがつて、界磁電流が一定値(回転数
一定値Nnd)に達するまでにtd1時間を要し、電
動機回転数の上昇が遅れる。その為に、電気自動
車が停止状態から急発進する場合において加速時
間が長くなり加速性能が低下する欠点がある。
In other words, as the control system is stabilized, the response of the system slows down, and as shown in Figure 6, the commanded armature current
Even though i nf changes, the response of field current i ff is slow. Therefore, it takes 1 hour td for the field current to reach a constant value (constant rotational speed value N nd ), and the rise in the motor rotational speed is delayed. Therefore, when an electric vehicle suddenly starts from a stopped state, there is a drawback that acceleration time becomes longer and acceleration performance deteriorates.

本発明の目的は、界磁電流制御系の応答を安定
にし、かつ、加速時においても界磁電流の応答を
速くし、加速特性を良くすることのできる電気自
動車制御装置に関する。
An object of the present invention is to relate to an electric vehicle control device that can stabilize the response of a field current control system, speed up the response of the field current even during acceleration, and improve acceleration characteristics.

本発明は、加速時であることを検出し、加速時
には、界磁電流制御回路と界磁電流指令値発生回
路を応答性の良い別の回路に切替えることによ
り、加速特性を良くしようというものである。
The present invention aims to improve acceleration characteristics by detecting that acceleration is occurring and switching the field current control circuit and field current command value generation circuit to other circuits with good responsiveness during acceleration. be.

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第7図には、本発明の一実施例が示されてい
る。
FIG. 7 shows an embodiment of the invention.

図において、電機子電流指令発生回路10、電
機子電流制御回路8及び界磁電流指令発生回路1
1は第1図に示した従来の構成と同一である。ま
た、界磁電流制御回路9において、補償回路91
と通流率制御発振回路92、電流変換回路93も
従来と同一である。また、95は発進加速時の補
償回路、96は補償回路の切替スイツチ、94は
つき合わせ回路である。また、12は界磁電流最
大指令値(一定値)発生回路、13は補償条件判
定回路、14は指令切替スイツチである。上記構
成において、通常の運転では、電機子電流及び界
磁電流制御とも系が安定となるように補償回路8
1,91の定数を設定しておく。そして、発進加
速条件時のみ界磁電流制御回路の補償回路及び指
令発生回路を切替える。すなわち、次の条件が満
足した場合には通常の回路(切替スイツチ14,
96がA側へON)から加速時の回路(切替スイ
ツチ14,96がB側)へ切替えを行う。
In the figure, an armature current command generation circuit 10, an armature current control circuit 8, and a field current command generation circuit 1
1 is the same as the conventional configuration shown in FIG. Further, in the field current control circuit 9, a compensation circuit 91
The conduction rate control oscillation circuit 92 and current conversion circuit 93 are also the same as those of the prior art. Further, 95 is a compensation circuit during start acceleration, 96 is a compensation circuit changeover switch, and 94 is a matching circuit. Further, 12 is a field current maximum command value (constant value) generation circuit, 13 is a compensation condition determination circuit, and 14 is a command changeover switch. In the above configuration, during normal operation, the compensation circuit 8
Set a constant of 1,91. Then, the compensation circuit and command generation circuit of the field current control circuit are switched only under the start acceleration condition. That is, if the following conditions are satisfied, the normal circuit (changeover switch 14,
96 is turned on to the A side) to the circuit during acceleration (switches 14 and 96 are turned on to the B side).

切替条件 (1) アクセル開度(ACC)>AC9…開度が大き
い。
Switching conditions (1) Accelerator opening (ACC) > AC9...Opening is large.

そして、 (2) 電動機回転数(Nn)<Nn5…低速 この場合の動作は次のようになる。 (2) Motor rotation speed (N n ) < N n5 ...low speed The operation in this case is as follows.

切替スイツチ14,96がA側へONしている
状態で、開磁電流指令発生回路11より指令値Ifc
が界磁電流制御回路9へ与えられると界磁電流制
御は通常の動作を行う。これに対し、第5の手段
となる補償条件判定回路13に第1の手段の出力
値となるアクセル開度信号ACCと第2の手段の
出力信号となる電動機回転数Nnを入力し、上記
した条件を満足すると前記第5の手段である補償
条件判定回路13により切替スイツチ14,96
をB側へ切替える。そうすると第3の手段である
界磁電流最大指令値(一定値)発生回路12から
の信号が界磁電流制御回路9の指令値となる。ま
た、補償回路は補償回路91から発進加速時補償
回路95へ切替わる。すなわち、具体的には次の
動作を行う。
With the changeover switches 14 and 96 turned on to the A side, the command value I fc is output from the magnet open current command generation circuit 11.
is applied to the field current control circuit 9, the field current control performs normal operation. On the other hand, the accelerator opening signal ACC, which is the output value of the first means, and the motor rotation speed N n , which is the output signal of the second means, are input to the compensation condition determination circuit 13, which is the fifth means, and the When the above conditions are satisfied, the compensation condition determination circuit 13, which is the fifth means, switches the changeover switches 14 and 96.
switch to the B side. Then, the signal from the field current maximum command value (constant value) generation circuit 12, which is the third means, becomes the command value of the field current control circuit 9. Further, the compensation circuit is switched from the compensation circuit 91 to the compensation circuit 95 during start acceleration. Specifically, the following operations are performed.

(1) 界磁電流指令値を最大値とする。(1) Set the field current command value to the maximum value.

(2) 界磁電流補償回路の比例ゲインを通常の状態
より大きくする。
(2) Make the proportional gain of the field current compensation circuit larger than the normal state.

このように制御回路を切替えることにより発進
加速時のみ制御応答を速くすることができる。
By switching the control circuit in this manner, the control response can be made faster only during start acceleration.

以上、説明した制御法の一実施例として、マイ
コンを用いて、ソフトウエアで制御を行う場合の
処理内容を第8図に示す。
As an example of the control method described above, FIG. 8 shows the processing contents when control is performed by software using a microcomputer.

先ず、ステツプ1300においてアクセル開度のチ
エツクを行い、開度条件がAC90の値以下の場
合はステツプ1320で通常の指令のデータ設定を行
う。すなわち、通常制御の界磁指令値Ifc、比例補
償ゲインKpfを設定する。最初に戻り、ステツプ
1300でアクセル開度がAC90より大きい場合に
は、ステツプ1310で回転数のチエツクを行う。回
転数NnがNn5より大きい場合にはステツプ1320
の通常処理を行う。回転数NnがNn5より小さい
場合は、ステツプ1330の処理を行う。すなわち、
発進起動時、すなわち発進加速時の処理で、界磁
指令値の最大値(Ifnax)の設定、それに、補償回
路の比例ゲインKpfDを通常より大きくし応答を速
くする。このように、簡単なソフトウエアで界磁
電流制御回路の切替えが容易にでき発進加速時の
みの応答を速くすることが可能である。第9図は
上記した制御法の動作説明図である。アクセル界
度ACCをステツプ的に変化させると電機子電流
infが急変する。それに応じて界磁電流iffの立上り
が、従来でtd1時間かかつていたものがtd2の時間
に短縮できる。したがつて、従来、電動機回転数
が一定値Nndまで達する時間がtd1かかつていた
ものが、td3の時間へ短縮することができる。す
なわち、電動機回転数Nnの起動は第9図に示し
た従来aの特性からbの特性となり、加速性能が
改善される。
First, in step 1300, the accelerator opening degree is checked, and if the opening condition is less than the AC90 value, normal command data is set in step 1320. That is, the field command value I fc and proportional compensation gain K pf for normal control are set. Go back to the beginning and step
If the accelerator opening is greater than AC90 at step 1300, the rotational speed is checked at step 1310. If the rotational speed N n is greater than N n5 , step 1320
Perform normal processing. If the rotational speed N n is smaller than N n5 , the process of step 1330 is performed. That is,
During start-up, that is, during start-up acceleration, the maximum value of the field command value (I fnax ) is set, and the proportional gain K pfD of the compensation circuit is made larger than usual to speed up the response. In this way, the field current control circuit can be easily switched using simple software, and the response only during start acceleration can be made faster. FIG. 9 is an explanatory diagram of the operation of the above-mentioned control method. When the accelerator level ACC is changed stepwise, the armature current
i nf suddenly changes. Correspondingly, the rise of the field current i ff can be shortened from the conventional td 1 hour to td 2 . Therefore, conventionally, the time required for the motor rotation speed to reach the constant value N nd can be reduced to td 1 , but it can be reduced to td 3 . That is, when starting the electric motor at the rotational speed N n , the conventional characteristic a shown in FIG. 9 changes to the characteristic b, and the acceleration performance is improved.

したがつて、本実施例によれば、界磁電流制御
において、定常状態での制御系を安定にした状態
で、発進加速時においても制御系の応答を速くす
ることが可能なため、界磁電流の立上りを速くす
ることができる。したがつて、電気自動車の発進
時の加速時間を短縮できる効果がある。
Therefore, according to this embodiment, in field current control, it is possible to make the response of the control system faster even during start acceleration while keeping the control system stable in the steady state. The current rise can be made faster. Therefore, there is an effect that the acceleration time when starting the electric vehicle can be shortened.

以上説明したように、本発明によれば、界磁電
流制御系の応答を安全にし、かつ、加速時におい
ても界磁電流の応答を速くし、加速特性を良くす
ることができる。
As explained above, according to the present invention, the response of the field current control system can be made safe, and the response of the field current can be made faster even during acceleration, and the acceleration characteristics can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式の電気自動車駆動装置の構成
図、第2図はチヨツパ主回路図、第3図は界磁チ
ヨツパ動作波形図、第4図は電機子チヨツパ動作
波形図、第5図は電流変換回路動作波形図、第6
図は従来方式の界磁電流、回転数等の応答特性
図、第7図は本発明の実施例を示す制御回路構成
図、第8図は第7図図示実施例のフローチヤー
ト、第9図は本実施例による応答特性図である。 ACC……アクセル開度信号、8……電機子電
流制御回路、9……界磁電流制御回路、13……
補償条件判定回路、12……界磁電流最大指令
値、14……指令値切替スイツチ、96……補償
回路切替スイツチ。
Figure 1 is a configuration diagram of a conventional electric vehicle drive system, Figure 2 is a chopper main circuit diagram, Figure 3 is a field chopper operation waveform diagram, Figure 4 is an armature chopper operation waveform diagram, and Figure 5 is a diagram of armature chopper operation waveforms. Current conversion circuit operation waveform diagram, 6th
The figure shows a response characteristic diagram of field current, rotational speed, etc. of the conventional method, Figure 7 is a control circuit configuration diagram showing an embodiment of the present invention, Figure 8 is a flowchart of the embodiment shown in Figure 7, and Figure 9 is a response characteristic diagram according to this embodiment. ACC... Accelerator opening signal, 8... Armature current control circuit, 9... Field current control circuit, 13...
Compensation condition determination circuit, 12... Field current maximum command value, 14... Command value changeover switch, 96... Compensation circuit changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 1 アクセルペダル等の指令発生装置の操作量に
応じて電動機の電機子電流を制御する電機子電流
制御回路と、前記電機子電流の検出値を界磁電流
指令値として発生する界磁電流指令値発生回路
と、該界磁電流指令値発生回路から出力される指
令値に基づき界磁電流を制御する界磁電流制御回
路とを備えたものにおいて、アクセル開度を検出
する第1の手段と、上記電動機の回転数を検出す
る第2の手段と、上記界磁電流の最大指令値を出
力する第3の手段と、上記界磁電流制御回路の補
償ゲインよりも大きいゲインで界磁電流を制御す
る第4の手段と、前記第1の手段の出力値が、所
定値以上で、かつ前記第2の手段の出力値が低速
回転領域の一定値以下の場合に車両が発進加速時
であることを検知する第5の手段と、該第5の手
段からの出力があつた際に上記界磁電流指令値発
生回路に代えて前記第3の手段からの出力値を指
令値に切替える第6の手段と、前記第5の手段か
らの出力があつた際に上記界磁電流制御回路から
前記第4の手段に切替える第7の手段とを設けた
ことを特徴とする電気自動車制御装置。
1. An armature current control circuit that controls the armature current of the motor according to the operation amount of a command generating device such as an accelerator pedal, and a field current command value that generates a field current command value based on the detected value of the armature current. A first means for detecting an accelerator opening in a device comprising a generation circuit and a field current control circuit that controls a field current based on a command value output from the field current command value generation circuit; a second means for detecting the rotational speed of the electric motor; a third means for outputting a maximum command value of the field current; and controlling the field current with a gain larger than the compensation gain of the field current control circuit. and the vehicle is at the time of start acceleration when the output value of the fourth means and the first means is a predetermined value or more, and the output value of the second means is less than or equal to a certain value in a low speed rotation region. and a sixth means for switching the output value from the third means to the command value instead of the field current command value generation circuit when the output from the fifth means is received. and seventh means for switching from the field current control circuit to the fourth means when an output from the fifth means is received.
JP57022618A 1982-02-17 1982-02-17 Controller for electric automobile Granted JPS58141607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022618A JPS58141607A (en) 1982-02-17 1982-02-17 Controller for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022618A JPS58141607A (en) 1982-02-17 1982-02-17 Controller for electric automobile

Publications (2)

Publication Number Publication Date
JPS58141607A JPS58141607A (en) 1983-08-23
JPH0522446B2 true JPH0522446B2 (en) 1993-03-29

Family

ID=12087818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022618A Granted JPS58141607A (en) 1982-02-17 1982-02-17 Controller for electric automobile

Country Status (1)

Country Link
JP (1) JPS58141607A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0736644B2 (en) * 1988-01-14 1995-04-19 株式会社日立製作所 Electric vehicle control device
JP2003061213A (en) * 2001-08-17 2003-02-28 Hitachi Car Eng Co Ltd Controller of electric vehicle
JP3783710B2 (en) * 2003-11-04 2006-06-07 日産自動車株式会社 Vehicle motor control apparatus and vehicle motor control method

Also Published As

Publication number Publication date
JPS58141607A (en) 1983-08-23

Similar Documents

Publication Publication Date Title
US4958948A (en) System for driving a brushless motor
JPH1080182A (en) Drive control apparatus for motor
JPH0522446B2 (en)
JPH07115791A (en) Control equipment for electric vehicle
JPS6361877B2 (en)
JPH05251800A (en) He-ne laser power supply
JP3426570B2 (en) Switching power supply
JPH0739181A (en) Dc motor control circuit
JPS6310643B2 (en)
JPS6233837B2 (en)
JP2809581B2 (en) Pumping generator motor control device
JPS6325911Y2 (en)
JPH0334281B2 (en)
JPH0813193B2 (en) Motor control device
JPS6031430Y2 (en) DC motor control device
JPS6320081B2 (en)
JP2767884B2 (en) Control device for DC brushless motor
JPH099672A (en) Overload protector for motor
JPS635438Y2 (en)
JPS5930032B2 (en) Constant voltage control method
JPS586367B2 (en) Electric power plant
JP2661714B2 (en) Stepping motor drive circuit
JPH0681511B2 (en) Control unit for pulse width modulation type inverter
JPH06276788A (en) Speed controller for brushless motor
JPH07108043B2 (en) Electric car motor control method