JPH05224125A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH05224125A
JPH05224125A JP4026420A JP2642092A JPH05224125A JP H05224125 A JPH05224125 A JP H05224125A JP 4026420 A JP4026420 A JP 4026420A JP 2642092 A JP2642092 A JP 2642092A JP H05224125 A JPH05224125 A JP H05224125A
Authority
JP
Japan
Prior art keywords
lens
lens component
component
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4026420A
Other languages
Japanese (ja)
Other versions
JP3196283B2 (en
Inventor
Manami Saka
真奈美 坂
Katsuhiro Takamoto
勝裕 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2642092A priority Critical patent/JP3196283B2/en
Publication of JPH05224125A publication Critical patent/JPH05224125A/en
Application granted granted Critical
Publication of JP3196283B2 publication Critical patent/JP3196283B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To make a zoom lens have high variable power ratio and large aperture ratio, to make it compact, to reduce the cost thereof and to obtain the high performance of aberration by constituting the zoom lens of 1st-5th lens components in order from an object side and fixing the 1st lens component having positive refracting power fixed in the middle of variable power. CONSTITUTION:This zoom lens is constituted of five lens components, a 1st lens component G1 having the positive refracting power, a 2nd lens component G2 having negative refracting power, a 3rd lens component G3 having the positive refracting power, a 4th lens component G4 having the positive refracting power, and a 5th lens component G5 having the negative refracting power in order from the object side, and the 1st lens component G1 is fixed in the middle of variable power. In order to make the zoom lens compact, the 5th lens component is allowed to have the negative power and the zoom lens is made in such a zoom type that the negative lens component is placed on the image side of the conventional four-component system. The 1st lens group G1 is fixed because its outside diameter becomes remarkably large when it is largely moved in the middle of variable power and it becomes heavy in weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ズームレンズに関する
ものであり、特にビデオカメラや電子スチルカメラ等の
小型カメラ等に適用可能な変倍比の大きいズームレンズ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a zoom lens having a large zoom ratio applicable to small cameras such as video cameras and electronic still cameras.

【0002】[0002]

【従来の技術】近年、電子部品のパッケージ化や集積率
の向上により、ビデオカメラ等のカメラ本体は、従来品
に比べ重量・体積とも格段にコンパクト化が進んでい
る。一方、カメラ本体の価格面・コスト面においても低
廉化が著しい。
2. Description of the Related Art In recent years, camera bodies such as video cameras have become much more compact in weight and volume than conventional products due to packaging of electronic parts and improvement in integration rate. On the other hand, the price reduction and cost reduction of the camera body are remarkable.

【0003】このような状況において、カメラ全体に占
めるレンズの重量・体積・コストは、絶対値においては
少しずつ改善されてきている。しかし、カメラ全体に対
する相対値は年々上昇している状況にあるため、コンパ
クト化や低コスト化の要請は、より強いものになってき
ている。
Under such circumstances, the weight, volume, and cost of the lens occupying the entire camera have been gradually improved in absolute value. However, since the relative value to the entire camera is increasing year by year, the demand for compactness and cost reduction is becoming stronger.

【0004】また、他方では撮像素子の小型化による照
度不足を補うための大口径比化や更には高画素化・高解
像度化に対応するための収差性能の高性能化というよう
に、より高い機能がレンズに求められてきているという
側面もある。
On the other hand, a higher aperture ratio is provided to compensate for the lack of illuminance due to the downsizing of the image pickup device, and higher aberration performance is required for higher pixel count and higher resolution. There is also the aspect that functions are being demanded of lenses.

【0005】現在、特にビデオカメラ分野では、変倍比
が6倍程度の変倍レンズが主流である。このように高変
倍率であって、かつ、FナンバーがF1.6〜F1.8程度の大
口径比のズームレンズとしては、4成分又は5成分から
成るズームレンズが従来より数多く提案されている。し
かし、その大半は13〜15枚程度のレンズから構成されて
いるため、コンパクト化,低コスト等の現在の要求を満
足しうるものとは言えなくなってきている。
At present, particularly in the field of video cameras, a variable power lens having a variable power ratio of about 6 is predominant. As a zoom lens having a high zoom ratio and a large aperture ratio with an F number of about F1.6 to F1.8, many zoom lenses having four or five components have been proposed. .. However, most of them are composed of about 13 to 15 lenses, so that it cannot be said that the present demands for compactness and low cost are satisfied.

【0006】そこで、最近ではかかる要求を満足させる
ため、非球面を用いることによってレンズの構成枚数を
削減する傾向にある。例えば、特開昭57-27219号に開示
されているズームレンズは、6倍ズームではないが、正
負正の3成分より成る系で、第1レンズ成分を像点位置
補正成分(コンペンセーター)、第2レンズ成分を変倍成
分(バリエーター)として、光軸上を移動させ、各群に非
球面を1面ずつ用いることによって、F1.6の3倍ズーム
を12枚のレンズで構成している。
Therefore, in recent years, in order to satisfy such requirements, there is a tendency to reduce the number of lens elements by using aspherical surfaces. For example, the zoom lens disclosed in Japanese Unexamined Patent Publication No. 57-27219 is not a 6 × zoom, but is a system composed of three positive and negative components, and the first lens component is an image point position correction component (compensator), By using the second lens component as a variable power component (variator) and moving it along the optical axis and using one aspherical surface for each group, a 3x zoom of F1.6 is composed of 12 lenses. ..

【0007】しかし、このズームレンズでは、そのスペ
ックから考えて構成枚数が少ないとはいえない。また、
変倍時に第3レンズ成分を移動させていないため、必然
的に第1レンズ成分がコンペンセーターレンズ成分とし
て移動する必要がある。そのとき6倍程度の高変倍を達
成しようとすると、ワイド端やミドル域(中間焦点距離)
で、第1レンズ成分がかなり物体側に移動するようなズ
ーム解になってしまう。そのため、第1レンズ成分(前
玉)の径が4成分及び5成分より成るズームレンズに対
してかなり大きくなり、重量が相当重くなる。
However, it cannot be said that the number of constituent elements of this zoom lens is small considering the specifications thereof. Also,
Since the third lens component is not moved during zooming, the first lens component must necessarily move as a compensator lens component. At that time, when trying to achieve a high zoom ratio of about 6 times, the wide end and middle range (intermediate focal length)
Then, the zoom solution is such that the first lens component moves considerably to the object side. Therefore, the diameter of the first lens component (front lens) is considerably larger than that of the zoom lens including four and five components, and the weight is considerably heavy.

【0008】これに対し、4成分系ズームレンズでレン
ズ形状,レンズ配置,非球面の配置をかなり有効に行
い、構成枚数を大幅に削減したものとして、特開昭61-1
10112号や特開昭60-107013号に開示されたものがある。
On the other hand, in the four-component zoom lens, the lens shape, the lens arrangement, and the aspherical surface arrangement are made quite effective, and the number of constituent elements is greatly reduced.
There are those disclosed in 10112 and JP-A-60-107013.

【0009】特開昭61-110112号では、正負負正の4成
分系で、各レンズ成分を簡潔に構成し、4面の非球面を
有効に用いることにより、全系でわずか8枚の構成で6
倍ズームレンズを達成している。
In Japanese Patent Laid-Open No. 61-110112, each lens component is simply constructed by a four-component system of positive, negative, negative, and positive, and aspherical surfaces of four surfaces are effectively used, so that only eight lenses are constructed in the entire system. In 6
Has achieved a double zoom lens.

【0010】また、特開昭60-107013号公報には、正負
正正の4成分系,8枚構成スペックで、F2.0の4倍ズー
ムの模式図が示されている。
Further, Japanese Unexamined Patent Publication No. 60-107013 shows a schematic diagram of a four-fold zoom of F2.0 with a positive / negative positive / positive four-component system and an eight-element configuration.

【0011】その他、特開昭63-304218号,特開昭64-44
907号,特開平1-223408号において、第2レンズ成分を
1枚、第1レンズ成分を1又は2枚とした正負正の3成
分系から成り、非球面を用いて枚数削減を図った変倍比
2〜3倍、Fナンバー2〜4程度のズームレンズが提案
されている。
In addition, JP-A-63-304218 and JP-A-64-44
No. 907, Japanese Patent Laid-Open No. 1-223408, which is composed of a positive / negative positive three-component system in which the second lens component is one element and the first lens component is one or two elements, and the number of elements is reduced by using an aspherical surface. A zoom lens having a magnification ratio of 2 to 3 and an F number of about 2 to 4 has been proposed.

【0012】これらのレンズタイプは、変倍の主役であ
り、かつ、変倍に際して光軸上を大きく移動する第2レ
ンズ成分が、負の単レンズ1枚で構成されている。従っ
て、第2レンズ成分内での色収差補正がなされていない
ために、変倍による色収差の変動が大きく、この色収差
変動は非球面を多用しても改善しうるものではない。よ
って、6倍クラスの高変倍率比のものを実現するのは難
しい。
These lens types are the main components of zooming, and the second lens component that largely moves on the optical axis during zooming is composed of one negative single lens. Therefore, since the chromatic aberration is not corrected in the second lens component, the variation in chromatic aberration due to zooming is large, and this variation in chromatic aberration cannot be improved even if aspherical surfaces are used abundantly. Therefore, it is difficult to realize a high magnification ratio of 6 times class.

【0013】特開昭64-91110号では、第2レンズ成分に
相当する部分を2枚の負レンズより成る負レンズ成分
と、1枚の正レンズより成る正レンズ成分とに分離し、
レンズの見かけ上の構成は3成分系であるが、実質的な
構成を4成分系としている。そして、構成枚数を3成分
系並の8〜11枚に抑えつつ、3倍ズームを実現してい
る。その変倍は、上述した負レンズ成分(実質第2レン
ズ成分)と正レンズ成分(実質第3レンズ成分)とを各々
独立に移動させることにより行っている。しかし、この
4成分ズームレンズは、独立移動する第2レンズ成分と
第3レンズ成分との各々においてレンズ成分内での色収
差補正が完結していないために、高変倍に応用したとき
には、変倍による2つのレンズ成分の相対的な位置の変
動により色収差を充分に抑えきれない。このズームレン
ズでは、変倍比を3倍にとどめつつズーム解を工夫する
ことによって、色収差変動を抑えているが、これを6倍
ズームにするのはかなり困難である。
In Japanese Patent Laid-Open No. 64-91110, a portion corresponding to the second lens component is separated into a negative lens component composed of two negative lenses and a positive lens component composed of one positive lens,
The apparent configuration of the lens is a three-component system, but the substantial configuration is a four-component system. Then, the 3 × zoom is realized while suppressing the number of constituent elements to 8 to 11 which is the same as that of the three-component system. The zooming is performed by independently moving the negative lens component (substantially second lens component) and the positive lens component (substantially third lens component) described above. However, in this four-component zoom lens, the chromatic aberration correction within the lens components is not completed in each of the second lens component and the third lens component that move independently, so that when the zoom lens is applied to high magnification, Chromatic aberration cannot be sufficiently suppressed due to the relative position variation of the two lens components due to. With this zoom lens, the chromatic aberration variation is suppressed by devising the zoom solution while keeping the zoom ratio at 3 times, but it is quite difficult to make this a 6 times zoom.

【0014】特開平1-185608号は、非球面を多用するこ
とによって、特開昭64-91110号で提案されているズーム
レンズの構成枚数を減らしつつ6倍ズームにまで発展さ
せたものといえる。つまり、特開昭64-91110号におい
て、第2レンズ成分を負の単レンズ1枚、第3レンズ成
分を正の単レンズ1枚にし、第4レンズ成分も簡略化し
ている。しかし、これにおいても上述した色収差変動が
大きいため、そのズーム解の工夫をかなり施してあるも
ののまだ残存収差が大きい。更に、色収差補正にかなり
のウェートをおいたズーム解になっているため、移動レ
ンズ成分である第2レンズ成分と第3レンズ成分の移動
量がかなり増しており、その結果、全長が長くなってい
る。特に、重量に大きな影響を与える前玉の外径が、既
存の同スペックの一般的なものに比べ、かなり大きくな
っている。
It can be said that Japanese Laid-Open Patent Publication No. 1-185608 was developed to a 6 × zoom while reducing the number of components of the zoom lens proposed in Japanese Laid-Open Patent Publication No. 64-91110 by using a lot of aspherical surfaces. .. That is, in Japanese Patent Laid-Open No. 64-91110, the second lens component is one negative single lens, the third lens component is one positive single lens, and the fourth lens component is also simplified. However, even in this case, since the above-mentioned variation in chromatic aberration is large, the residual aberration is still large although the zoom solution has been devised considerably. Furthermore, since the zoom solution has a considerable weight in correcting chromatic aberration, the moving amounts of the second lens component and the third lens component, which are moving lens components, are considerably increased, and as a result, the total length is increased. There is. In particular, the outer diameter of the front lens, which has a large effect on the weight, is considerably larger than the existing standard one with the same specifications.

【0015】更に、特開平1-185608号と同じく正負正正
の4成分の構成で色収差変動をも抑えることができるズ
ームレンズが、特開平2-39011号に開示されている。こ
れには、非球面が3面用いられており、F1.4の6倍ズー
ムが8枚で構成されている。コスト面・性能面・大きさ
面から見れば実現可能性はあるが、前玉の径が小さいと
は言えず、重量的には既存のものに対してさしたる優位
性がない。また、第3レンズ成分と第4レンズ成分との
間隔が大きく、かつ、第3レンズ成分射出後の光束がほ
ぼアフォーカルに第4レンズ成分に入射するため、第4
レンズ成分を簡単な構成とすると不必要にバックフォー
カスが長くなる。従って、全長の短縮化にも限りがあ
る。更に、収差図には現れにくいサジタル方向のコマ収
差(リンネンフェラー)が非常に大きく、軸外の性能劣化
が大きいという問題がある。
Further, as in Japanese Patent Laid-Open No. 1-185608, a zoom lens capable of suppressing variation in chromatic aberration with a structure of four components of positive, negative, positive and positive is disclosed in Japanese Patent Laid-Open No. 2-39011. Three aspherical surfaces are used for this, and eight F1.4 6x zooms are used. Although it is feasible from the viewpoint of cost, performance, and size, it cannot be said that the diameter of the front lens is small, and there is no significant advantage over the existing one in terms of weight. Further, since the distance between the third lens component and the fourth lens component is large, and the light flux after the third lens component has exited the fourth lens component almost afocally,
If the lens component has a simple structure, the back focus becomes unnecessarily long. Therefore, there is a limit to the reduction of the total length. Further, there is a problem that the sagittal coma aberration (linnen-feller) that is difficult to appear in the aberration diagram is very large, and the off-axis performance deterioration is large.

【0016】また、これらと同様の正負正の3成分系で
各レンズ成分を移動させることにより、レンズの枚数削
減,高変倍化を目的とし、一眼レフカメラ用やコンパク
トカメラ用として提案されたズームレンズが、特開昭54
-30855号,同54-80143号,特開平2-39116号に開示され
ている。変倍比と構成枚数は、順に2.4倍/10枚,3倍/
11枚,3倍/12枚である。これらはいずれも変倍比が不
十分であり、特に第2レンズ成分や第3レンズ成分の簡
略化が充分達成されておらず、コスト的にもここには適
用しがたい。
Further, by moving each lens component in a positive / negative positive three-component system similar to these, it has been proposed for a single-lens reflex camera or a compact camera for the purpose of reducing the number of lenses and increasing the zoom ratio. Zoom lens
-30855, 54-80143, and JP-A-2-39116. The variable power ratio and the number of constituents are 2.4x / 10, 3x /
11 sheets, 3 times / 12 sheets. In all of these, the zoom ratio is insufficient, and in particular, simplification of the second lens component and the third lens component has not been sufficiently achieved, and it is difficult to apply them in terms of cost.

【0017】[0017]

【発明が解決しようとする課題】そこで、このような状
況に鑑み、本発明では高変倍比,大口径比であり、しか
もコンパクト化,低コスト化及び収差の高性能化が達成
するのに有利なズームレンズ構成を提供することを目的
とする。
Therefore, in view of such a situation, in the present invention, in order to achieve a high zoom ratio and a large aperture ratio, compactness, cost reduction, and high aberration performance are achieved. An object is to provide an advantageous zoom lens configuration.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に本発明のズームレンズは、物体側より順に、正の屈折
力を有する第1レンズ成分と,負の屈折力を有する第2
レンズ成分と,正の屈折力を有する第3レンズ成分と,
正の屈折力を有する第4レンズ成分と,負の屈折力を有
する第5レンズ成分との5つのレンズ成分から成り、前
記第1レンズ成分は変倍中固定であることを特徴として
いる。
To achieve the above object, a zoom lens according to the present invention comprises, in order from the object side, a first lens component having a positive refractive power and a second lens component having a negative refractive power.
A lens component and a third lens component having a positive refractive power,
It is characterized in that it is composed of five lens components, a fourth lens component having a positive refractive power and a fifth lens component having a negative refractive power, and the first lens component is fixed during zooming.

【0019】一般に、ズームレンズにおいてコンパクト
化を図るには、移動レンズ成分の移動量を少なくするか
又はレンズバックを短くする方法が考えられる。通常、
ズームレンズでは物体側の変倍を主として行う部分では
できるだけレンズの芯厚を薄くし、各レンズ成分のレン
ズ枚数も必要最小限に抑えられている。このため、各レ
ンズ成分の屈折力とレンズスペックが決まれば、レンズ
の長さは8割がた決まってしまうといってよい。残りは
レンズバックが短くなる構成にするというのが、大幅に
レンズ全長をコンパクトにできる方法である。
Generally, in order to make the zoom lens compact, a method of reducing the moving amount of the moving lens component or shortening the lens back can be considered. Normal,
In the zoom lens, the core thickness of the lens is made as thin as possible in the portion mainly performing the magnification change on the object side, and the number of lenses of each lens component is also suppressed to the necessary minimum. Therefore, if the refractive power of each lens component and the lens specifications are determined, it can be said that the length of the lens is determined to be 80%. The rest is to make the lens back shorter, which is a method that can greatly reduce the overall lens length.

【0020】そこで、上記のように、第5レンズ成分に
負の屈折力を持たせ、従来の4成分系の像側に負のレン
ズ成分を置いたズームタイプにするのがよい。また、第
1レンズ成分は変倍中に大きく移動すると外径が著しく
大きくなりレンズ重量が重くなってしまうため固定とす
る。
Therefore, as described above, it is preferable that the fifth lens component has a negative refracting power, and the zoom type is such that the negative lens component is placed on the image side of the conventional four-component system. If the first lens component moves greatly during zooming, the outer diameter becomes significantly large and the lens weight becomes heavy, so the first lens component is fixed.

【0021】また、前記第2レンズ成分は、主として変
倍のために光軸上を前後に可動で、前記第3レンズ成分
は変倍中固定で、前記第4レンズ成分は主として変倍に
伴う像点補正のために光軸上を前後に可動で、前記第5
レンズ成分は変倍中固定とするか、又は変倍を助けるた
めに光軸上を前後に可動であることが望ましい。
The second lens component is movable back and forth on the optical axis mainly for zooming, the third lens component is fixed during zooming, and the fourth lens component is mainly associated with zooming. It is possible to move back and forth on the optical axis to correct the image point.
The lens component is preferably fixed during zooming or movable back and forth on the optical axis to assist zooming.

【0022】ズームレンズにおいて移動量を少なくする
ためには、屈折力の強いレンズ成分で変倍を行うのが望
ましい。しかも変倍を行うレンズ成分は、β=−1をは
さんでいるときに最も移動量が少なくなる解となる。つ
まり、第2レンズ成分を変倍のために光軸上を前後に可
動とするのがよい。また、第3レンズ成分を変倍中固定
とし第4レンズ成分を像点補正のために光軸上を前後に
可動とすれば、第3レンズ成分で像点補正を行った場合
よりも前後の空気間隔が少なくてもよいためレンズ系の
全長が短くなる。
In order to reduce the amount of movement in the zoom lens, it is desirable to carry out zooming with a lens component having a strong refractive power. In addition, the lens component for zooming has a solution that minimizes the amount of movement when it is between β = -1. That is, it is preferable to move the second lens component back and forth on the optical axis for zooming. Further, if the third lens component is fixed during zooming and the fourth lens component is movable back and forth on the optical axis for image point correction, the third lens component can be moved forward and backward as compared with the case where image point correction is performed by the third lens component. Since the air gap may be small, the total length of the lens system is shortened.

【0023】また、駆動部分の簡略化を考えると第5レ
ンズ成分は固定であるのが良いが、第5レンズ成分を光
軸上で移動させてやることで、変倍を助ける効果を持た
せることができ、第2レンズ成分の移動量を減らすこと
が可能で、更にコンパクトなレンズ系となる。
Further, considering the simplification of the driving portion, it is preferable that the fifth lens component is fixed, but by moving the fifth lens component on the optical axis, it is possible to provide an effect of assisting zooming. Therefore, the moving amount of the second lens component can be reduced, and the lens system becomes more compact.

【0024】更に、前記第2レンズ成分及び第5レンズ
成分は、変倍時に直線的に移動することが望ましい。
Further, it is desirable that the second lens component and the fifth lens component move linearly during zooming.

【0025】一般に、ズームレンズでは、移動するレン
ズ成分の数が多いほどコンパクトにできる可能性があ
る。しかし、駆動系を考えた場合、複雑な動きをするレ
ンズ成分が多いと機構及び駆動に負担がかかる。このと
き、少なくとも2つのレンズ成分を直線的に動かしてや
れば、この2つのレンズ成分をリンクさせたり簡単な機
構で移動量を比例させて動かしたりすることで、少しで
も駆動系の負担を軽減することができる。
In general, a zoom lens may be made compact as the number of moving lens components increases. However, when considering the drive system, the load on the mechanism and the drive is increased when there are many lens components that make complicated movements. At this time, if at least two lens components are moved linearly, the two lens components are linked or the movement amount is proportionally moved by a simple mechanism, thereby reducing the load on the drive system as much as possible. be able to.

【0026】また、更に前記第3レンズ成分及び前記第
4レンズ成分は、各々少なくとも1面の非球面を含むこ
とが望ましい。上述のようにレンズ枚数が決まっている
ときには、全長のコンパクト化を図るために、移動レン
ズ成分の移動量を少なくするか又はレンズバックを短く
するかであるが、それ以上にコンパクト化するには、レ
ンズ枚数を減らす必要がある。高性能を保ったまま球面
レンズの枚数を減らすには、スペックをかえなければな
らない。性能及びスペックをそのままにしてレンズ枚数
を減らすには、非球面を用いる必要がある。このとき最
も効果的なのは、全焦点距離範囲で光束の通り方が殆ど
変化しない第3レンズ成分及び第4レンズ成分に用いた
ときである。この2つのレンズ成分に非球面を用いれ
ば、たいへん少ない枚数で高性能なズームレンズが実現
できる。
Further, it is desirable that the third lens component and the fourth lens component each include at least one aspherical surface. When the number of lenses is fixed as described above, the amount of movement of the moving lens component is reduced or the lens back is shortened in order to make the overall length compact. , It is necessary to reduce the number of lenses. To reduce the number of spherical lenses while maintaining high performance, it is necessary to change the specifications. To reduce the number of lenses while keeping the performance and specifications, it is necessary to use an aspherical surface. At this time, it is most effective when used for the third lens component and the fourth lens component in which the way of passing the light beam hardly changes in the entire focal length range. If aspherical surfaces are used for these two lens components, a high performance zoom lens can be realized with a very small number of lenses.

【0027】また、前記第5レンズ成分は負の単レンズ
で構成されるのが望ましい。第5レンズ成分を通る光束
は、上述のような構成においては、このレンズ成分が像
面に近いため、細くなっており収差補正は難しくない。
このため、第5レンズ成分を負の単レンズで構成しても
充分収差補正することが可能である。
Further, it is desirable that the fifth lens component is composed of a negative single lens. In the above-mentioned configuration, the light flux passing through the fifth lens component is thin because this lens component is close to the image plane, and aberration correction is not difficult.
Therefore, even if the fifth lens component is composed of a negative single lens, it is possible to sufficiently correct the aberration.

【0028】あるいは更に、前記第1レンズ成分及び第
2レンズ成分は、各々少なくとも1枚の正レンズと少な
くとも1枚の負レンズとを含むことが望ましい。
Alternatively, it is desirable that the first lens component and the second lens component each include at least one positive lens and at least one negative lens.

【0029】ズームレンズは、各レンズ成分の相対的な
位置を変化させることで焦点距離を変えるので、ズーミ
ングによる収差変動を充分小さく抑えるためには、各レ
ンズ成分でほぼ完全に収差補正されていなければならな
い。特に、色収差についてはズーミングによる収差変動
がたいへん問題となる。そこで、第1レンズ成分及び第
2レンズ成分は、各々少なくとも1枚の正レンズと少な
くとも1枚の負レンズとで色消し及び他の収差の補正を
行うことが望ましい。特に、高変倍のレンズに関しては
必要不可欠である。更に第1レンズ成分の負レンズ及び
第2レンズ成分の正レンズは、高分散材料でできている
ことが望ましい。
Since the zoom lens changes the focal length by changing the relative position of each lens component, in order to suppress the aberration variation due to zooming sufficiently small, each lens component must be almost completely corrected for aberrations. I have to. In particular, with respect to chromatic aberration, variation in aberration due to zooming becomes a serious problem. Therefore, it is desirable that the first lens component and the second lens component each perform achromaticity and correction of other aberrations with at least one positive lens and at least one negative lens. In particular, it is indispensable for high-magnification lenses. Further, it is desirable that the negative lens of the first lens component and the positive lens of the second lens component are made of a high dispersion material.

【0030】更に、前記第1レンズ成分及び第2レンズ
成分は、第5レンズ成分が変倍時に固定の場合、以下の
条件式(1),(2)及び(3)を満足することが望ましく、第5
レンズ成分が変倍時に移動する場合、以下の条件式(1),
(2)及び(3')を満足することが望ましい。 0.10<fS・φ1<0.40 ……(1) 0.45<fS・|φ2|<1.35 ……(2) 2.2<|φ2|/φ1<5.0 ……(3) 2.0<|φ2|/φ1<4.0 ……(3') 但し、 fS:広角端の焦点距離 φ1:第1レンズ成分の屈折力 φ2:第2レンズ成分の屈折力 である。
Furthermore, it is desirable that the first lens component and the second lens component satisfy the following conditional expressions (1), (2) and (3) when the fifth lens component is fixed during zooming. , Fifth
When the lens component moves during zooming, the following conditional expression (1),
It is desirable to satisfy (2) and (3 '). 0.10 <fS / φ1 <0.40 …… (1) 0.45 <fS ・ | φ2 | <1.35 …… (2) 2.2 <| φ2 | / φ1 <5.0 …… (3) 2.0 <| φ2 | / φ1 <4.0… (3 ') where fS: focal length at wide-angle end φ1: refractive power of first lens component φ2: refractive power of second lens component

【0031】条件式(1)は、第1レンズ成分の屈折力の
適正な範囲を示したものである。条件式(1)の上限を越
えて第1レンズ成分の屈折力が大きくなると、第1レン
ズ成分で発生する収差が大きくなり変倍による収差変動
が著しくなるため、全焦点距離範囲で必要な性能を得る
ことができない。また、像点補正のために光軸上を移動
する第4レンズ成分の軌跡が、ほとんどUターンしなく
なり著しく移動量が大きくなるため、第3レンズ成分と
の間隔を大きくとらなければならず、全長がたいへん大
きくなってしまうとともに、広角端での収差補正が困難
となる。条件式(1)の下限を越えて第1レンズ成分の屈
折力が小さくなると、第1レンズ成分で発生する収差量
は小さくなるが変倍のために第1レンズ成分と第2レン
ズ成分との間隔を大きくとらなければならず、全長が大
きくなるだけでなく、第1レンズ成分から絞りまでの距
離が遠くなり光束を通すために前玉径が著しく大きくな
ってしまう。このためレンズ重量も大きくならざるをえ
ない。
Conditional expression (1) shows an appropriate range of the refractive power of the first lens component. If the upper limit of conditional expression (1) is exceeded and the refracting power of the first lens component becomes large, the aberration generated in the first lens component will become large and the aberration fluctuation due to zooming will become significant, so the performance required in the entire focal length range Can't get Further, since the locus of the fourth lens component that moves on the optical axis for image point correction hardly makes a U-turn, and the amount of movement increases significantly, it is necessary to set a large distance from the third lens component. The total length becomes very large, and it becomes difficult to correct aberrations at the wide-angle end. When the lower limit of conditional expression (1) is exceeded and the refracting power of the first lens component becomes small, the amount of aberration generated in the first lens component becomes small, but the first lens component and the second lens component become different due to zooming. The distance must be large, and not only the total length becomes large, but also the distance from the first lens component to the diaphragm becomes long and the diameter of the front lens becomes remarkably large because the light flux passes therethrough. For this reason, the weight of the lens must be increased.

【0032】条件式(2)は、第2レンズ成分の屈折力の
適正な範囲を示したものである。条件式(2)の上限を越
えて第2レンズ成分の屈折力が大きくなると、第2レン
ズ成分で発生する収差が大きくなり、やはり変倍による
収差変動が大きくなり全焦点距離範囲で良好な性能を得
ることができない。また、第4レンズ成分の軌跡が望遠
端に近い所で最も物体側の位置となるため第4レンズ成
分で近接物体にフォーカスする場合には第3レンズ成分
との間隔を充分開ける必要がありレンズ全長が大きくな
ってしまうという欠点もある。条件式(2)の下限を越え
て第2レンズ成分の屈折力が小さくなると、第2レンズ
成分が変倍のために移動する量が大きくなり、レンズ全
長が長くなるとともに、前玉径も著しく大きくなってし
まう。また、第4レンズ成分の軌跡がほとんどUターン
しなくなり第3レンズ成分と第4レンズ成分との間隔を
大きくとらなくてはならなくなり収差補正が困難とな
る。
Conditional expression (2) shows an appropriate range of the refractive power of the second lens component. When the upper limit of conditional expression (2) is exceeded and the refracting power of the second lens component becomes large, the aberration generated in the second lens component also becomes large, and the aberration variation due to zooming also becomes large, resulting in good performance over the entire focal length range. Can't get Further, since the locus of the fourth lens component is located closest to the telephoto end and is closest to the object side, it is necessary to provide a sufficient distance from the third lens component when focusing on a near object with the fourth lens component. It also has the drawback of increasing the total length. When the lower limit of conditional expression (2) is exceeded and the refractive power of the second lens component becomes small, the amount of movement of the second lens component due to zooming increases, the total lens length increases, and the front lens diameter also increases significantly. It gets bigger. Further, the locus of the fourth lens component hardly makes a U-turn, and the distance between the third lens component and the fourth lens component must be made large, which makes aberration correction difficult.

【0033】条件式(3),(3')は、第1レンズ成分と第2
レンズ成分との屈折力の比の適正な範囲を示したもので
ある。条件式(3),(3')の上限を越えて第1レンズ成分に
比べて第2レンズ成分の屈折力が大きくなると、像点補
正をする第4レンズ成分の軌跡が望遠端に近い所で最も
物体側の位置になるズーム解となるため第4レンズ成分
で近接物体にフォーカスするときには第3レンズ成分と
の間隔を充分開けなくてはならない。また、広角端での
第4レンズ成分の位置が望遠端での位置よりも像面側と
なるため第5レンズ成分との間隔も開けなくてはならな
い。このため、レンズ全長が著しく大きくなってしま
う。条件式(3),(3')の下限を越えて第2レンズ成分に比
べて第1レンズ成分の屈折力が大きくなると、第4レン
ズ成分の移動の軌跡がほとんどUターンしなくなり、第
3レンズ成分と第4レンズ成分との間隔を大きくとらな
ければならず、レンズ全長が大きくなるとともに広角端
での収差補正することが困難となる。いずれの場合もコ
ンパクトなレンズ系とはならない。
Conditional expressions (3) and (3 ') are defined by the first lens component and the second lens component.
It shows an appropriate range of the ratio of the refractive power to the lens component. When the upper limit of conditional expressions (3) and (3 ') is exceeded and the refractive power of the second lens component becomes larger than that of the first lens component, the locus of the fourth lens component for image point correction is near the telephoto end. Since the zoom solution is located at the position closest to the object side, the fourth lens component must be sufficiently spaced from the third lens component when focusing on a near object. Moreover, since the position of the fourth lens component at the wide-angle end is closer to the image plane than the position at the telephoto end, a distance from the fifth lens component must be provided. For this reason, the total lens length becomes extremely large. When the lower limit of conditional expressions (3) and (3 ') is exceeded and the refractive power of the first lens component becomes larger than that of the second lens component, the locus of movement of the fourth lens component hardly makes a U-turn, and The distance between the lens component and the fourth lens component has to be large, which makes it difficult to correct aberrations at the wide-angle end as the total lens length increases. In either case, the lens system is not compact.

【0034】また、第5レンズ成分が変倍時に移動する
場合、先に述べた理由により、更に前記第3レンズ成分
及び前記第4レンズ成分は、各々少なくとも1面の非球
面を含むことが望ましい。
When the fifth lens component moves during zooming, it is desirable that the third lens component and the fourth lens component each include at least one aspherical surface for the reasons described above. ..

【0035】さらには、前記第3レンズ成分は正の単レ
ンズで構成され、前記第4レンズ成分は負レンズと正レ
ンズとの接合又は分離で構成され、非球面は正レンズに
設けられているのが望ましい。
Further, the third lens component is composed of a positive single lens, the fourth lens component is composed of a negative lens and a positive lens cemented or separated, and the aspherical surface is provided in the positive lens. Is desirable.

【0036】第3レンズ成分は、非球面を用いると正の
単レンズのみで構成しても充分収差補正が可能で、しか
も明るいFナンバーでも高性能なレンズ系が実現でき
る。同様に、第4レンズ成分は、負レンズ及び非球面正
レンズの接合又は分離で構成することによってやはり明
るいFナンバーでも収差補正の充分された高性能なレン
ズ系が実現される。しかし、もし非球面を負レンズに用
いれば単色の収差補正は可能でも色収差は却って悪化さ
せてしまうことになる。このように適正な非球面の用い
方をすることでレンズ枚数を可能な限り減らすことがで
き、しかもコンパクトなレンズ系を実現することができ
る。
If an aspherical surface is used for the third lens component, aberrations can be sufficiently corrected even if it is composed of only a positive single lens, and a high-performance lens system can be realized even with a bright F number. Similarly, by constructing the fourth lens component by cementing or separating a negative lens and an aspherical positive lens, it is possible to realize a high-performance lens system with sufficient aberration correction even with a bright F number. However, if an aspherical surface is used for the negative lens, it is possible to correct monochromatic aberration, but the chromatic aberration will be worsened. By properly using the aspherical surface in this manner, the number of lenses can be reduced as much as possible and a compact lens system can be realized.

【0037】あるいは、第3レンズ成分の屈折力を比較
的強くしたいときには、第3レンズ成分を少なくとも1
枚の負レンズを含む2枚のレンズで構成し、第4レンズ
成分を正の単レンズで構成することが望ましい。
Alternatively, when it is desired to make the refractive power of the third lens component relatively strong, the third lens component should be at least 1
It is preferable that the second lens component is composed of two lenses including the negative lens, and the fourth lens component is composed of a positive single lens.

【0038】前述と同様な効果を第3レンズ成分及び第
4レンズ成分に持たせるには、別の構成も考えることが
できる。このときの構成は、上述のようにする必要があ
る。非球面を効果のある所に用いなければレンズ枚数を
減らすどころか逆に収差を悪くしてしまい、コンパクト
なレンズ系を実現できないからである。また、第3レン
ズ成分の屈折力を比較的強くしたいときには、このよう
に第3レンズ成分の構成を2枚にすることが効果的であ
る。
In order to provide the third lens component and the fourth lens component with the same effect as described above, another configuration can be considered. The configuration at this time must be as described above. This is because unless an aspherical surface is used in an effective place, not only the number of lenses is reduced but the aberration is worsened, and a compact lens system cannot be realized. Further, when it is desired to make the refracting power of the third lens component relatively strong, it is effective to make the configuration of the third lens component two in this way.

【0039】また、第3レンズ成分及び第4レンズ成分
は、第5レンズ成分が変倍時に固定の場合、以下の条件
式(4),(5)及び(6)を満足するのが望ましく、第5レンズ
成分が変倍時に移動する場合、以下の条件式(4),(5)及
び(6')を満足するのが望ましい。 0.15<fS・φ3<0.65 ……(4) 0.35<fS・φ4<0.85 ……(5) 0.7<(φ3+φ4)/|φ2|<1.7 ……(6) 0.7<(φ3+φ4)/|φ2|<1.8 ……(6') 但し、 φ3:第3レンズ成分の屈折力 φ4:第4レンズ成分の屈折力 である。
Further, it is desirable that the third lens component and the fourth lens component satisfy the following conditional expressions (4), (5) and (6) when the fifth lens component is fixed during zooming. When the fifth lens component moves during zooming, it is desirable to satisfy the following conditional expressions (4), (5) and (6 '). 0.15 <fS / φ3 <0.65 …… (4) 0.35 <fS ・ φ4 <0.85 …… (5) 0.7 <(φ3 + φ4) / | φ2 | <1.7 …… (6) 0.7 <(φ3 + φ4) / | Φ2 | <1.8 (6 ') where φ3 is the refractive power of the third lens component and φ4 is the refractive power of the fourth lens component.

【0040】条件式(4)は、第3レンズ成分の屈折力の
適正な範囲を示すものである。条件式(4)の上限を越え
て第3レンズ成分の屈折力が大きくなると、レンズバッ
クは小さくなり、レンズ全長が短くなるが第3レンズ成
分で発生する収差が大きくなり特に広角端で良好な性能
を得ることができない。特に、ビデオカメラにおいて
は、明るいFナンバーが要求されているので、第3レン
ズ成分は、広角端の球面収差を充分補正する能力が必要
である。前述のように、第3レンズ成分を1枚か又は2
枚で構成するときには、非球面を適切な位置に用いるこ
とで収差補正が可能となるが、第3レンズ成分の発生す
る収差があまり大きいと、いくら非球面を用いても良好
に収差補正することができない。条件式(4)の下限を越
えて第3レンズ成分の屈折力が小さくなると、第3レン
ズ成分でほとんど光束が集光されないためレンズバック
が大きくなりレンズ全長が長くなってしまう。また、第
4レンズ成分の屈折力が相対的に大きくなり、像面湾曲
等の補正に不利になる。
Conditional expression (4) shows an appropriate range of the refractive power of the third lens component. When the upper limit of conditional expression (4) is exceeded and the refracting power of the third lens component becomes large, the lens back becomes small and the total lens length becomes short, but the aberration generated in the third lens component becomes large, especially at the wide-angle end. You can't get the performance. In particular, since a bright F number is required in a video camera, the third lens component needs to have the ability to sufficiently correct spherical aberration at the wide-angle end. As described above, the third lens component may be one or two.
When the lens is composed of a single lens, it is possible to correct the aberration by using the aspherical surface at an appropriate position. However, if the aberration generated by the third lens component is too large, the aberration can be properly corrected no matter how many aspherical surfaces are used. I can't. When the lower limit of conditional expression (4) is exceeded and the refractive power of the third lens component becomes small, the light flux is hardly condensed by the third lens component, so that the lens back becomes large and the total lens length becomes long. Further, the refracting power of the fourth lens component becomes relatively large, which is disadvantageous for correction of field curvature and the like.

【0041】条件式(5)は、第4レンズ成分の屈折力の
適正な範囲を示すものである。条件式(5)の上限を越え
て第4レンズ成分の屈折力が大きくなると、第4レンズ
成分で発生する収差が大きくなり、全焦点距離範囲で良
好な性能を得ることができない。第4レンズ成分は、比
較的像面に近い所にあり、軸上光束と軸外光束とが分か
れているので、像面湾曲・歪曲等の軸外の収差を補正し
なければならない。このため、やはり前述のように適切
な位置に非球面を用いることで1枚か又は2枚の簡単な
構成で収差を補正することが可能となる。しかしなが
ら、第4レンズ成分で発生する収差量が著しく大きいと
非球面を用いても簡単な構成にすることができずコンパ
クト化を図れない。条件式(5)の下限を越えて第4レン
ズ成分の屈折力が小さくなると、第3レンズ成分の屈折
力が相対的に大きくならざるをえなくなって広角端の球
面収差が補正困難となる。また、第4レンズ成分の移動
量が大きくなって第3レンズ成分との間隔を開けなけれ
ばならずレンズ全長を小さくすることができない。
Conditional expression (5) shows an appropriate range of the refractive power of the fourth lens component. When the upper limit of conditional expression (5) is exceeded and the refracting power of the fourth lens component becomes large, the aberration generated in the fourth lens component becomes large, and good performance cannot be obtained in the entire focal length range. Since the fourth lens component is located relatively close to the image plane and the on-axis light beam and the off-axis light beam are separated, off-axis aberrations such as field curvature and distortion must be corrected. Therefore, as described above, by using an aspherical surface at an appropriate position, it becomes possible to correct the aberration with a simple structure of one or two lenses. However, if the amount of aberration generated in the fourth lens component is extremely large, even if an aspherical surface is used, a simple structure cannot be obtained and a compact structure cannot be achieved. When the lower limit of conditional expression (5) is exceeded and the refracting power of the fourth lens component becomes small, the refracting power of the third lens component has to be relatively large, and it becomes difficult to correct spherical aberration at the wide-angle end. In addition, the movement amount of the fourth lens component becomes large, and a space between the fourth lens component and the third lens component must be provided, so that the total lens length cannot be reduced.

【0042】条件式(6),(6')は、第3レンズ成分と第4
レンズ成分の屈折力の和と第2レンズ成分の屈折力の比
の適正な範囲を示すものである。第3レンズ成分から第
4レンズ成分の屈折力と第2レンズ成分の屈折力とは、
収差及びズーム解に関して密接な関係がある。条件式
(6),(6')の上限を越えて第3レンズ成分と第4レンズ成
分の屈折力の和が、第2レンズ成分の屈折力と比べて大
きくなると、第1レンズ成分の屈折力も必然的に大きく
なるようなズーム解でなければならないので、変倍時の
収差変動が大きく全焦点距離範囲で良好な性能のレンズ
系を実現することが困難である。条件式(6),(6')の下限
を越えて第3レンズ成分と第4レンズ成分の屈折力の和
が第2レンズ成分の屈折力と比べて小さくなると、第1
レンズ成分の屈折力が必然的に小さくなるズーム解にな
らざるをえなく、性能は良好なものが実現できるが、第
1レンズ成分から第4レンズ成分までの長さが大きくな
り、コンパクトなレンズ系を実現することができない。
Conditional expressions (6) and (6 ') are the third lens component and the fourth lens component.
It shows an appropriate range of the ratio of the sum of the refractive powers of the lens components and the refractive power of the second lens component. The refractive powers of the third to fourth lens components and the second lens component are
There is a close relationship with aberrations and zoom solutions. Conditional expression
When the sum of the refractive powers of the third lens component and the fourth lens component exceeds the upper limits of (6) and (6 ') and becomes larger than the refractive power of the second lens component, the refractive power of the first lens component is also inevitable. Since it must be a zoom solution that becomes large, it is difficult to realize a lens system having a large variation in aberration during zooming and good performance in the entire focal length range. If the sum of the refracting powers of the third lens component and the fourth lens component is smaller than the refracting powers of the second lens component below the lower limits of the conditional expressions (6) and (6 ′), the first
A zoom solution inevitably reduces the refracting power of the lens component, and good performance can be realized, but the length from the first lens component to the fourth lens component becomes large, and a compact lens The system cannot be realized.

【0043】更に、第5レンズ成分は、第5レンズ成分
が変倍時に固定の場合、以下の条件式(7)を満足するの
が望ましく、第5レンズ成分が変倍時に移動する場合、
以下の条件式(7')及び(8)を満足するのが望ましい。 0.07<fS・φ5<0.70 ……(7) 0.02<fS・φ5<0.70 ……(7') 1.0<De5<5.0 ……(8) 但し、 φ5:第5レンズ成分の屈折力 De5:第5レンズ成分の変倍時の移動量 である。
Further, the fifth lens component preferably satisfies the following conditional expression (7) when the fifth lens component is fixed during zooming, and when the fifth lens component moves during zooming,
It is desirable to satisfy the following conditional expressions (7 ′) and (8). 0.07 <fS / φ5 <0.70 …… (7) 0.02 <fS ・ φ5 <0.70 …… (7 ') 1.0 <De5 <5.0 …… (8) However, φ5: Refractive power of the fifth lens component De5: 5th This is the amount of movement of the lens component during zooming.

【0044】条件式(7),(7')は、第5レンズ成分の屈折
力の適正な範囲を示すものである。条件式(7),(7')の上
限を越えて第5レンズ成分の屈折力が大きくなると、全
系のレンズバックが小さくなりビデオカメラの場合には
ローパスフィルター等の光学部品を挿入するためのスペ
ースがなくなってしまう。また、第3レンズ成分及び第
4レンズ成分を通る軸上光束が大きくなるため収差補正
も困難となる。条件式(7),(7')の下限を越えて第5レン
ズ成分の屈折力が小さくなると、第4レンズ成分との相
対的な間隔変化による変倍効果が少なくなるために、第
2レンズ成分の移動量が大きくなり、レンズ全長及び前
玉径が著しく大きくなり、4成分系と比べても優位性の
あるコンパクトなレンズ系とはならない。
Conditional expressions (7) and (7 ') show an appropriate range of the refracting power of the fifth lens component. If the upper limit of conditional expressions (7) and (7 ') is exceeded and the refracting power of the fifth lens component becomes large, the lens back of the entire system will become small, and in the case of a video camera, optical parts such as a low-pass filter will be inserted. Will run out of space. Further, since the axial light flux passing through the third lens component and the fourth lens component becomes large, it becomes difficult to correct the aberration. When the lower limit of conditional expressions (7) and (7 ') is exceeded and the refracting power of the fifth lens component becomes small, the zooming effect due to the change in the relative distance between the fifth lens component and the second lens component diminishes. The amount of movement of the component becomes large, and the total lens length and the front lens diameter become remarkably large, so that it cannot be a compact lens system superior to the four-component system.

【0045】条件式(8)は、第5レンズ成分の移動量の
適正な範囲を示すものである。条件式(8)の上限を越え
て第5レンズ成分の変倍時の移動量が大きくなると、広
角端でのレンズバックが小さくなり、ビデオレンズでは
ローパスフィルター等を挿入することができなくなって
しまう。また、高変倍のレンズ系の場合には、第5レン
ズ成分内での色収差補正が行われていないため変倍時に
大きく色収差が変動してしまう。条件式(8)の下限を越
えて第5レンズ成分の変倍時の移動量が小さくなると、
第4レンズ成分と第5レンズ成分との相対的な間隔変化
による変倍効果がほとんどなくなるため、4成分系のレ
ンズと比べてあまり優位性がない。
Conditional expression (8) shows an appropriate range of the moving amount of the fifth lens component. When the upper limit of conditional expression (8) is exceeded and the amount of movement of the fifth lens component during zooming increases, the lens back at the wide-angle end decreases, making it impossible to insert a low-pass filter or the like in a video lens. .. Further, in the case of a high zoom lens system, chromatic aberration is not corrected in the fifth lens component, so that chromatic aberration greatly varies during zooming. When the lower limit of conditional expression (8) is exceeded and the movement amount of the fifth lens component during zooming becomes small,
Since the zooming effect due to the relative change in the distance between the fourth lens component and the fifth lens component is almost eliminated, it is not very superior to the four-component lens.

【0046】[0046]

【実施例】以下、本発明に係るズームレンズの実施例を
示す。但し、各実施例において、ri(i=1,2,3,...)は物
体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)
は物体側から数えてi番目の軸上面間隔を示し、Ni(i=1,
2,3,...),νi(i=1,2,3,...)は物体側から数えてi番目の
レンズのd線に対する屈折率,アッベ数を示す。また、
fは全系の焦点距離を示す。
EXAMPLES Examples of zoom lenses according to the present invention will be shown below. However, in each example, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2,3, ...)
Indicates the i-th axial upper surface distance counted from the object side, and Ni (i = 1,
2,3, ...), νi (i = 1,2,3, ...) indicate the refractive index and Abbe number of the i-th lens from the object side for the d-line. Also,
f indicates the focal length of the entire system.

【0047】尚、実施例中、曲率半径に*印を付した面
は非球面で構成された面であることを示し、非球面の面
形状を表わす後記数1の式で定義するものとする。
In the examples, the surface with the radius of curvature marked with * indicates that it is a surface composed of an aspherical surface, and it is defined by the following mathematical expression 1 representing the surface shape of the aspherical surface. ..

【0048】<実施例1>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 48.705 d1 1.000 N1 1.84666 ν1 23.82 r2 19.138 d2 3.200 N2 1.69680 ν2 56.47 r3 -172.729 d3 0.100 r4 14.839 d4 2.300 N3 1.69680 ν3 56.47 r5 38.205 d5 11.919〜 7.509〜 0.600 r6 15.798 d6 0.900 N4 1.77250 ν4 49.77 r7 5.610 d7 2.100 r8 -8.576 d8 0.900 N5 1.77250 ν5 49.77 r9 10.605 d9 1.700 N6 1.84666 ν6 23.82 r10 -46.809 d10 1.000〜 5.410〜12.319 r11 ∞ d11 1.000 r12 9.266 d12 2.200 N7 1.62280 ν7 56.88 r13* 31.909 d13 5.000〜 1.863〜 2.473 r14 10.155 d14 0.900 N8 1.84666 ν8 23.82 r15 5.292 d15 4.000 N9 1.62280 ν9 56.88 r16* -13.220 d16 1.500〜 4.637〜 4.027 r17 100.000 d17 1.000 N10 1.87800 ν10 38.14 r18 14.867 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 1> f = 39.4 to 18.0 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 48.705 d1 1.000 N1 1.84666 ν1 23.82 r2 19.138 d2 3.200 N2 1.69680 ν2 56.47 r3- 172.729 d3 0.100 r4 14.839 d4 2.300 N3 1.69680 ν3 56.47 r5 38.205 d5 11.919 to 7.509 ~ 0.600 r6 15.798 d6 0.900 N4 1.77250 ν4 49.77 r7 5.610 d7 2.100 r8 -8.576 d8 0.900 N5 1.77250 ν5 49.77 r9 10.6 d84 1.70 n6 6.84 d84 1.700 46.809 d10 1.000 ~ 5.410 ~ 12.319 r11 ∞ d11 1.000 r12 9.266 d12 2.200 N7 1.62280 ν7 56.88 r13 * 31.909 d13 5.000 ~ 1.863 ~ 2.473 r14 10.155 d14 0.900 N8 1.84666 ν8 23.82 r15 5.292 d15 4.000 N9 1.62280 ν9 56.88 r16 * ~ 4.637 ~ 4.027 r17 100.000 d17 1.000 N10 1.87800 ν10 38.14 r18 14.867 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0049】[非球面係数] r13 :ε= 0.10000×10 A4 = 0.18528×10-3 A6 = 0.10482×10-5 A8 = 0.20374×10-7 A10=-0.62867×10-9 A12=-0.51565×10-10 r16 :ε= 0.10000×10 A4 = 0.38684×10-3 A6 = 0.11036×10-4 A8 =-0.12957×10-5 A10=-0.15518×10-7 A12= 0.35743×10−8 [Aspherical surface coefficient] r13: ε = 0.10000 × 10 A4 = 0.18528 × 10 -3 A6 = 0.10482 × 10 -5 A8 = 0.20374 × 10 -7 A10 = -0.62867 × 10 -9 A12 = -0.51565 × 10 -10 r16: ε = 0.10000 × 10 A4 = 0.38684 × 10 -3 A6 = 0.11036 × 10 -4 A8 = -0.12957 × 10 -5 A10 = -0.15518 × 10 -7 A12 = 0.35743 × 10 -8

【0050】<実施例2>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 70.448 d1 1.000 N1 1.84666 ν1 23.82 r2 23.381 d2 3.300 N2 1.69680 ν2 56.47 r3 -67.212 d3 0.100 r4 15.289 d4 2.100 N3 1.69100 ν3 54.75 r5 30.006 d5 13.280〜 8.503〜 0.600 r6 30.697 d6 0.900 N4 1.78850 ν4 45.68 r7 7.270 d7 2.100 r8 -9.452 d8 0.900 N5 1.77250 ν5 49.77 r9 10.285 d9 2.000 N6 1.84666 ν6 23.82 r10 -41.675 d10 1.000〜 5.777〜13.680 r11 ∞ d11 1.000 r12 10.288 d12 1.200 N7 1.83350 ν7 21.00 r13 7.349 d13 3.000 N8 1.60311 ν8 60.74 r14* 105.107 d14 3.500〜 1.753〜 2.149 r15* 12.278 d15 4.000 N9 1.69680 ν9 56.47 r16* -12.769 d16 0.200〜 1.947〜 1.551 r17 -158.124 d17 1.000 N10 1.84666 ν10 23.82 r18 13.135 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 2> f = 39.4 to 18.0 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 70.448 d1 1.000 N1 1.84666 ν1 23.82 r2 23.381 d2 3.300 N2 1.69680 ν2 56.47 r3- 67.212 d3 0.100 r4 15.289 d4 2.100 N3 1.69100 ν3 54.75 r5 30.006 d5 13.280 ~ 8.503 ~ 0.600 r6 30.697 d6 0.900 N4 1.78850 ν4 45.68 r7 7.270 d7 2.100 r8 -9.452 d8 0.900 N5 1.77250 ν5 49.77 r9 10.23 d84 2.90 41.675 d10 1.000 ~ 5.777 ~ 13.680 r11 ∞ d11 1.000 r12 10.288 d12 1.200 N7 1.83350 ν7 21.00 r13 7.349 d13 3.000 N8 1.60311 ν8 60.74 r14 * 105.107 d14 3.500 ~ 1.753 ~ 2.149 r15 * 12.278 d15 4.000 N9 1.69680 ν9 56.47 r16 0.200 to 1.947 to 1.551 r17 -158.124 d17 1.000 N10 1.84666 ν10 23.82 r18 13.135 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0051】[非球面係数] r14 :ε= 0.10000×10 A4 = 0.14842×10-3 A6 =-0.74344×10-6 A8 =-0.64127×10-7 A10= 0.17387×10-8 A12= 0.67950×10-9 r15 :ε= 0.10000×10 A4 =-0.64129×10-4 A6 = 0.76918×10-6 A8 =-0.39315×10-6 A10= 0.25872×10-8 A12= 0.14019×10-8 r16 :ε= 0.10000×10 A4 = 0.42761×10-3 A6 = 0.27839×10-5 A8 =-0.81661×10-6 A10=-0.24530×10-8 A12= 0.27471×10-8 [Aspherical surface coefficient] r14: ε = 0.10000 × 10 A4 = 0.14842 × 10 -3 A6 = -0.74344 × 10 -6 A8 = -0.64127 × 10 -7 A10 = 0.17387 × 10 -8 A12 = 0.67950 × 10 -9 r15: ε = 0.10000 × 10 A4 = -0.64129 × 10 -4 A6 = 0.76918 × 10 -6 A8 = -0.39315 × 10 -6 A10 = 0.25872 × 10 -8 A12 = 0.14019 × 10 -8 r16: ε = 0.10000 x 10 A4 = 0.42761 x 10 -3 A6 = 0.27839 x 10 -5 A8 = -0.81661 x 10 -6 A10 = -0.24530 x 10 -8 A12 = 0.27471 x 10 -8

【0052】<実施例3>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 37.382 d1 1.000 N1 1.83350 ν1 21.00 r2 21.403 d2 4.000 N2 1.69680 ν2 56.47 r3 -154.259 d3 0.100 r4 15.517 d4 2.700 N3 1.69100 ν3 54.75 r5 20.164 d5 14.059〜 9.071〜 0.600 r6 17.072 d6 0.900 N4 1.78850 ν4 45.68 r7 6.663 d7 2.600 r8 -9.852 d8 0.900 N5 1.77250 ν5 49.77 r9 11.754 d9 2.500 N6 1.84666 ν6 23.82 r10 -101.710 d10 1.000〜 5.989〜14.459 r11 ∞ d11 1.000 r12 8.836 d12 1.200 N7 1.83350 ν7 21.00 r13 7.097 d13 3.000 N8 1.61800 ν8 63.39 r14* 79.543 d14 3.500〜 2.452〜 3.101 r15* 14.134 d15 4.000 N9 1.77250 ν9 49.77 r16* -14.175 d16 0.200〜 1.248〜 0.599 r17 -158.124 d17 1.000 N10 1.83350 ν10 21.00 r18 12.914 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 3> f = 39.4 to 18.0 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 37.382 d1 1.000 N1 1.83350 ν1 21.00 r2 21.403 d2 4.000 N2 1.69680 ν2 56.47 r3- 154.259 d3 0.100 r4 15.517 d4 2.700 N3 1.69100 ν3 54.75 r5 20.164 d5 14.059 ~ 9.071 ~ 0.600 r6 17.072 d6 0.900 N4 1.78850 ν4 45.68 r7 6.663 d7 2.600 r8 -9.852 d8 0.900 N5 1.77250 ν5 49.77 r6 -23 6.96 r9 11.754 d9 101.710 d10 1.000 to 5.989 to 14.459 r11 ∞ d11 1.000 r12 8.836 d12 1.200 N7 1.83350 ν7 21.00 r13 7.097 d13 3.000 N8 1.61800 ν8 63.39 r14 * 79.543 d14 3.500 to 2.452 to 3.101 r15 * 14.134 d15 4.000 N9 1.77250 d16 -14.177 r16 * 0.200 to 1.248 to 0.599 r17 -158.124 d17 1.000 N10 1.83350 ν10 21.00 r18 12.914 d18 1.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0053】[非球面係数] r14 :ε= 0.10000×10 A4 = 0.27102×10-3 A6 = 0.47627×10-6 A8 =-0.20410×10-7 A10= 0.30260×10-8 A12= 0.28683×10-9 r15 :ε= 0.10000×10 A4 =-0.11847×10-3 A6 = 0.57581×10-6 A8 =-0.22162×10-6 A10= 0.48051×10-8 A12= 0.10485×10-8 r16 :ε= 0.10000×10 A4 = 0.31785×10-3 A6 = 0.29192×10-5 A8 =-0.56188×10-6 A10= 0.40021×10-8 A12= 0.23152×10-8 [0053] [aspherical coefficients] r14: ε = 0.10000 × 10 A4 = 0.27102 × 10 -3 A6 = 0.47627 × 10 -6 A8 = -0.20410 × 10 -7 A10 = 0.30260 × 10 -8 A12 = 0.28683 × 10 - 9 r15: ε = 0.10000 × 10 A4 = -0.11847 × 10 -3 A6 = 0.57581 × 10 -6 A8 = -0.22162 × 10 -6 A10 = 0.48051 × 10 -8 A12 = 0.10485 × 10 -8 r16: ε = 0.10000 × 10 A4 = 0.31785 × 10 -3 A6 = 0.29192 × 10 -5 A8 = -0.56188 × 10 -6 A10 = 0.40021 × 10 -8 A12 = 0.23152 × 10 -8

【0054】<実施例4>f=37.9〜14.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 94.011 d1 1.300 N1 1.84666 ν1 23.82 r2 31.767 d2 3.100 N2 1.69680 ν2 56.47 r3 -182.188 d3 0.100 r4 20.472 d4 2.300 N3 1.69100 ν3 54.75 r5 47.911 d5 19.441〜10.199〜 0.800 r6 43.231 d6 1.100 N4 1.78850 ν4 45.68 r7 8.548 d7 2.800 r8 -10.580 d8 1.100 N5 1.77250 ν5 49.77 r9 21.237 d9 2.700 N6 1.84666 ν6 23.82 r10 -22.860 d10 1.000〜10.241〜19.641 r11 ∞ d11 1.000 r12* 9.441 d12 3.000 N7 1.69680 ν7 56.47 r13 -31.861 d13 1.500 N8 1.83350 ν8 21.00 r14 42.270 d14 2.800〜 1.719〜 2.210 r15 10.475 d15 5.000 N9 1.69680 ν9 56.47 r16* -29.346 d16 0.400〜 1.481〜 0.990 r17 -149.941 d17 0.900 N10 1.80741 ν10 31.59 r18 10.850 d18 2.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 4> f = 37.9 to 14.0 to 6.7 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 94.011 d1 1.300 N1 1.84666 ν1 23.82 r2 31.767 d2 3.100 N2 1.69680 ν2 56.47 r3- 182.188 d3 0.100 r4 20.472 d4 2.300 N3 1.69100 ν3 54.75 r5 47.911 d5 19.441 to 10.199 to 0.800 r6 43.231 d6 1.100 N4 1.78850 ν4 45.68 r7 8.548 d7 2.800 r8 -10.580 d8 2.6 6.79 r6 23.96 r6 21.6 2.76 6.6 r 22.860 d10 1.00 to 10.241 to 19.641 r11 ∞ d11 1.000 r12 * 9.441 d12 3.000 N7 1.69680 ν7 56.47 r13 -31.861 d13 1.500 N8 1.83350 ν8 21.00 r14 42.270 d14 2.800 to 1.719 to 2.210 r15 10.475 d15 5.000 N9 1.69680 d16 -29.47 r. 0.400 to 1.481 to 0.990 r17 -149.941 d17 0.900 N10 1.80741 ν10 31.59 r18 10.850 d18 2.500 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0055】[非球面係数] r12 :ε= 0.10000×10 A4 =-0.34108×10-4 A6 =-0.53151×10-5 A8 = 0.78176×10-6 A10=-0.50250×10-7 A12= 0.95777×10-9 r16 :ε= 0.10000×10 A4 = 0.73907×10-3 A6 = 0.36052×10-4 A8 =-0.45692×10-5 A10= 0.20141×10-6 A12=-0.22373×10-8 [Aspherical coefficient] r12: ε = 0.10000 × 10 A4 = -0.34108 × 10 -4 A6 = -0.53151 × 10 -5 A8 = 0.78176 × 10 -6 A10 = -0.50250 × 10 -7 A12 = 0.95777 × 10 -9 r16: ε = 0.10000 × 10 A4 = 0.73907 × 10 -3 A6 = 0.36052 × 10 -4 A8 = -0.45692 × 10 -5 A10 = 0.20141 × 10 -6 A12 = -0.22373 × 10 -8

【0056】<実施例5>f=39.4〜14.2〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 19.813 d1 0.975 N1 1.84666 ν1 23.82 r2 14.376 d2 1.125 r3 15.320 d3 5.000 N2 1.69680 ν2 56.47 r4 143.849 d4 19.846〜10.540〜 0.750 r5 22.382 d5 0.675 N3 1.77250 ν3 49.77 r6 8.629 d6 1.750 r7 -36.377 d7 0.675 N4 1.71300 ν4 53.93 r8 7.703 d8 1.200 r9 10.277 d9 1.875 N5 1.78472 ν5 25.75 r10 35.259 d10 1.200〜10.506〜20.296 r11 ∞ d11 1.800〜 1.800〜 1.800 r12* 11.678 d12 4.200 N6 1.55753 ν6 67.17 r13 -18.106 d13 3.200〜 2.501〜 4.041 r14 -429.138 d14 0.900 N7 1.84666 ν7 23.82 r15 10.732 d15 0.825 r16 10.048 d16 3.600 N8 1.71060 ν8 43.25 r17* -13.122 d17 1.000〜 1.699〜 0.159 r18 -121.388 d18 1.000 N9 1.80741 ν9 31.59 r19 25.851 d19 3.500 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞<Example 5> f = 39.4 to 14.2 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 19.813 d1 0.975 N1 1.84666 ν1 23.82 r2 14.376 d2 1.125 r3 15.320 d3 5.000 N2 1.69680 ν2 56.47 r4 143.849 d4 19.846 ~ 10.540 ~ 0.750 r5 22.382 d5 0.675 N3 1.77250 ν3 49.77 r6 8.629 d6 1.750 r7 -36.377 d7 0.675 N4 1.71300 ν4 53.93 r8 7.703 d8 1.200 r9 10.277 d9 1.875 N5 1.78472 1035.75. 20.296 r11 ∞ d11 1.800 to 1.800 to 1.800 r12 * 11.678 d12 4.200 N6 1.55753 ν6 67.17 r13 -18.106 d13 3.200 to 2.501 to 4.041 r14 -429.138 d14 0.900 N7 1.84666 ν7 23.82 r15 10.732 d15 0.825 r16 10.048 d16 3.600 N8 43.1060 -13.122 d17 1.000 ~ 1.699 ~ 0.159 r18 -121.388 d18 1.000 N9 1.80741 ν9 31.59 r19 25.851 d19 3.500 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞

【0057】[非球面係数] r12 :ε= 0.10000×10 A4 =-0.19167×10-3 A6 =-0.51352×10-6 A8 =-0.98666×10-9 r17 :ε= 0.10000×10 A4 = 0.25629×10-3 A6 = 0.53611×10-5 A8 =-0.16830×10-6 [Aspherical surface coefficient] r12: ε = 0.10000 × 10 A4 = -0.19167 × 10 -3 A6 = -0.51352 × 10 -6 A8 = -0.98666 × 10 -9 r17: ε = 0.10000 × 10 A4 = 0.25629 × 10 -3 A6 = 0.53611 × 10 -5 A8 = -0.168 30 × 10 -6

【0058】<実施例6>f=52.5〜21.0〜9.2 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 28.509 d1 1.300 N1 1.84666 ν1 23.82 r2 18.352 d2 1.500 r3 19.638 d3 5.000 N2 1.71300 ν2 53.93 r4 3074.463 d4 26.254〜15.114〜 1.000 r5 27.754 d5 0.900 N3 1.77250 ν3 49.77 r6 11.465 d6 2.200 r7 -24.182 d7 0.900 N4 1.71300 ν4 53.93 r8 12.776 d8 1.600 r9 16.967 d9 2.100 N5 1.80518 ν5 25.43 r10 154.166 d10 1.400〜12.540〜26.653 r11 ∞ d11 2.000 r12 26.201 d12 3.800 N6 1.67000 ν6 57.07 r13 -36.572 d13 0.100 r14 15.716 d14 3.200 N7 1.67000 ν7 57.07 r15 58.255 d15 1.300 r16 -43.335 d16 1.200 N8 1.80518 ν8 25.43 r17 23.161 d17 6.200〜 4.678〜 5.948 r18 18.327 d18 3.200 N9 1.60311 ν9 60.74 r19* -17.035 d19 0.600〜 2.122〜 0.852 r20 -64.419 d20 1.000 N10 1.60565 ν10 37.81 r21 28.874 d21 3.000 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞<Example 6> f = 52.5 to 21.0 to 9.2 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 28.509 d1 1.300 N1 1.84666 ν1 23.82 r2 18.352 d2 1.500 r3 19.638 d3 5.000 N2 1.71300 ν2 53.93 r4 3074.463 d4 26.254 〜 15.114 〜 1.000 r5 27.754 d5 0.900 N3 1.77250 ν3 49.77 r6 11.465 d6 2.200 r7 -24.182 d7 0.900 N4 1.71300 ν4 53.93 r8 12.776 d8 1.600 〜5154.1218.5 25.4318 26.653 r11 ∞ d11 2.000 r12 26.201 d12 3.800 N6 1.67000 ν6 57.07 r13 -36.572 d13 0.100 r14 15.716 d14 3.200 N7 1.67000 ν7 57.07 r15 58.255 d15 1.300 r16 -43.335 d16 1.200 N8 1.80518 ν8 25.43 r17 23.161 d17 6.200 6. 3.200 N9 1.60311 ν9 60.74 r19 * -17.035 d19 0.600 to 2.122 to 0.852 r20 -64.419 d20 1.000 N10 1.60565 ν10 37.81 r21 28.874 d21 3.000 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞

【0059】[非球面係数] r19 :ε= 0.10000×10 A4 = 0.16345×10-3 A6 = 0.64094×10-7 A8 =-0.90086×10-8 [Aspherical surface coefficient] r19: ε = 0.10000 × 10 A4 = 0.16345 × 10 -3 A6 = 0.64094 × 10 -7 A8 = -0.90086 × 10 -8

【0060】<実施例7>f=52.5〜21.0〜9.2 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 28.573 d1 1.300 N1 1.84666 ν1 23.82 r2 18.516 d2 1.500 r3 19.842 d3 5.000 N2 1.71300 ν2 53.93 r4 4149.031 d4 26.305〜14.900〜 0.999 r5 33.893 d5 0.900 N3 1.77250 ν3 49.77 r6 12.261 d6 2.200 r7 -24.030 d7 0.900 N4 1.71300 ν4 53.93 r8 13.253 d8 1.600 r9 17.417 d9 2.100 N5 1.80518 ν5 25.43 r10 171.329 d10 1.400〜12.805〜26.706 r11 ∞ d11 2.000 r12 26.201 d12 3.800 N6 1.67000 ν6 57.07 r13 -35.496 d13 0.100 r14 15.779 d14 3.200 N7 1.67000 ν7 57.07 r15 54.457 d15 1.300 r16 -40.429 d16 1.200 N8 1.80518 ν8 25.43 r17 20.297 d17 6.200〜 4.311〜 5.894 r18 19.958 d18 3.200 N9 1.60311 ν9 60.74 r19* -19.051 d19 0.600〜 2.489〜 0.906 r20 1666.666 d20 1.000 N10 1.52133 ν10 51.06 r21 31.002 d21 3.000 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞<Example 7> f = 52.5 to 21.0 to 9.2 [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] r1 28.573 d1 1.300 N1 1.84666 ν1 23.82 r2 18.516 d2 1.500 r3 19.842 d3 5.000 N2 1.71300 ν2 53.93 r4 4149.031 d4 26.305 ~ 14.900 ~ 0.999 r5 33.893 d5 0.900 N3 1.77250 ν3 49.77 r6 12.261 d6 2.200 r7 -24.030 d7 0.900 N4 1.71300 ν4 53.93 r8 13.253 d8 1.600 r9 17.417 d9 2.100 N5 1.43181055. 26.706 r11 ∞ d11 2.000 r12 26.201 d12 3.800 N6 1.67000 ν6 57.07 r13 -35.496 d13 0.100 r14 15.779 d14 3.200 N7 1.67000 ν7 57.07 r15 54.457 d15 1.300 r16 -40.429 d16 1.200 N8 1.80518 ν8 25.43 r17 20.297 d58 6.200 3.200 N9 1.60311 ν9 60.74 r19 * -19.051 d19 0.600 to 2.489 to 0.906 r20 1666.666 d20 1.000 N10 1.52133 ν10 51.06 r21 31.002 d21 3.000 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞

【0061】[非球面係数] r19 :ε= 0.10000×10 A4 = 0.11615×10-3 A6 = 0.91508×10-7 A8 =-0.60650×10−8 [Aspherical surface coefficient] r19: ε = 0.10000 × 10 A4 = 0.11615 × 10 -3 A6 = 0.91508 × 10 -7 A8 = -0.606050 × 10 -8

【0062】<実施例8>f=37.9〜15.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 16.014 d1 0.800 N1 1.84666 ν1 23.82 r2 12.288 d2 0.800 r3 13.330 d3 5.400 N2 1.64000 ν2 58.61 r4* 279.898 d4 17.985〜10.652〜 1.500 r5 -38.676 d5 0.900 N3 1.75450 ν3 51.57 r6 6.452 d6 3.000 r7 -20.312 d7 2.500 N4 1.83350 ν4 21.00 r8* -14.447 d8 1.000〜 8.334〜17.485 r9 ∞ d9 1.600〜 1.600〜 1.600 r10 6.611 d10 1.500 N5 1.58170 ν5 69.75 r11* 14.657 d11 2.500〜 0.989〜 1.159 r12 18.061 d12 0.900 N6 1.84666 ν6 23.82 r13 8.051 d13 4.000 N7 1.67000 ν7 57.07 r14* -9.052 d14 0.400〜 1.911〜 1.741 r15 63.814 d15 0.900 N8 1.77250 ν8 49.77 r16 8.336 d16 1.000 r17 ∞ d17 3.000 N9 1.51680 ν9 64.20 r18 ∞<Embodiment 8> f = 37.9 to 15.0 to 6.7 [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] r1 16.014 d1 0.800 N1 1.84666 ν1 23.82 r2 12.288 d2 0.800 r3 13.330 d3 5.400 N2 1.64000 ν2 58.61 r4 * 279.898 d4 17.985 〜 10.652 〜 1.500 r5 -38.676 d5 0.900 N3 1.75450 ν3 51.57 r6 6.452 d6 3.000 r7 -20.312 d7 2.500 N4 1.83350 ν4 21.00 r8 * -14.447 d8 1.000 〜 8.334 〜 17.485 r9 ∞ 600 d9 1.500 1.600 r10 6.611 d10 1.500 N5 1.58170 ν5 69.75 r11 * 14.657 d11 2.500 ~ 0.989 ~ 1.159 r12 18.061 d12 0.900 N6 1.84666 ν6 23.82 r13 8.051 d13 4.000 N7 1.67000 ν7 57.07 r14 * -9.052 d14 0.400 ~ 1.911 ~ 1.741 r15 63.814 d15 ν8 49.77 r16 8.336 d16 1.000 r17 ∞ d17 3.000 N9 1.51680 ν9 64.20 r18 ∞

【0063】[非球面係数] r4 :ε= 0.10000×10 A4 =-0.46892×10-6 A6 = 0.27175×10-6 A8 =-0.97065×10-8 A10= 0.12173×10-9 A12=-0.56753×10-12 r8 :ε= 0.10000×10 A4 =-0.18510×10-3 A6 =-0.34435×10-5 A8 = 0.17003×10-6 A10=-0.15627×10-8 A12=-0.17452×10-9 r11 :ε= 0.10000×10 A4 = 0.57930×10-3 A6 =-0.34193×10-6 A8 = 0.31132×10-7 A10=-0.51752×10-9 A12= 0.63248×10-11 r14 :ε= 0.10000×10 A4 = 0.72276×10-3 A6 = 0.79727×10-5 A8 =-0.22299×10-6 A10=-0.12372×10-7 A12= 0.99052×10-9 [Aspherical coefficient] r4: ε = 0.10000 × 10 A4 = -0.46892 × 10 -6 A6 = 0.27175 × 10 -6 A8 = -0.97065 × 10 -8 A10 = 0.12173 × 10 -9 A12 = -0.56753 × 10 -12 r8: ε = 0.10000 × 10 A4 = -0.185 10 × 10 -3 A6 = -0.34 435 × 10 -5 A8 = 0.17003 × 10 -6 A10 = -0.15627 × 10 -8 A12 = -0.17452 × 10 -9 r11 : ε = 0.10000 × 10 A4 = 0.57930 × 10 -3 A6 = -0.34193 × 10 -6 A8 = 0.31132 × 10 -7 A10 = -0.51752 × 10 -9 A12 = 0.63248 × 10 -11 r14: ε = 0.10000 × 10 A4 = 0.72276 x 10 -3 A6 = 0.79727 x 10 -5 A8 = -0.22299 x 10 -6 A10 = -0.12372 x 10 -7 A12 = 0.99052 x 10 -9

【0064】<実施例9>f=39.4〜14.2〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 20.490 d1 1.300 N1 1.80518 ν1 25.43 r2 13.886 d2 1.000 r3 15.077 d3 5.300 N2 1.69680 ν2 56.47 r4 -219.742 d4 16.579〜 9.604〜 1.500 r5 -29.412 d5 1.000 N3 1.69680 ν3 56.47 r6* 6.085 d6 2.250 r7 10.073 d7 1.800 N4 1.84666 ν4 23.82 r8 14.022 d8 1.687〜 8.662〜16.767 r9 ∞ d9 1.700〜 1.700〜 1.700 r10* 8.265 d10 4.600 N5 1.67000 ν5 57.07 r11 448.340 d11 4.000〜 1.012〜 1.751 r12 -118.240 d12 1.300 N6 1.80518 ν6 25.43 r13 7.499 d13 1.475 r14* 7.602 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.232 d15 1.000〜 3.988〜 3.249 r16 -10.138 d16 1.000 N8 1.80741 ν8 31.59 r17 -22.396 d17 1.600 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞<Example 9> f = 39.4 to 14.2 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 20.490 d1 1.300 N1 1.80518 ν1 25.43 r2 13.886 d2 1.000 r3 15.077 d3 5.300 N2 1.69680 ν2 56.47 r4 -219.742 d4 16.579 ~ 9.604 ~ 1.500 r5 -29.412 d5 1.000 N3 1.69680 ν3 56.47 r6 * 6.085 d6 2.250 r7 10.073 d7 1.800 N4 1.84666 ν4 23.82 r8 14.022 d8 1.687 ~ 8.662 ~ 16.767 r9 ∞ ~ d9 1.700 ~ 1.700 ~ 1.700 ~ 1.700 * 8.265 d10 4.600 N5 1.67000 ν5 57.07 r11 448.340 d11 4.000 ~ 1.012 ~ 1.751 r12 -118.240 d12 1.300 N6 1.80518 ν6 25.43 r13 7.499 d13 1.475 r14 * 7.602 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.232 d15 1.000 ~ 3.988 ~ 3.988 d16 1.000 N8 1.80741 ν8 31.59 r17 -22.396 d17 1.600 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞

【0065】[非球面係数] r6 :ε= 0.10000×10 A4 =-0.26616×10-3 A6 =-0.14555×10-4 A8 =-0.22727×10-6 r10 :ε= 0.10000×10 A4 =-0.86170×10-4 A6 =-0.30935×10-5 A8 =-0.18261×10-7 r14 :ε= 0.10000×10 A4 =-0.61607×10-3 A6 =-0.23279×10-5 A8 =-0.32678×10-7 [Aspherical surface coefficient] r6: ε = 0.10000 × 10 A4 = -0.26616 × 10 -3 A6 = -0.14555 × 10 -4 A8 = -0.22727 × 10 -6 r10: ε = 0.10000 × 10 A4 = -0.86170 × 10 -4 A6 = -0.30935 × 10 -5 A8 = -0.18261 × 10 -7 r14: ε = 0.10000 × 10 A4 = -0.61607 × 10 -3 A6 = -0.23279 × 10 -5 A8 = -0.32678 × 10 - 7

【0066】<実施例10>f=39.4〜14.2〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 19.942 d1 1.300 N1 1.80518 ν1 25.43 r2 13.631 d2 1.000 r3 14.773 d3 5.300 N2 1.69680 ν2 56.47 r4 -331.809 d4 16.436〜 9.500〜 1.500 r5 -33.333 d5 1.000 N3 1.69680 ν3 56.47 r6* 6.184 d6 2.250 r7 9.645 d7 1.800 N4 1.84666 ν4 23.82 r8 12.482 d8 1.687〜 8.624〜16.624 r9 ∞ d9 1.700〜 1.700〜 1.700 r10* 8.888 d10 4.600 N5 1.67000 ν5 57.07 r11 -117.312 d11 4.000〜 0.843〜 1.545 r12 -256.936 d12 1.300 N6 1.80518 ν6 25.43 r13 7.568 d13 1.475 r14* 8.000 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.311 d15 1.000〜 4.157〜 3.455 r16 -13.065 d16 1.000 N8 1.80741 ν8 31.59 r17 -42.177 d17 1.600 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞<Example 10> f = 39.4 to 14.2 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 19.942 d1 1.300 N1 1.80518 ν1 25.43 r2 13.631 d2 1.000 r3 14.773 d3 5.300 N2 1.69680 ν2 56.47 r4 -331.809 d4 16.436 ~ 9.500 ~ 1.500 r5 -33.333 d5 1.000 N3 1.69680 ν3 56.47 r6 * 6.184 d6 2.250 r7 9.645 d7 1.800 N4 1.84666 ν4 23.82 r8 12.482 d8 1.687 ~ 8.700 ~ 1.624 r9 ∞ ~ d9 1.700 ~ 1.700 ~ 1.700 * 8.888 d10 4.600 N5 1.67000 ν5 57.07 r11 -117.312 d11 4.000 ~ 0.843 ~ 1.545 r12 -256.936 d12 1.300 N6 1.80518 ν6 25.43 r13 7.568 d13 1.475 r14 * 8.000 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.311 d15 1.000 ~ 4.157 ~ 3. 13.065 d16 1.000 N8 1.80741 ν8 31.59 r17 -42.177 d17 1.600 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞

【0067】[非球面係数] r6 :ε= 0.10000×10 A4 =-0.22458×10-3 A6 =-0.15414×10-4 A8 =-0.55436×10-7 r10 :ε= 0.10000×10 A4 =-0.77729×10-4 A6 =-0.37877×10-5 A8 = 0.13606×10-7 r14 :ε= 0.10000×10 A4 =-0.53817×10-3 A6 =-0.19745×10-5 A8 =-0.53470×10-8 [Aspherical surface coefficient] r6: ε = 0.10000 × 10 A4 = -0.22458 × 10 -3 A6 = -0.15414 × 10 -4 A8 = -0.55436 × 10 -7 r10: ε = 0.10000 × 10 A4 = -0.77729 × 10 -4 A6 = -0.37877 × 10 -5 A8 = 0.13606 × 10 -7 r14: ε = 0.10000 × 10 A4 = -0.53817 × 10 -3 A6 = -0.19745 × 10 -5 A8 = -0.53470 × 10 -8

【0068】<実施例11>f=37.9〜14.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 19.916 d1 0.800 N1 1.84666 ν1 23.82 r2 13.217 d2 0.800 r3 14.147 d3 5.000 N2 1.72000 ν2 50.31 r4* 341.353 d4 20.026〜11.021〜 1.500 r5 -56.600 d5 0.900 N3 1.77250 ν3 49.77 r6 6.143 d6 3.000 r7* -63.044 d7 2.500 N4 1.83350 ν4 21.00 r8* -20.633 d8 1.000〜10.004〜19.526 r9 ∞ d9 1.000 r10* 10.985 d10 3.000 N5 1.60311 ν5 60.74 r11 -30.935 d11 1.500 N6 1.84666 ν6 23.82 r12 87.340 d12 2.800〜 1.560〜 1.913 r13 12.304 d13 5.000 N7 1.60311 ν7 60.74 r14* -9.651 d14 0.400〜 1.550〜 1.287 r15 110.616 d15 0.900 N8 1.80741 ν8 31.59 r16 9.215 d16 2.500 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞<Embodiment 11> f = 37.9 to 14.0 to 6.7 [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] r1 19.916 d1 0.800 N1 1.84666 ν1 23.82 r2 13.217 d2 0.800 r3 14.147 d3 5.000 N2 1.72000 ν2 50.31 r4 * 341.353 d4 20.026 to 11.021 to 1.500 r5 -56.600 d5 0.900 N3 1.77250 ν3 49.77 r6 6.143 d6 3.000 r7 * -63.044 d7 2.500 N4 1.83350 ν4 21.00 r8 * -20.633 d8 1.000 to 1.0004 to 19.526 r9 ∞ r9 * 10.985 d10 3.000 N5 1.60311 ν5 60.74 r11 -30.935 d11 1.500 N6 1.84666 ν6 23.82 r12 87.340 d12 2.800 ~ 1.560 ~ 1.913 r13 12.304 d13 5.000 N7 1.60311 ν7 60.74 r14 * -9.651 d14 0.400 ~ 1.550 ~ 1.287 r15 110.616 d15 0.900 r16 9.215 d16 2.500 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞

【0069】[非球面係数] r4 :ε= 0.10000×10 A4 =-0.87094×10-6 A6 = 0.14165×10-7 A8 =-0.44656×10-9 A10=-0.26811×10-11 A12= 0.38828×10-13 r7 :ε= 0.10000×10 r8 :ε= 0.10000×10 A4 =-0.23379×10-3 A6 =-0.50349×10-5 A8 = 0.27650×10-6 A10=-0.40346×10-8 A12=-0.58166×10-9 r10 :ε= 0.10000×10 A4 =-0.14197×10-3 A6 =-0.53350×10-5 A8 = 0.84929×10-6 A10=-0.48014×10-7 A12= 0.97803×10-9 r14 :ε= 0.10000×10 A4 = 0.70910×10-3 A6 = 0.38848×10-4 A8 =-0.47085×10-5 A10= 0.19590×10-6 A12=-0.23932×10-8 [Aspherical surface coefficient] r4: ε = 0.10000 × 10 A4 = -0.87094 × 10 -6 A6 = 0.14165 × 10 -7 A8 = -0.44656 × 10 -9 A10 = -0.26811 × 10 -11 A12 = 0.38828 × 10 -13 r7: ε = 0.10000 × 10 r8: ε = 0.10000 × 10 A4 = -0.23379 × 10 -3 A6 = -0.50349 × 10 -5 A8 = 0.27650 × 10 -6 A10 = -0.403 46 × 10 -8 A12 = -0.58166 × 10 -9 r10: ε = 0.10000 × 10 A4 = -0.14197 × 10 -3 A6 = -0.53350 × 10 -5 A8 = 0.84929 × 10 -6 A10 = -0.48014 × 10 -7 A12 = 0.97803 × 10 - 9 r14: ε = 0.10000 × 10 A4 = 0.70910 × 10 -3 A6 = 0.38848 × 10 -4 A8 = -0.47085 × 10 -5 A10 = 0.19590 × 10 -6 A12 = -0.23932 × 10 -8

【0070】<実施例12>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 86.152 d1 1.000 N1 1.84666 ν1 23.82 r2 24.389 d2 2.700 N2 1.69680 ν2 56.47 r3 -90.128 d3 0.100 r4 15.050 d4 2.100 N3 1.69100 ν3 54.75 r5 40.351 d5 12.392〜 7.681〜 0.600 r6 34.592 d6 0.900 N4 1.78850 ν4 45.68 r7 7.036 d7 2.100 r8 -9.959 d8 0.900 N5 1.77250 ν5 49.77 r9 12.573 d9 1.700 N6 1.84666 ν6 23.82 r10 -35.905 d10 1.000〜 5.711〜12.792 r11 ∞ d11 1.000 r12 8.267 d12 2.200 N7 1.62280 ν7 56.88 r13* 26.911 d13 2.500〜 1.815〜 3.622 r14 12.729 d14 0.900 N8 1.84666 ν8 23.82 r15 6.358 d15 3.700 N9 1.62280 ν9 56.88 r16* -9.443 d16 0.200〜 2.481〜 3.074 r17 -158.124 d17 1.000 N10 1.87800 ν10 38.14 r18 13.664 d18 5.500〜 3.904〜 1.504 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 12> f = 39.4 to 18.0 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 86.152 d1 1.000 N1 1.84666 ν1 23.82 r2 24.389 d2 2.700 N2 1.69680 ν2 56.47 r3- 90.128 d3 0.100 r4 15.050 d4 2.100 N3 1.69100 ν3 54.75 r5 40.351 d5 12.392 ~ 7.681 ~ 0.600 r6 34.592 d6 0.900 N4 1.78850 ν4 45.68 r7 7.036 d7 2.100 r8 -9.959 d8 0.900 N5 1.77250 ν5 49.77 r9 12.6 d84 1.70 d 35.905 d10 1.000 to 5.711 to 12.792 r11 ∞ d11 1.000 r12 8.267 d12 2.200 N7 1.62280 ν7 56.88 r13 * 26.911 d13 2.500 to 1.815 to 3.622 r14 12.729 d14 0.900 N8 1.84666 ν8 23.82 r15 6.358 d15 3.700 N9 1.62280 ν9 56.88 r16 ~ 2.481 ~ 3.074 r17 -158.124 d17 1.000 N10 1.87800 ν10 38.14 r18 13.664 d18 5.500 ~ 3.904 ~ 1.504 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0071】[非球面係数] r13 :ε= 0.10000×10 A4 = 0.42986×10-3 A6 =-0.43950×10-7 A8 =-0.11822×10-6 A10= 0.24541×10-8 A12= 0.43350×10-9 r16 :ε= 0.10000×10 A4 = 0.46156×10-3 A6 = 0.16964×10-4 A8 =-0.12729×10-5 A10=-0.20618×10-7 A12= 0.31433×10-8 [Aspherical surface coefficient] r13: ε = 0.10000 × 10 A4 = 0.42986 × 10 -3 A6 = -0.43950 × 10 -7 A8 = -0.11822 × 10 -6 A10 = 0.24541 × 10 -8 A12 = 0.43350 × 10 -9 r16: ε = 0.10000 × 10 A4 = 0.46156 × 10 -3 A6 = 0.16964 × 10 -4 A8 = -0.12729 × 10 -5 A10 = -0.20 618 × 10 -7 A12 = 0.31433 × 10 -8

【0072】<実施例13>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 64.827 d1 1.000 N1 1.84666 ν1 23.82 r2 19.547 d2 2.600 N2 1.69680 ν2 56.47 r3 -80.677 d3 0.100 r4 13.152 d4 2.000 N3 1.69680 ν3 56.47 r5 34.963 d5 10.261〜 6.427〜 0.600 r6 30.407 d6 0.900 N4 1.77250 ν4 49.77 r7 5.887 d7 2.100 r8 -8.338 d8 0.900 N5 1.77250 ν5 49.77 r9 9.295 d9 1.700 N6 1.84666 ν6 23.82 r10 -38.198 d10 1.000〜 4.834〜10.661 r11 ∞ d11 1.000 r12 8.315 d12 2.200 N7 1.51680 ν7 64.20 r13* 63.280 d13 2.600〜 1.878〜 3.641 r14 7.363 d14 0.900 N8 1.84666 ν8 23.82 r15 4.773 d15 4.300 N9 1.51680 ν9 64.20 r16* -9.036 d16 0.200〜 2.221〜 2.433 r17 100.000 d17 1.000 N10 1.87800 ν10 38.14 r18 9.843 d18 5.500〜 4.201〜 2.226 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 13> f = 39.4 to 18.0 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 64.827 d1 1.000 N1 1.84666 ν1 23.82 r2 19.547 d2 2.600 N2 1.69680 ν2 56.47 r3- 80.677 d3 0.100 r4 13.152 d4 2.000 N3 1.69680 ν3 56.47 r5 34.963 d5 10.261 ~ 6.427 ~ 0.600 r6 30.407 d6 0.900 N4 1.77250 ν4 49.77 r7 5.887 d7 2.100 r8 -8.338 d8 0.900 N5 1.77250 ν5 49.77 r9 9.23 d9 9.295 d9 38.198 d10 1.000 ~ 4.834 ~ 10.661 r11 ∞ d11 1.000 r12 8.315 d12 2.200 N7 1.51680 ν7 64.20 r13 * 63.280 d13 2.600 ~ 1.878 ~ 3.641 r14 7.363 d14 0.900 N8 1.84666 ν8 23.82 r15 4.773 d15 4.300 N9 1.51680 ν9 -64.36 r16 ~ 2.221 ~ 2.433 r17 100.000 d17 1.000 N10 1.87800 ν10 38.14 r18 9.843 d18 5.500 ~ 4.201 ~ 2.226 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0073】[非球面係数] r13 :ε= 0.10000×10 A4 = 0.40106×10-3 A6 =-0.72512×10-6 A8 =-0.99919×10-7 A10= 0.16958×10-9 A12= 0.27929×10-9 r16 :ε= 0.10000×10 A4 = 0.82745×10-3 A6 = 0.24478×10-4 A8 =-0.21214×10-5 A10=-0.29969×10-7 A12= 0.37820×10-8 [Aspherical surface coefficient] r13: ε = 0.10000 × 10 A4 = 0.40106 × 10 -3 A6 = -0.72512 × 10 -6 A8 = -0.99919 × 10 -7 A10 = 0.16958 × 10 -9 A12 = 0.27929 × 10 -9 r16: ε = 0.10000 × 10 A4 = 0.82745 × 10 -3 A6 = 0.24478 × 10 -4 A8 = -0.21214 × 10 -5 A10 = -0.29969 × 10 -7 A12 = 0.37820 × 10 -8

【0074】<実施例14>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 92.482 d1 1.000 N1 1.84666 ν1 23.82 r2 25.503 d2 2.700 N2 1.69680 ν2 56.47 r3 -90.322 d3 0.100 r4 15.383 d4 2.100 N3 1.69100 ν3 54.75 r5 41.948 d5 12.676〜 7.858〜 0.600 r6 34.831 d6 0.900 N4 1.78850 ν4 45.68 r7 7.083 d7 2.100 r8 -9.934 d8 0.900 N5 1.77250 ν5 49.77 r9 12.834 d9 1.700 N6 1.84666 ν6 23.82 r10 -34.088 d10 1.000〜 5.818〜13.076 r11 ∞ d11 1.000 r12 8.149 d12 2.200 N7 1.62280 ν7 56.88 r13* 27.317 d13 2.500〜 1.899〜 3.791 r14 12.671 d14 0.900 N8 1.84666 ν8 23.82 r15 6.165 d15 3.700 N9 1.62280 ν9 56.88 r16* -9.727 d16 0.200〜 2.433〜 3.001 r17 -263.057 d17 1.000 N10 1.87800 ν10 38.14 r18 13.355 d18 5.500〜 3.867〜 1.408 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 14> f = 39.4 to 18.0 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 92.482 d1 1.000 N1 1.84666 ν1 23.82 r2 25.503 d2 2.700 N2 1.69680 ν2 56.47 r3- 90.322 d3 0.100 r4 15.383 d4 2.100 N3 1.69100 ν3 54.75 r5 41.948 d5 12.676 ~ 7.858 ~ 0.600 r6 34.831 d6 0.900 N4 1.78850 ν4 45.68 r7 7.083 d7 2.100 r8 -9.934 d8 0.900 N5 1.77250 ν5 49.77 r9 12.6 d84 1.70 n 34.088 d10 1.000 ~ 5.818 ~ 13.076 r11 ∞ d11 1.000 r12 8.149 d12 2.200 N7 1.62280 ν7 56.88 r13 * 27.317 d13 2.500 ~ 1.899 ~ 3.791 r14 12.671 d14 0.900 N8 1.84666 ν8 23.82 r15 6.165 d15 3.700 N9 1.62280 0.200 9.76 r ~ 2.433 ~ 3.001 r17 -263.057 d17 1.000 N10 1.87800 ν10 38.14 r18 13.355 d18 5.500 ~ 3.867 ~ 1.408 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0075】[非球面係数] r13 :ε= 0.10000×10 A4 = 0.42340×10-3 A6 = 0.16431×10-5 A8 =-0.15757×10-6 A10= 0.10622×10-9 A12= 0.29202×10-9 r16 :ε= 0.10000×10 A4 = 0.43325×10-3 A6 = 0.18411×10-4 A8 =-0.13186×10-5 A10=-0.22053×10-7 A12= 0.31693×10-8 [0075] [aspherical coefficients] r13: ε = 0.10000 × 10 A4 = 0.42340 × 10 -3 A6 = 0.16431 × 10 -5 A8 = -0.15757 × 10 -6 A10 = 0.10622 × 10 -9 A12 = 0.29202 × 10 - 9 r16: ε = 0.10000 × 10 A4 = 0.43325 × 10 -3 A6 = 0.18411 × 10 -4 A8 = -0.13186 × 10 -5 A10 = -0.22053 × 10 -7 A12 = 0.31693 × 10 -8

【0076】<実施例15>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 84.186 d1 1.000 N1 1.84666 ν1 23.82 r2 23.136 d2 2.700 N2 1.69680 ν2 56.47 r3 -78.143 d3 0.100 r4 15.376 d4 2.100 N3 1.69100 ν3 54.75 r5 42.093 d5 12.260〜 7.568〜 0.600 r6 40.768 d6 0.900 N4 1.78850 ν4 45.68 r7 7.470 d7 2.100 r8 -9.580 d8 0.900 N5 1.77250 ν5 49.77 r9 10.339 d9 2.000 N6 1.84666 ν6 23.82 r10 -30.257 d10 1.000〜 5.692〜12.660 r11 ∞ d11 1.000 r12 12.086 d12 1.200 N7 1.83350 ν7 21.00 r13 7.572 d13 3.000 N8 1.60311 ν8 60.74 r14* 178.079 d14 2.500〜 1.557〜 3.032 r15* 12.228 d15 4.000 N9 1.69680 ν9 56.47 r16* -13.363 d16 0.200〜 2.733〜 3.619 r17 -158.124 d17 1.000 N10 1.87800 ν10 38.14 r18 13.664 d18 5.500〜 3.910〜 1.549 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 15> f = 39.4 to 18.0 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 84.186 d1 1.000 N1 1.84666 ν1 23.82 r2 23.136 d2 2.700 N2 1.69680 ν2 56.47 r3- 78.143 d3 0.100 r4 15.376 d4 2.100 N3 1.69100 ν3 54.75 r5 42.093 d5 12.260 ~ 7.568 ~ 0.600 r6 40.768 d6 0.900 N4 1.78850 ν4 45.68 r7 7.470 d7 2.100 r8 -9.580 d8 0.900 N5 1.77250 ν5 49.77 r9 10.23.d86 2.10 30.257 d10 1.000 ~ 5.692 ~ 12.660 r11 ∞ d11 1.000 r12 12.086 d12 1.200 N7 1.83350 ν7 21.00 r13 7.572 d13 3.000 N8 1.60311 ν8 60.74 r14 * 178.079 d14 2.500 ~ 1.557 ~ 3.032 r15 * 12.228 d15 4.000 N9 1.69680 d16 r13 * 47. 0.200 to 2.733 to 3.619 r17 -158.124 d17 1.000 N10 1.87800 ν10 38.14 r18 13.664 d18 5.500 to 3.910 to 1.549 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0077】[非球面係数] r14 :ε= 0.10000×10 A4 = 0.12660×10-3 A6 =-0.10452×10-5 A8 =-0.16427×10-7 A10= 0.44668×10-8 A12= 0.38216×10-9 r15 :ε= 0.10000×10 A4 =-0.24686×10-4 A6 = 0.17796×10-5 A8 =-0.15298×10-6 A10=-0.12076×10-9 A12= 0.81161×10-9 r16 :ε= 0.10000×10 A4 = 0.31970×10-3 A6 = 0.11050×10-4 A8 =-0.98216×10-6 A10=-0.10961×10-7 A12= 0.27240×10-8 [Aspherical surface coefficient] r14: ε = 0.10000 × 10 A4 = 0.12660 × 10 -3 A6 = -0.104 52 × 10 -5 A8 = -0.16427 × 10 -7 A10 = 0.44668 × 10 -8 A12 = 0.38216 × 10 -9 r15: ε = 0.10000 × 10 A4 = -0.24686 × 10 -4 A6 = 0.17796 × 10 -5 A8 = -0.15298 × 10 -6 A10 = -0.12076 × 10 -9 A12 = 0.81161 × 10 -9 r16: ε = 0.10000 × 10 A4 = 0.31970 × 10 -3 A6 = 0.11050 × 10 -4 A8 = -0.98216 × 10 -6 A10 = -0.10961 × 10 -7 A12 = 0.27240 × 10 -8

【0078】<実施例16>f=37.9〜14.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 146.268 d1 1.300 N1 1.83350 ν1 21.00 r2 46.947 d2 3.100 N2 1.69680 ν2 56.47 r3 -165.241 d3 0.100 r4 22.181 d4 3.000 N3 1.69100 ν3 54.75 r5 64.536 d5 17.847〜 9.056〜 0.800 r6 105.631 d6 1.100 N4 1.78850 ν4 45.68 r7 9.488 d7 2.800 r8 -11.234 d8 1.100 N5 1.77250 ν5 49.77 r9 19.780 d9 2.700 N6 1.84666 ν6 23.82 r10 -23.954 d10 1.000〜 9.791〜18.047 r11 ∞ d11 1.000 r12* 16.695 d12 3.000 N7 1.69680 ν7 56.47 r13 -19.325 d13 1.500 N8 1.83350 ν8 21.00 r14 238.546 d14 2.800〜 3.646〜 5.252 r15 8.235 d15 7.000 N9 1.60311 ν9 60.74 r16* -20.633 d16 0.400〜 1.664〜 2.040 r17 23.487 d17 0.900 N10 1.78831 ν10 47.32 r18 6.824 d18 6.000〜 3.890〜 1.908 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 16> f = 37.9 to 14.0 to 6.7 [Radius of curvature] [Space between upper surfaces of axes] [Refractive index] [Abbe number] r1 146.268 d1 1.300 N1 1.83350 ν1 21.00 r2 46.947 d2 3.100 N2 1.69680 ν2 56.47 r3- 165.241 d3 0.100 r4 22.181 d4 3.000 N3 1.69 100 ν3 54.75 r5 64.536 d5 17.847 to 9.056 to 0.800 r6 105.631 d6 1.100 N4 1.78850 ν4 45.68 r7 9.488 d7 2.800 r8 -11.234 d8 1.100 N5 1.77250 ν5 49.77 r6 19.6 d 23.954 d10 1.000 ~ 9.791 ~ 18.047 r11 ∞ d11 1.000 r12 * 16.695 d12 3.000 N7 1.69680 ν7 56.47 r13 -19.325 d13 1.500 N8 1.83350 ν8 21.00 r14 238.546 d14 2.800 ~ 3.646 ~ 5.252 r15 8.235 d15 7.000 N9 1.60311 * 16 -20.74 r. 0.400 to 1.664 to 2.040 r17 23.487 d17 0.900 N10 1.78831 ν10 47.32 r18 6.824 d18 6.000 to 3.890 to 1.908 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0079】[非球面係数] r12 :ε= 0.10000×10 A4 =-0.71891×10-4 A6 = 0.38317×10-5 A8 = 0.45167×10-6 A10=-0.53033×10-7 A12= 0.12620×10-8 r16 :ε= 0.10000×10 A4 = 0.77134×10-3 A6 = 0.40235×10-4 A8 =-0.42914×10-5 A10= 0.19768×10-6 A12=-0.31203×10-8 [Aspherical coefficient] r12: ε = 0.10000 × 10 A4 = -0.71891 × 10 -4 A6 = 0.38317 × 10 -5 A8 = 0.45167 × 10 -6 A10 = -0.53033 × 10 -7 A12 = 0.12620 × 10 -8 r16: ε = 0.10000 × 10 A4 = 0.77134 × 10 -3 A6 = 0.40235 × 10 -4 A8 = -0.42914 × 10 -5 A10 = 0.19768 × 10 -6 A12 = -0.31203 × 10 -8

【0080】<実施例17>f=39.4〜18.0〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 97.809 d1 1.000 N1 1.84666 ν1 23.82 r2 24.696 d2 2.700 N2 1.69680 ν2 56.47 r3 -82.492 d3 0.100 r4 15.229 d4 2.100 N3 1.69100 ν3 54.75 r5 35.514 d5 13.401〜 8.342〜 0.601 r6 30.710 d6 0.900 N4 1.78850 ν4 45.68 r7 7.256 d7 2.100 r8 -9.048 d8 0.900 N5 1.77250 ν5 49.77 r9 10.506 d9 2.000 N6 1.84666 ν6 23.82 r10 -24.749 d10 1.000〜 6.060〜13.801 r11 ∞ d11 1.000 r12 10.174 d12 1.200 N7 1.83350 ν7 21.00 r13 7.081 d13 3.000 N8 1.61800 ν8 63.39 r14* 130.179 d14 3.500〜 2.905〜 4.669 r15* 14.024 d15 4.000 N9 1.77250 ν9 49.77 r16* -18.486 d16 0.200〜 2.510〜 3.369 r17 -158.124 d17 1.000 N10 1.83350 ν10 21.00 r18 12.914 d18 5.000〜 3.285〜 0.662 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞<Example 17> f = 39.4 to 18.0 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 97.809 d1 1.000 N1 1.84666 ν1 23.82 r2 24.696 d2 2.700 N2 1.69680 ν2 56.47 r3- 82.492 d3 0.100 r4 15.229 d4 2.100 N3 1.69100 ν3 54.75 r5 35.514 d5 13.401 to 8.342 to 0.601 r6 30.710 d6 0.900 N4 1.78850 ν4 45.68 r7 7.256 d7 2.100 r8 -9.048 d8 0.900 N5 1.77250 ν5 49.77 r9 10.6 d84 2.10 N6 6.50684 24.749 d10 1.000 ~ 6.060 ~ 13.801 r11 ∞ d11 1.000 r12 10.174 d12 1.200 N7 1.83350 ν7 21.00 r13 7.081 d13 3.000 N8 1.61800 ν8 63.39 r14 * 130.179 d14 3.500 ~ 2.905 ~ 4.669 r15 * 14.024 d15 4.000 N9 1.77250 ν9-18.486 r16 * 0.200 to 2.510 to 3.369 r17 -158.124 d17 1.000 N10 1.83350 ν10 21.00 r18 12.914 d18 5.000 to 3.285 to 0.662 r19 ∞ d19 5.500 N11 1.51680 ν11 64.20 r20 ∞

【0081】[非球面係数] r14 :ε= 0.10000×10 A4 = 0.21664×10-3 A6 = 0.35151×10-6 A8 =-0.13337×10-7 A10= 0.32233×10-8 A12= 0.28921×10-9 r15 :ε= 0.10000×10 A4 = 0.68465×10-4 A6 = 0.58052×10-5 A8 =-0.12591×10-6 A10= 0.14343×10-8 A12= 0.72816×10-9 r16 :ε= 0.10000×10 A4 = 0.31414×10-3 A6 = 0.10620×10-4 A8 =-0.55324×10-6 A10= 0.10402×10-8 A12= 0.23356×10-8 [0081] [aspherical coefficients] r14: ε = 0.10000 × 10 A4 = 0.21664 × 10 -3 A6 = 0.35151 × 10 -6 A8 = -0.13337 × 10 -7 A10 = 0.32233 × 10 -8 A12 = 0.28921 × 10 - 9 r15: ε = 0.10000 × 10 A4 = 0.68465 × 10 -4 A6 = 0.58052 × 10 -5 A8 = -0.12591 × 10 -6 A10 = 0.14343 × 10 -8 A12 = 0.72816 × 10 -9 r16: ε = 0.10000 × 10 A4 = 0.31414 x 10 -3 A6 = 0.10620 x 10 -4 A8 = -0.55324 x 10 -6 A10 = 0.10402 x 10 -8 A12 = 0.23356 x 10 -8

【0082】<実施例18>f=39.4〜14.2〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 18.629 d1 0.975 N1 1.84666 ν1 23.82 r2 13.707 d2 1.125 r3 14.771 d3 5.000 N2 1.69680 ν2 56.47 r4 188.311 d4 17.860〜 9.459〜 0.750 r5 23.644 d5 0.675 N3 1.77250 ν3 49.77 r6 8.826 d6 1.750 r7 -32.014 d7 0.675 N4 1.71300 ν4 53.93 r8 8.056 d8 1.200 r9 10.575 d9 1.875 N5 1.78472 ν5 25.75 r10 39.108 d10 1.200〜 9.601〜18.310 r11 ∞ d11 1.800 r12* 11.777 d12 4.200 N6 1.55753 ν6 67.17 r13 -17.863 d13 3.200〜 1.763〜 3.552 r14 -669.017 d14 0.900 N7 1.84666 ν7 23.82 r15 10.599 d15 0.825 r16 10.105 d16 3.600 N8 1.71060 ν8 43.25 r17* -13.232 d17 0.700〜 3.212〜 2.540 r18 -200.550 d18 1.000 N9 1.80741 ν9 31.59 r19 23.818 d19 3.500〜 2.425〜 1.308 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞<Example 18> f = 39.4 to 14.2 to 6.9 [Radius of curvature] [Axial upper surface spacing] [Refractive index] [Abbe number] r1 18.629 d1 0.975 N1 1.84666 ν1 23.82 r2 13.707 d2 1.125 r3 14.771 d3 5.000 N2 1.69680 ν2 56.47 r4 188.311 d4 17.860 ~ 9.459 ~ 0.750 r5 23.644 d5 0.675 N3 1.77250 ν3 49.77 r6 8.826 d6 1.750 r7 -32.014 d7 0.675 N4 1.71300 ν4 53.93 r8 8.056 d8 1.200 r9 10.575 d9 1.875 N5 1.784710 ν5 25.75 r. 18.310 r11 ∞ d11 1.800 r12 * 11.777 d12 4.200 N6 1.55753 ν6 67.17 r13 -17.863 d13 3.200 〜 1.763 〜 3.552 r14 -669.017 d14 0.900 N7 1.84666 ν7 23.82 r15 10.599 d15 0.825 r16 10.105 d16 * 3600 N8 1.71060 ν8 43.25 r17 * ~ 3.212 ~ 2.540 r18 -200.550 d18 1.000 N9 1.80741 ν9 31.59 r19 23.818 d19 3.500 ~ 2.425 ~ 1.308 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞

【0083】[非球面係数] r12 :ε= 0.10000×10 A4 =-0.22848×10-3 A6 = 0.39348×10-6 A8 =-0.15755×10-7 r17 :ε= 0.10000×10 A4 = 0.23287×10-3 A6 = 0.46834×10-5 A8 =-0.14618×10-6 [Aspherical surface coefficient] r12: ε = 0.10000 × 10 A4 = -0.22848 × 10 -3 A6 = 0.39348 × 10 -6 A8 = -0.15755 × 10 -7 r17: ε = 0.10000 × 10 A4 = 0.23287 × 10 -3 A6 = 0.46834 x 10 -5 A8 = -0.146 618 x 10 -6

【0084】<実施例19>f=39.4〜14.2〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 19.820 d1 0.975 N1 1.84666 ν1 23.82 r2 13.802 d2 1.125 r3 14.809 d3 4.475 N2 1.69680 ν2 56.47 r4 643.791 d4 18.343〜 9.703〜 0.750 r5 24.713 d5 0.675 N3 1.77250 ν3 49.77 r6 9.052 d6 1.750 r7 -25.040 d7 0.675 N4 1.71300 ν4 53.93 r8 8.533 d8 1.200 r9 11.355 d9 1.875 N5 1.78472 ν5 25.75 r10 58.467 d10 1.200〜 9.839〜18.793 r11 ∞ d11 1.800 r12* 12.774 d12 4.200 N6 1.67000 ν6 57.07 r13 -26.295 d13 3.200〜 1.779〜 3.721 r14 356.303 d14 0.900 N7 1.84666 ν7 23.82 r15 10.519 d15 0.825 r16 10.395 d16 3.600 N8 1.69100 ν8 54.75 r17* -13.039 d17 0.700〜 3.215〜 2.406 r18 -110.981 d18 1.000 N9 1.80741 ν9 31.59 r19 26.385 d19 3.500〜 2.407〜 1.273 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞<Example 19> f = 39.4 to 14.2 to 6.9 [radius of curvature] [interval between upper surfaces of axes] [refractive index] [Abbe number] r1 19.820 d1 0.975 N1 1.84666 ν1 23.82 r2 13.802 d2 1.125 r3 14.809 d3 4.475 N2 1.69680 ν2 56.47 r4 643.791 d4 18.343 ~ 9.703 ~ 0.750 r5 24.713 d5 0.675 N3 1.77250 ν3 49.77 r6 9.052 d6 1.750 r7 -25.040 d7 0.675 N4 1.71300 ν4 53.93 r8 8.533 d8 1.200 r9 11.355 d9 1.875 N5 1.78472 ν5 25.75 r. 18.793 r11 ∞ d11 1.800 r12 * 12.774 d12 4.200 N6 1.67000 ν6 57.07 r13 -26.295 d13 3.200 ~ 1.779 ~ 3.721 r14 356.303 d14 0.900 N7 1.84666 ν7 23.82 r15 10.519 d15 0.825 r16 10.395 d16 * 3600 N8 1.69100 ν8 -53.75 r17 * 3.215 to 2.406 r18 -110.981 d18 1.000 N9 1.80741 ν9 31.59 r19 26.385 d19 3.500 to 2.407 to 1.273 r20 ∞ d20 5.500 N10 1.51680 ν10 64.20 r21 ∞

【0085】[非球面係数] r12 :ε= 0.10000×10 A4 =-0.14812×10-3 A6 = 0.27315×10-6 A8 =-0.11443×10-7 r17 :ε= 0.10000×10 A4 = 0.22296×10-3 A6 = 0.53269×10-5 A8 =-0.16859×10-6 [Aspherical surface coefficient] r12: ε = 0.10000 × 10 A4 = -0.14812 × 10 -3 A6 = 0.27315 × 10 -6 A8 = -0.11443 × 10 -7 r17: ε = 0.10000 × 10 A4 = 0.22296 × 10 -3 A6 = 0.53269 × 10 -5 A8 = -0.168 59 × 10 -6

【0086】<実施例20>f=52.5〜21.0〜9.2 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 24.298 d1 1.300 N1 1.83350 ν1 21.00 r2 17.989 d2 1.500 r3 19.563 d3 5.000 N2 1.69680 ν2 56.47 r4 243.623 d4 24.434〜13.831〜 1.000 r5 154.329 d5 0.900 N3 1.77250 ν3 49.77 r6 10.358 d6 2.200 r7 -227.164 d7 0.900 N4 1.77250 ν4 49.77 r8 19.309 d8 1.600 r9 17.235 d9 2.100 N5 1.83350 ν5 21.00 r10 66.164 d10 1.400〜12.003〜24.834 r11 ∞ d11 2.000 r12 22.218 d12 3.800 N6 1.69680 ν6 56.47 r13 -48.281 d13 0.100 r14 15.426 d14 3.200 N7 1.69680 ν7 56.47 r15 44.058 d15 0.800 r16 -45.276 d16 1.200 N8 1.84666 ν8 23.82 r17 19.362 d17 5.700〜 4.393〜 5.950 r18 18.492 d18 5.000 N9 1.75450 ν9 51.57 r19* -20.482 d19 0.600〜 3.497〜 3.865 r20 2500.000 d20 1.000 N10 1.80518 ν10 25.43 r21 19.965 d21 6.000〜 4.410〜 2.485 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞<Example 20> f = 52.5 to 21.0 to 9.2 [radius of curvature] [interval between upper surfaces of axes] [refractive index] [Abbé number] r1 24.298 d1 1.300 N1 1.83350 ν1 21.00 r2 17.989 d2 1.500 r3 19.563 d3 5.000 N2 1.69680 ν2 56.47 r4 243.623 d4 24.434 to 13.831 to 1.000 r5 154.329 d5 0.900 N3 1.77250 ν3 49.77 r6 10.358 d6 2.200 r7 -227.164 d7 0.900 N4 1.77250 ν4 49.77 r8 19.309 d8 1.600 r9 17.235 d9 2.100 N5 1.8310 6612. 24.834 r11 ∞ d11 2.000 r12 22.218 d12 3.800 N6 1.69680 ν6 56.47 r13 -48.281 d13 0.100 r14 15.426 d14 3.200 N7 1.69680 ν7 56.47 r15 44.058 d15 0.800 r16 -45.276 d16 1.200 N8 1.84666 ν8 23.82 r17 19.392 d17 5.362 5.000 N9 1.75450 ν9 51.57 r19 * -20.482 d19 0.600 to 3.497 to 3.865 r20 2500.000 d20 1.000 N10 1.80518 ν10 25.43 r21 19.965 d21 6.000 to 4.410 to 2.485 r22 ∞ d22 3.000 N11 1.51680 ν11 64.20 r23 ∞

【0087】[非球面係数] r19 :ε= 0.10000×10 A4 = 0.15728×10-3 A6 =-0.86399×10-6 A8 = 0.14392×10-7 A10= 0.67086×10-10 A12=-0.62523×10-11 [Aspherical surface coefficient] r19: ε = 0.10000 × 10 A4 = 0.15728 × 10 -3 A6 = -0.86399 × 10 -6 A8 = 0.14392 × 10 -7 A10 = 0.67086 × 10 -10 A12 = -0.62523 × 10 -11

【0088】<実施例21>f=37.9〜15.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 17.263 d1 0.800 N1 1.84666 ν1 23.82 r2 12.174 d2 0.800 r3 13.112 d3 4.500 N2 1.69680 ν2 56.47 r4* 332.221 d4 17.823〜10.413〜 1.500 r5 -37.303 d5 0.900 N3 1.77250 ν3 49.77 r6 6.440 d6 3.000 r7 -39.627 d7 2.500 N4 1.83350 ν4 21.00 r8* -15.697 d8 1.000〜 8.410〜17.323 r9 ∞ d9 1.600 r10 12.959 d10 1.500 N5 1.69680 ν5 56.47 r11* 307.990 d11 2.500〜 1.597〜 2.424 r12 27.734 d12 0.900 N6 1.84666 ν6 23.82 r13 8.579 d13 4.000 N7 1.69680 ν7 56.47 r14* -9.311 d14 0.400〜 2.803〜 3.476 r15 100.000 d15 0.900 N8 1.77250 ν8 49.77 r16 8.771 d16 4.500〜 3.000〜 1.500 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞<Example 21> f = 37.9 to 15.0 to 6.7 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 17.263 d1 0.800 N1 1.84666 ν1 23.82 r2 12.174 d2 0.800 r3 13.112 d3 4.500 N2 1.69680 ν2 56.47 r4 * 332.221 d4 17.823 〜 10.413 〜 1.500 r5 -37.303 d5 0.900 N3 1.77250 ν3 49.77 r6 6.440 d6 3.000 r7 -39.627 d7 2.500 N4 1.83350 ν4 21.00 r8 * -15.697 d8 1.000 〜 8.410 〜 17.323 r9 10∞ d9 1.000 1.500 N5 1.69680 ν5 56.47 r11 * 307.990 d11 2.500 to 1.597 to 2.424 r12 27.734 d12 0.900 N6 1.84666 ν6 23.82 r13 8.579 d13 4.000 N7 1.69680 ν7 56.47 r14 * -9.311 d14 0.400 to 2.803 ~ 3.476 r15 100.000 d15 0.900 N8 49.77 N8 1.77 d16 4.500 to 3.000 to 1.500 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞

【0089】[非球面係数] r4 :ε= 0.10000×10 A4 =-0.34652×10-5 A6 = 0.25270×10-6 A8 =-0.91237×10-8 A10= 0.12669×10-9 A12=-0.64902×10-12 r8 :ε= 0.10000×10 A4 =-0.16421×10-3 A6 =-0.64010×10-5 A8 = 0.19384×10-6 A10=-0.79101×10-9 A12=-0.22898×10-9 r11 :ε= 0.10000×10 A4 = 0.26406×10-3 A6 = 0.15445×10-5 A8 = 0.55491×10-7 A10=-0.31216×10-9 A12=-0.10273×10-10 r14 :ε= 0.10000×10 A4 = 0.34325×10-3 A6 = 0.59924×10-5 A8 =-0.54598×10-6 A10=-0.12615×10-7 A12= 0.10614×10-8 [Aspherical surface coefficient] r4: ε = 0.10000 × 10 A4 = -0.34652 × 10 -5 A6 = 0.25270 × 10 -6 A8 = -0.91237 × 10 -8 A10 = 0.12669 × 10 -9 A12 = -0.64902 × 10 -12 r8: ε = 0.10000 × 10 A4 = -0.16421 × 10 -3 A6 = -0.640 10 × 10 -5 A8 = 0.19384 × 10 -6 A10 = -0.79101 × 10 -9 A12 = -0.22898 × 10 -9 r11 : ε = 0.10000 × 10 A4 = 0.26406 × 10 -3 A6 = 0.15445 × 10 -5 A8 = 0.55491 × 10 -7 A10 = -0.31216 × 10 -9 A12 = -0.10273 × 10 -10 r14: ε = 0.10000 × 10 A4 = 0.34325 × 10 -3 A6 = 0.59924 × 10 -5 A8 = -0.54598 × 10 -6 A10 = -0.12615 × 10 -7 A12 = 0.10614 × 10 -8

【0090】<実施例22>f=39.4〜14.3〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 24.178 d1 1.300 N1 1.80518 ν1 25.43 r2 14.221 d2 1.000 r3 15.270 d3 4.800 N2 1.72900 ν2 53.48 r4 -372.212 d4 19.990〜11.473〜 1.499 r5 -31.339 d5 1.000 N3 1.69680 ν3 56.47 r6* 6.021 d6 2.250 r7 10.548 d7 1.800 N4 1.84666 ν4 23.82 r8 17.423 d8 1.650〜10.167〜20.140 r9 ∞ d9 1.700 r10* 13.397 d10 4.600 N5 1.67000 ν5 57.07 r11 -19.324 d11 3.900〜 2.071〜 4.555 r12 -44.089 d12 1.300 N6 1.80518 ν6 25.43 r13 9.253 d13 1.475 r14* 9.165 d14 4.400 N7 1.69680 ν7 56.47 r15 -11.297 d15 1.000〜 3.856〜 2.547 r16 225.263 d16 1.000 N8 1.80741 ν8 31.95 r17 17.677 d17 3.800〜 2.773〜 1.571 r18 ∞ d18 5.500 N9 1.51680 ν9 64.20 r19 ∞<Example 22> f = 39.4 to 14.3 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 24.178 d1 1.300 N1 1.80518 ν1 25.43 r2 14.221 d2 1.000 r3 15.270 d3 4.800 N2 1.72900 ν2 53.48 r4 -372.212 d4 19.990 ~ 11.473 ~ 1.499 r5 -31.339 d5 1.000 N3 1.69680 ν3 56.47 r6 * 6.021 d6 2.250 r7 10.548 d7 1.800 N4 1.84666 ν4 23.82 r8 17.423 d8 1.65 10.167 ~ 20.140 r9 ∞ d9 1.700 r10 * 10. N5 1.67000 ν5 57.07 r11 -19.324 d11 3.900 〜 2.071 〜 4.555 r12 -44.089 d12 1.300 N6 1.80518 ν6 25.43 r13 9.253 d13 1.475 r14 * 9.165 d14 4.400 N7 1.69680 ν7 56.47 r15 -11.297 d15 1.000 〜 3.856 〜 2.547 r16 225.263 d16 1.25 ν8 31.95 r17 17.677 d17 3.800 to 2.773 to 1.571 r18 ∞ d18 5.500 N9 1.51680 ν9 64.20 r19 ∞

【0091】[非球面係数]r6 :ε= 0.10000×10A4 =-
0.46020×10-3A6 =-0.53286×10-5A8 =-0.15390×10-6r
10 :ε= 0.10000×10A4 =-0.84853×10-4A6 =-0.22505
×10-5A8 = 0.12951×10-7r14 :ε= 0.10000×10A4 =-
0.43225×10-3A6 = 0.10490×10-5A8 =-0.25365×10-7
[Aspherical surface coefficient] r6: ε = 0.10000 × 10A4 =-
0.46020 × 10 -3 A6 = -0.532 86 × 10 -5 A8 = -0.15390 × 10 -6 r
10: ε = 0.10000 × 10 A4 = -0.84853 × 10 -4 A6 = -0.22505
× 10 -5 A8 = 0.12951 × 10 -7 r14: ε = 0.10000 × 10 A4 =-
0.43225 x 10 -3 A6 = 0.10490 x 10 -5 A8 = -0.25365 x 10 -7

【0092】<実施例23>f=39.4〜14.3〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 22.579 d1 1.300 N1 1.80518 ν1 25.43 r2 14.275 d2 1.000 r3 15.467 d3 5.200 N2 1.72900 ν2 53.48 r4 -269.412 d4 17.719〜10.211〜 1.500 r5 -27.449 d5 1.000 N3 1.69680 ν3 56.47 r6* 6.347 d6 2.250 r7 10.270 d7 1.800 N4 1.84666 ν4 23.82 r8 14.246 d8 1.687〜 9.195〜17.906 r9 ∞ d9 1.700 r10* 10.148 d10 4.600 N5 1.67000 ν5 57.07 r11 -39.483 d11 4.000〜 1.884〜 3.771 r12 273.130 d12 1.300 N6 1.80518 ν6 25.43 r13 7.298 d13 1.475 r14* 8.940 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.124 d15 1.000〜 4.066〜 3.289 r16 -30.306 d16 1.000 N8 1.80741 ν8 31.59 r17 53.348 d17 3.297〜 2.347〜 1.297 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞<Example 23> f = 39.4 to 14.3 to 6.9 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 22.579 d1 1.300 N1 1.80518 ν1 25.43 r2 14.275 d2 1.000 r3 15.467 d3 5.200 N2 1.72900 ν2 53.48 r4 -269.412 d4 17.719 ~ 10.2111 ~ 1.500 r5 -27.449 d5 1.000 N3 1.69680 ν3 56.47 r6 * 6.347 d6 2.250 r7 10.270 d7 1.800 N4 1.84666 ν4 23.82 r8 14.246 d8 1.687 ~ 9.195 ~ 17.906 r9 ∞ d9 1.700 r10 N5 1.67000 ν5 57.07 r11 -39.483 d11 4.000 〜 1.884 〜 3.771 r12 273.130 d12 1.300 N6 1.80518 ν6 25.43 r13 7.298 d13 1.475 r14 * 8.940 d14 4.500 N7 1.69680 ν7 56.47 r15 -10.124 d15 1.000 〜 4.066 〜 3.289 r16 -30.306 d16 1.30 ν8 31.59 r17 53.348 d17 3.297 to 2.347 to 1.297 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞

【0093】[非球面係数] r6 :ε= 0.10000×10 A4 =-0.38654×10-3 A6 =-0.82944×10-5 A8 =-0.81480×10-7 r10 :ε= 0.10000×10 A4 =-0.12237×10-3 A6 =-0.19356×10-5 A8 =-0.21419×10-8 r14 :ε= 0.10000×10 A4 =-0.39002×10-3 A6 =-0.17950×10-5 A8 = 0.51529×10-7 [Aspherical surface coefficient] r6: ε = 0.10000 × 10 A4 = -0.38654 × 10 -3 A6 = -0.82944 × 10 -5 A8 = -0.81480 × 10 -7 r10: ε = 0.10000 × 10 A4 = -0.12237 × 10 -3 A6 = -0.19356 × 10 -5 A8 = -0.21419 × 10 -8 r14: ε = 0.10000 × 10 A4 = -0.39002 × 10 -3 A6 = -0.17950 × 10 -5 A8 = 0.51529 × 10 -7

【0094】<実施例24>f=39.4〜14.3〜6.9 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 24.358 d1 1.300 N1 1.80518 ν1 25.43 r2 14.815 d2 1.000 r3 16.013 d3 5.200 N2 1.72900 ν2 53.48 r4 -213.019 d4 19.141〜11.048〜 1.500 r5 -24.138 d5 1.000 N3 1.69680 ν3 56.47 r6* 6.367 d6 2.250 r7 10.934 d7 1.800 N4 1.84666 ν4 23.82 r8 16.790 d8 1.687〜 9.781〜19.329 r9 ∞ d9 1.700 r10* 11.214 d10 4.600 N5 1.67000 ν5 57.07 r11 -27.765 d11 4.000〜 2.386〜 4.876 r12 425.512 d12 1.300 N6 1.80518 ν6 25.43 r13 7.682 d13 1.475 r14* 8.908 d14 4.500 N7 1.69680 ν7 56.47 r15 -11.172 d15 1.000〜 3.590〜 2.251 r16 -39.334 d16 1.000 N8 1.80741 ν8 31.59 r17 38.028 d17 3.297〜 2.321〜 1.170 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞<Example 24> f = 39.4 to 14.3 to 6.9 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 24.358 d1 1.300 N1 1.80518 ν1 25.43 r2 14.815 d2 1.000 r3 16.013 d3 5.200 N2 1.72900 ν2 53.48 r4 -213.019 d4 19.141 to 11.048 to 1.500 r5 -24.138 d5 1.000 N3 1.69680 ν3 56.47 r6 * 6.367 d6 2.250 r7 10.934 d7 1.800 N4 1.84666 ν4 23.82 r8 16.790 d8 1.687 to 9.781 to 19.329 r9 ∞ d9 1.700 r10 N5 1.67000 ν5 57.07 r11 -27.765 d11 4.000 ~ 2.386 ~ 4.876 r12 425.512 d12 1.300 N6 1.80518 ν6 25.43 r13 7.682 d13 1.475 r14 * 8.908 d14 4.500 N7 1.69680 ν7 56.47 r15 -11.172 d15 1.000 ~ 3.590 ~ 2.251 r16 -39.8 d16.39 ν8 31.59 r17 38.028 d17 3.297 to 2.321 to 1.170 r18 ∞ d18 4.500 N9 1.51680 ν9 64.20 r19 ∞

【0095】[非球面係数] r6 :ε= 0.10000×10 A4 =-0.43952×10-3 A6 =-0.63851×10-5 A8 =-0.11268×10-6 r10 :ε= 0.10000×10 A4 =-0.11063×10-3 A6 =-0.17800×10-5 A8 = 0.67912×10-8 r14 :ε= 0.10000×10 A4 =-0.35260×10-3 A6 =-0.10664×10-5 A8 = 0.21148×10-7 [Aspherical surface coefficient] r6: ε = 0.10000 × 10 A4 = -0.43952 × 10 -3 A6 = -0.63851 × 10 -5 A8 = -0.11268 × 10 -6 r10: ε = 0.10000 × 10 A4 = -0.11063 × 10 -3 A6 = -0.17 800 × 10 -5 A8 = 0.67912 × 10 -8 r14: ε = 0.10000 × 10 A4 = -0.35 260 × 10 -3 A6 = -0.10664 × 10 -5 A8 = 0.21148 × 10 -7

【0096】<実施例25>f=37.9〜14.0〜6.7 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 20.193 d1 0.800 N1 1.84666 ν1 23.82 r2 13.084 d2 0.800 r3 14.305 d3 4.500 N2 1.72000 ν2 50.31 r4* -928.574 d4 18.803〜10.005〜 1.500 r5 -42.129 d5 0.900 N3 1.77250 ν3 49.77 r6 6.084 d6 3.000 r7* -86.989 d7 2.500 N4 1.83350 ν4 21.00 r8* -19.752 d8 1.000〜 9.798〜18.303 r9 ∞ d9 1.000 r10* 11.587 d10 3.000 N5 1.60311 ν5 60.74 r11 -27.334 d11 1.500 N6 1.84666 ν6 23.82 r12 47.478 d12 1.800〜 2.332〜 3.805 r13 13.300 d13 5.000 N7 1.60311 ν7 60.74 r14* -8.298 d14 0.400〜 1.883〜 2.357 r15 104.415 d15 0.900 N8 1.78560 ν8 42.81 r16 8.942 d16 5.500〜 3.486〜 1.539 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞<Example 25> f = 37.9 to 14.0 to 6.7 [Radius of curvature] [Axis upper surface spacing] [Refractive index] [Abbe number] r1 20.193 d1 0.800 N1 1.84666 ν1 23.82 r2 13.084 d2 0.800 r3 14.305 d3 4.500 N2 1.72000 ν2 50.31 r4 * -928.574 d4 18.803 ~ 10.005 ~ 1.500 r5 -42.129 d5 0.900 N3 1.77250 ν3 49.77 r6 6.084 d6 3.000 r7 * -86.989 d7 2.500 N4 1.83350 ν4 21.00 r8 * -19.752 d8 1.000 ~ 9.798 ~ 18.303 r9 ∞ d9 * 11.587 d10 3.000 N5 1.60311 ν5 60.74 r11 -27.334 d11 1.500 N6 1.84666 ν6 23.82 r12 47.478 d12 1.800 ~ 2.332 ~ 3.805 r13 13.300 d13 5.000 N7 1.60311 ν7 60.74 r14 * -8.298 d14 0.400 ~ 1.883 ~ 2.357 r15 104.415 d15 0.94 d 42.81 r16 8.942 d16 5.500 to 3.486 to 1.539 r17 ∞ d17 5.500 N9 1.51680 ν9 64.20 r18 ∞

【0097】[非球面係数] r4 :ε= 0.10000×10 A4 = 0.32907×10-6 A6 =-0.76720×10-7 A8 =-0.52072×10-9 A10= 0.13153×10-10 A12=-0.76238×10-13 r7 :ε= 0.10000×10 r8 :ε= 0.10000×10 A4 =-0.24995×10-3 A6 =-0.71311×10-5 A8 = 0.29186×10-6 A10=-0.17122×10-8 A12=-0.49899×10-9 r10 :ε= 0.10000×10 A4 =-0.19862×10-3 A6 =-0.56896×10-5 A8 = 0.84851×10-6 A10=-0.48496×10-7 A12= 0.92628×10-9 r14 :ε= 0.10000×10 A4 = 0.66316×10-3 A6 = 0.44931×10-4 A8 =-0.47158×10-5 A10= 0.19068×10-6 A12=-0.26953×10-8 [Aspherical surface coefficient] r4: ε = 0.10000 × 10 A4 = 0.32907 × 10 -6 A6 = -0.76720 × 10 -7 A8 = -0.52072 × 10 -9 A10 = 0.13153 × 10 -10 A12 = -0.76238 × 10 -13 r7: ε = 0.10000 × 10 r8: ε = 0.10000 × 10 A4 = -0.24 995 × 10 -3 A6 = -0.713 11 × 10 -5 A8 = 0.29186 × 10 -6 A10 = -0.17122 × 10 -8 A12 = -0.49899 × 10 -9 r10: ε = 0.10000 × 10 A4 = -0.19862 × 10 -3 A6 = -0.56896 × 10 -5 A8 = 0.84851 × 10 -6 A10 = -0.48496 × 10 -7 A12 = 0.92628 × 10 - 9 r14: ε = 0.10000 × 10 A4 = 0.66316 × 10 -3 A6 = 0.44931 × 10 -4 A8 = -0.47158 × 10 -5 A10 = 0.19068 × 10 -6 A12 = -0.26953 × 10 -8

【0098】図1〜図25は、それぞれ前記実施例1〜
25に対応するレンズ構成図であり、望遠端(L)での配
置を示している。各図中の矢印(m1),(m2),(m3),(m4)及
び(m5)は、それぞれ第1レンズ成分(G1),第2レンズ成
分(G2),第3レンズ成分(G3),第4レンズ成分(G4)及び
第5レンズ成分(G5)の望遠端(L)から広角端(S)にかけて
の移動を模式的に示している。
FIGS. 1 to 25 show the first to third embodiments, respectively.
It is a lens block diagram corresponding to 25, and has shown the arrangement | positioning at the telephoto end (L). The arrows (m1), (m2), (m3), (m4) and (m5) in each figure are the first lens component (G1), the second lens component (G2) and the third lens component (G3), respectively. , The movement of the fourth lens component (G4) and the fifth lens component (G5) from the telephoto end (L) to the wide-angle end (S) is schematically shown.

【0099】実施例1は、物体側より順に、像側に凹の
負メニスカスレンズ及び両凸の正レンズより成る接合レ
ンズ並びに物体側に凸の正メニスカスレンズから成る第
1レンズ成分(G1)と,像側に凹の負メニスカスレンズ並
びに両凹の負レンズ及び両凸の正レンズより成る接合レ
ンズから成る第2レンズ成分(G2)と,絞り(S)及び物体
側に凸の正メニスカスレンズから成る第3レンズ成分(G
3)と,像側に凹の負メニスカスレンズ及び両凸の正レン
ズより成る接合レンズから成る第4レンズ成分(G4)と,
像側に凹の負メニスカスレンズ及び平板(例えば、ロー
パスフィルタやフェースプレート等をいう、以下同様)
から成る第5レンズ成分(G5)とから構成されている。
尚、第3レンズ成分(G3)中の正メニスカスレンズの像側
の面及び第4レンズ成分(G4)中の正レンズの像側の面は
非球面である。
In Example 1, the first lens component (G1) is composed of, in order from the object side, a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens, and a positive meniscus lens convex to the object side. , From the second lens component (G2) consisting of a negative meniscus lens element concave to the image side and a cemented lens element composed of a biconcave negative lens element and a biconvex positive lens element, and a stop (S) and a positive meniscus lens element convex to the object side The third lens component (G
3) and a fourth lens component (G4) consisting of a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens,
A negative meniscus lens concave to the image side and a flat plate (for example, a low-pass filter or a face plate, the same applies below)
And a fifth lens component (G5).
The image-side surface of the positive meniscus lens in the third lens component (G3) and the image-side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0100】実施例2及び3は、物体側より順に、像側
に凹の負メニスカスレンズ及び両凸の正レンズより成る
接合レンズ並びに物体側に凸の正メニスカスレンズから
成る第1レンズ成分(G1)と,像側に凹の負メニスカスレ
ンズ並びに両凹の負レンズ及び両凸の正レンズより成る
接合レンズから成る第2レンズ成分(G2)と,絞り(S)並
びに像側に凹の負メニスカスレンズ及び物体側に凸の正
メニスカスレンズから成る第3レンズ成分(G3)と,両凸
の正レンズから成る第4レンズ成分(G4)と,両凹の負レ
ンズ及び平板から成る第5レンズ成分(G5)とから構成さ
れている。尚、第3レンズ成分(G3)中の正メニスカスレ
ンズの像側の面及び第4レンズ成分(G4)中の正レンズの
両面は非球面である。
In Examples 2 and 3, in order from the object side, the first lens component (G1) consisting of a cemented lens including a negative meniscus lens having a concave surface on the image side and a biconvex positive lens, and a positive meniscus lens having a convex surface on the object side is used. ), A second lens component (G2) consisting of a negative meniscus lens concave to the image side and a cemented lens composed of a biconcave negative lens and a biconvex positive lens, and a stop (S) and a negative meniscus concave to the image side. Third lens component (G3) consisting of a lens and a positive meniscus lens convex to the object side, fourth lens component (G4) consisting of a biconvex positive lens, and fifth lens component consisting of a biconcave negative lens and a flat plate (G5) and. The image side surface of the positive meniscus lens in the third lens component (G3) and both surfaces of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0101】実施例4は、物体側より順に、像側に凹の
負メニスカスレンズ及び両凸の正レンズより成る接合レ
ンズ並びに物体側に凸の正メニスカスレンズから成る第
1レンズ成分(G1)と,像側に凹の負メニスカスレンズ並
びに両凹の負レンズ及び両凸の正レンズより成る接合レ
ンズから成る第2レンズ成分(G2)と,絞り(S)並びに両
凸の正レンズ及び両凹の負レンズから成る第3レンズ成
分(G3)と,両凸の正レンズから成る第4レンズ成分(G4)
と,両凹の負レンズ及び平板から成る第5レンズ成分(G
5)とから構成されている。尚、第3レンズ成分(G3)中の
正レンズの物体側の面及び第4レンズ成分(G4)中の正レ
ンズの像側の面は非球面である。
In the fourth embodiment, in order from the object side, a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens, and a first lens component (G1) composed of a positive meniscus lens convex to the object side are provided. , A second lens component (G2) consisting of a negative meniscus lens concave to the image side and a cemented lens composed of a biconcave negative lens and a biconvex positive lens, and a diaphragm (S) and a biconvex positive lens and a biconcave lens. Third lens component (G3) consisting of a negative lens and fourth lens component (G4) consisting of a biconvex positive lens
And the fifth lens component (G
5) consists of The object-side surface of the positive lens in the third lens component (G3) and the image-side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0102】実施例5は、物体側より順に、像側に凹の
負メニスカスレンズ及び物体側に凸の正メニスカスレン
ズから成る第1レンズ成分(G1)と,像側に凹の負メニス
カスレンズ,両凹の負レンズ及び物体側に凸の正メニス
カスレンズから成る第2レンズ成分(G2)と,絞り(S)
と,両凸の正レンズから成る第3レンズ成分(G3)と,両
凹の負レンズ及び両凸の正レンズから成る第4レンズ成
分(G4)と,両凹の負レンズ及び平板から成る第5レンズ
成分(G5)とから構成されている。尚、第3レンズ成分(G
3)中の正レンズの物体側の面及び第4レンズ成分(G4)中
の正レンズの像側の面は非球面である。
In the fifth embodiment, in order from the object side, the first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, Second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex to the object side, and an aperture (S)
And a third lens component (G3) consisting of a biconvex positive lens, a fourth lens component (G4) consisting of a biconcave negative lens and a biconvex positive lens, and a biconcave negative lens and a flat plate It is composed of five lens components (G5). The third lens component (G
The object side surface of the positive lens in 3) and the image side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0103】実施例6は、物体側より順に、像側に凹の
負メニスカスレンズ及び物体側に凸の正メニスカスレン
ズから成る第1レンズ成分(G1)と,像側に凹の負メニス
カスレンズ,両凹の負レンズ及び物体側に凸の正メニス
カスレンズから成る第2レンズ成分(G2)と,絞り(S),
両凸の正レンズ,物体側に凸の正メニスカスレンズ及び
両凹の負レンズから成る第3レンズ成分(G3)と,両凸の
正レンズから成る第4レンズ成分(G4)と,両凹の負レン
ズ及び平板から成る第5レンズ成分(G5)とから構成され
ている。尚、第4レンズ成分(G4)中の正レンズの像側の
面は非球面である。
In the sixth embodiment, in order from the object side, the first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, A second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex on the object side, an aperture (S),
A third lens component (G3) consisting of a biconvex positive lens, a positive meniscus lens convex to the object side, and a biconcave negative lens, a fourth lens component (G4) consisting of a biconvex positive lens, and a biconcave lens. It is composed of a negative lens and a fifth lens component (G5) composed of a flat plate. The image-side surface of the positive lens in the fourth lens component (G4) is aspherical.

【0104】実施例7は、物体側より順に、像側に凹の
負メニスカスレンズ及び物体側に凸の正メニスカスレン
ズから成る第1レンズ成分(G1)と,像側に凹の負メニス
カスレンズ,両凹の負レンズ及び物体側に凸の正メニス
カスレンズから成る第2レンズ成分(G2)と,絞り(S),
両凸の正レンズ,物体側に凸の正メニスカスレンズ及び
両凹の負レンズから成る第3レンズ成分(G3)と,両凸の
正レンズから成る第4レンズ成分(G4)と,像側に凹の負
メニスカスレンズ及び平板から成る第5レンズ成分(G5)
とから構成されている。尚、第4レンズ成分(G4)中の正
レンズの像側の面は非球面である。
In the seventh embodiment, in order from the object side, the first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, A second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex on the object side, an aperture (S),
A third lens component (G3) consisting of a biconvex positive lens, a positive meniscus lens convex to the object side and a biconcave negative lens, a fourth lens component (G4) consisting of a biconvex positive lens, and an image side Fifth lens component (G5) consisting of a concave negative meniscus lens and a flat plate
It consists of and. The image-side surface of the positive lens in the fourth lens component (G4) is aspherical.

【0105】実施例8は、物体側より順に、像側に凹の
負メニスカスレンズ及び物体側に凸の正メニスカスレン
ズから成る第1レンズ成分(G1)と,両凹の負レンズ及び
像側に凸の正メニスカスレンズから成る第2レンズ成分
(G2)と,絞り(S)と,物体側に凸の正メニスカスレンズ
から成る第3レンズ成分(G3)と,像側に凹の負メニスカ
スレンズ及び両凸の正レンズより成る接合レンズから成
る第4レンズ成分(G4)と,像側に凹の負メニスカス
レンズ及び平板から成る第5レンズ成分(G5)とから
構成されている。尚、第1レンズ成分(G1)中の正メニス
カスレンズの像側の面,第2レンズ成分(G2)中の正メニ
スカスレンズの像側の面,第3レンズ成分(G3)中の正メ
ニスカスレンズの像側の面及び第4レンズ成分(G4)中の
正レンズの像側の面は非球面である。
In the eighth embodiment, in order from the object side, the first lens component (G1) is composed of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and a biconcave negative lens and an image side. Second lens component consisting of a convex positive meniscus lens
(G2), diaphragm (S), third lens component (G3) consisting of a positive meniscus lens convex on the object side, and a cemented lens consisting of a negative meniscus lens concave on the image side and a biconvex positive lens It is composed of a fourth lens component (G4) and a fifth lens component (G5) including a negative meniscus lens concave on the image side and a flat plate. The image side surface of the positive meniscus lens in the first lens component (G1), the image side surface of the positive meniscus lens in the second lens component (G2), and the positive meniscus lens in the third lens component (G3) The image side surface and the image side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0106】実施例9は、物体側より順に、像側に凹の
負メニスカスレンズ及び両凸の正レンズから成る第1レ
ンズ成分(G1)と,両凹の負レンズ及び物体側に凸の正メ
ニスカスレンズから成る第2レンズ成分(G2)と,絞り
(S)と,物体側に凸の正メニスカスレンズから成る第3
レンズ成分(G3)と,両凹の負レンズ及び両凸の正レンズ
から成る第4レンズ成分(G4)と,物体側に凹の負メニス
カスレンズ及び平板から成る第5レンズ成分(G5)とから
構成されている。尚、第2レンズ成分(G2)中の負レンズ
の像側の面,第3レンズ成分(G3)中の正レンズの物体側
の面及び第4レンズ成分(G4)中の正レンズの物体側の面
は非球面である。
In the ninth embodiment, in order from the object side, the first lens component (G1) consisting of a negative meniscus lens concave to the image side and a biconvex positive lens, a biconcave negative lens and a positive lens convex to the object side. Second lens component (G2) consisting of meniscus lens, and diaphragm
(S) and a positive meniscus lens convex on the object side
From the lens component (G3), the fourth lens component (G4) consisting of a biconcave negative lens and a biconvex positive lens, and the fifth lens component (G5) consisting of a negative meniscus lens concave to the object side and a flat plate It is configured. The image side surface of the negative lens in the second lens component (G2), the object side surface of the positive lens in the third lens component (G3), and the object side of the positive lens in the fourth lens component (G4). The surface of is an aspherical surface.

【0107】実施例10は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズから成る第1
レンズ成分(G1)と,両凹の負レンズ及び物体側に凸の正
メニスカスレンズから成る第2レンズ成分(G2)と,絞り
(S)と,両凸の正レンズから成る第3レンズ成分(G3)
と,両凹の負レンズ及び両凸の正レンズから成る第4レ
ンズ成分(G4)と,物体側に凹の負メニスカスレンズ及び
平板から成る第5レンズ成分(G5)とから構成されてい
る。尚、第2レンズ成分(G2)中の負レンズの像側の面,
第3レンズ成分(G3)中の正レンズの物体側の面及び第4
レンズ成分(G4)中の正レンズの物体側の面は非球面であ
る。
In the tenth embodiment, in order from the object side, a negative meniscus lens element having a concave surface on the image side and a biconvex positive lens element are provided.
A lens component (G1), a second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex on the object side, and an aperture
(S) and the third lens component (G3) consisting of a biconvex positive lens
And a fourth lens component (G4) composed of a biconcave negative lens and a biconvex positive lens, and a fifth lens component (G5) composed of a negative meniscus lens concave to the object side and a flat plate. The image-side surface of the negative lens in the second lens component (G2),
The object-side surface of the positive lens in the third lens component (G3) and the fourth surface
The object-side surface of the positive lens in the lens component (G4) is aspherical.

【0108】実施例11は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズから成る第1
レンズ成分(G1)と,両凹の負レンズ及び像側に凸の正メ
ニスカスレンズから成る第2レンズ成分(G2)と,絞り
(S)並びに両凸の正レンズ及び両凹の負レンズより成る
接合レンズから成る第3レンズ成分(G3)と,両凸の正レ
ンズから成る第4レンズ成分(G4)と,像側に凹の負メニ
スカスレンズ及び平板から成る第5レンズ成分(G5)とか
ら構成されている。尚、第1レンズ成分(G1)中の正メニ
スカスレンズの像側の面,第2レンズ成分(G2)中の正メ
ニスカスレンズの両面,第3レンズ成分(G3)中の正レン
ズの物体側の面及び第4レンズ成分(G4)中の正レンズの
像側の面は非球面である。
The eleventh embodiment is composed of a negative meniscus lens element concave to the image side and a biconvex positive lens element in order from the object side.
A lens component (G1), a second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex to the image side, and an aperture
(S) and a third lens component (G3) consisting of a cemented lens composed of a biconvex positive lens and a biconcave negative lens, a fourth lens component (G4) consisting of a biconvex positive lens, and a concave surface on the image side. And a fifth lens component (G5) consisting of a flat plate. The image side surface of the positive meniscus lens in the first lens component (G1), both surfaces of the positive meniscus lens in the second lens component (G2), and the object side of the positive lens in the third lens component (G3) The surface and the image-side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0109】実施例12及び14は、物体側より順に、
像側に凹の負メニスカスレンズ及び両凸の正レンズより
成る接合レンズ並びに物体側に凸の正メニスカスレンズ
から成る第1レンズ成分(G1)と,像側に凹の負メニスカ
スレンズ並びに両凹の負レンズ及び両凸の正レンズより
成る接合レンズから成る第2レンズ成分(G2)と,絞り
(S)及び物体側に凸の正メニスカスレンズから成る第3
レンズ成分(G3)と,像側に凹の負メニスカスレンズ及び
両凸の正レンズより成る接合レンズから成る第4レンズ
成分(G4)と,両凹の負レンズから成る第5レンズ成分(G
5)と,平板とから構成されている。尚、第3レンズ成分
(G3)中の正メニスカスレンズの像側の面及び第4レンズ
成分(G4)中の正レンズの像側の面は非球面である。
In Examples 12 and 14, from the object side,
The first lens component (G1) consisting of a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens, and a positive meniscus lens convex to the object side, and a negative meniscus lens concave to the image side and a biconcave lens. Second lens component (G2) consisting of cemented lens consisting of negative lens and biconvex positive lens, and diaphragm
Third lens consisting of (S) and positive meniscus lens convex on the object side
A lens component (G3), a fourth lens component (G4) made up of a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens, and a fifth lens component (G made up of a biconcave negative lens
5) and a flat plate. The third lens component
The image side surface of the positive meniscus lens in (G3) and the image side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0110】実施例13は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズより成る接合
レンズ並びに物体側に凸の正メニスカスレンズから成る
第1レンズ成分(G1)と,像側に凹の負メニスカスレンズ
並びに両凹の負レンズ及び両凸の正レンズより成る接合
レンズから成る第2レンズ成分(G2)と,絞り(S)及び物
体側に凸の正メニスカスレンズから成る第3レンズ成分
(G3)と,像側に凹の負メニスカスレンズ及び両凸の正レ
ンズより成る接合レンズから成る第4レンズ成分(G4)
と,像側に凹の負メニスカスレンズから成る第5レンズ
成分(G5)と,平板とから構成されている。尚、第3レン
ズ成分(G3)中の正メニスカスレンズの像側の面及び第4
レンズ成分(G4)中の正レンズの像側の面は非球面であ
る。
In the thirteenth embodiment, the first lens component (G1) is composed of, in order from the object side, a cemented lens including a concave negative meniscus lens and a biconvex positive lens on the image side, and a positive meniscus lens convex on the object side. , From the second lens component (G2) consisting of a negative meniscus lens element concave to the image side and a cemented lens element composed of a biconcave negative lens element and a biconvex positive lens element, and a stop (S) and a positive meniscus lens element convex to the object side The third lens component
(G3) and the fourth lens component (G4) consisting of a cemented lens consisting of a negative meniscus lens concave to the image side and a biconvex positive lens
And a fifth lens component (G5) consisting of a negative meniscus lens concave on the image side, and a flat plate. The image-side surface of the positive meniscus lens in the third lens component (G3) and the fourth lens
The image-side surface of the positive lens in the lens component (G4) is aspherical.

【0111】実施例15は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズより成る接合
レンズ並びに物体側に凸の正メニスカスレンズから成る
第1レンズ成分(G1)と,像側に凹の負メニスカスレンズ
並びに両凹の負レンズ及び両凸の正レンズより成る接合
レンズから成る第2レンズ成分(G2)と,絞り(S)並びに
像側に凹の負メニスカスレンズ及び物体側に凸の正メニ
スカスレンズより成る接合レンズから成る第3レンズ成
分(G3)と,両凸の正レンズから成る第4レンズ成分(G4)
と,両凹の負レンズから成る第5レンズ成分(G5)と,平
板とから構成されている。尚、第3レンズ成分(G3)中の
正メニスカスレンズの像側の面及び第4レンズ成分(G4)
中の正レンズの両面は非球面である。
In the fifteenth embodiment, in order from the object side, a cemented lens including a concave negative meniscus lens and a biconvex positive lens on the image side, and a first lens component (G1) including a positive meniscus lens convex on the object side are provided. , A second lens component (G2) consisting of a negative meniscus lens concave to the image side and a cemented lens composed of a biconcave negative lens and a biconvex positive lens, and a diaphragm (S) and a negative meniscus lens concave to the image side, Third lens component (G3) consisting of a cemented lens consisting of a positive meniscus lens convex to the object side and fourth lens component (G4) consisting of a biconvex positive lens
And a fifth lens component (G5) composed of a biconcave negative lens, and a flat plate. The image side surface of the positive meniscus lens in the third lens component (G3) and the fourth lens component (G4)
Both surfaces of the positive lens in the inside are aspherical.

【0112】実施例16は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズより成る接合
レンズ並びに物体側に凸の正メニスカスレンズから成る
第1レンズ成分(G1)と,像側に凹の負メニスカスレンズ
並びに両凹の負レンズ及び両凸の正レンズより成る接合
レンズから成る第2レンズ成分(G2)と,絞り(S)並びに
両凸の正レンズ及び両凹の負レンズより成る接合レンズ
から成る第3レンズ成分(G3)と,両凸の正レンズから成
る第4レンズ成分(G4)と,像側に凹の負メニスカスレン
ズから成る第5レンズ成分(G5)と,平板とから構成され
ている。尚、第3レンズ成分(G3)中の正レンズの物体側
の面及び第4レンズ成分(G4)中の正レンズの像側の面は
非球面である。
In the sixteenth embodiment, in order from the object side, a cemented lens including a concave negative meniscus lens and a biconvex positive lens on the image side, and a first lens component (G1) including a positive meniscus lens convex on the object side are provided. , A second lens component (G2) consisting of a negative meniscus lens concave to the image side and a cemented lens composed of a biconcave negative lens and a biconvex positive lens, and a diaphragm (S) and a biconvex positive lens and a biconcave lens. Third lens component (G3) consisting of cemented lens consisting of negative lens, fourth lens component (G4) consisting of biconvex positive lens, and fifth lens component (G5) consisting of negative meniscus lens concave to the image side And a flat plate. The object-side surface of the positive lens in the third lens component (G3) and the image-side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0113】実施例17は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズより成る接合
レンズ並びに物体側に凸の正メニスカスレンズから成る
第1レンズ成分(G1)と,像側に凹の負メニスカスレンズ
並びに両凹の負レンズ及び両凸の正レンズより成る接合
レンズから成る第2レンズ成分(G2)と,絞り(S)並びに
像側に凹の負メニスカスレンズ及び物体側に凸の正メニ
スカスレンズより成る接合レンズから成る第3レンズ成
分(G3)と,両凸の正レンズから成る第4レンズ成分(G4)
と,両凹の負レンズから成る第5レンズ成分(G5)と,平
板とから構成されている。尚、第3レンズ成分(G3)中の
正レンズの像側の面及び第4レンズ成分(G4)中の正レン
ズの両面は非球面である。
The seventeenth embodiment has, in order from the object side, a cemented lens composed of a negative meniscus lens concave to the image side and a biconvex positive lens, and a first lens component (G1) composed of a positive meniscus lens convex to the object side. , A second lens component (G2) consisting of a negative meniscus lens concave to the image side and a cemented lens composed of a biconcave negative lens and a biconvex positive lens, and a diaphragm (S) and a negative meniscus lens concave to the image side, Third lens component (G3) consisting of a cemented lens consisting of a positive meniscus lens convex to the object side and fourth lens component (G4) consisting of a biconvex positive lens
And a fifth lens component (G5) composed of a biconcave negative lens, and a flat plate. The image-side surface of the positive lens in the third lens component (G3) and both surfaces of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0114】実施例18は、物体側より順に、像側に凹
の負メニスカスレンズ及び物体側に凸の正メニスカスレ
ンズから成る第1レンズ成分(G1)と,像側に凹の負メニ
スカスレンズ,両凹の負レンズ及び物体側に凸の正メニ
スカスレンズから成る第2レンズ成分(G2)と,絞り(S)
及び両凸の正レンズから成る第3レンズ成分(G3)と,両
凹の負レンズ及び両凸の正レンズから成る第4レンズ成
分(G4)と,両凹の負レンズから成る第5レンズ成分(G5)
と,平板とから構成されている。尚、第3レンズ成分(G
3)中の正レンズの物体側の面及び第4レンズ成分(G4)中
の正レンズの像側の面は非球面である。
In the eighteenth embodiment, in order from the object side, a first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, Second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex to the object side, and an aperture (S)
And a third lens component (G3) including a biconvex positive lens, a fourth lens component (G4) including a biconcave negative lens and a biconvex positive lens, and a fifth lens component including a biconcave negative lens (G5)
And a flat plate. The third lens component (G
The object side surface of the positive lens in 3) and the image side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0115】実施例19は、物体側より順に、像側に凹
の負メニスカスレンズ及び物体側に凸の正メニスカスレ
ンズから成る第1レンズ成分(G1)と,像側に凹の負メニ
スカスレンズ,両凹の負レンズ及び物体側に凸の正メニ
スカスレンズから成る第2レンズ成分(G2)と,絞り(S)
及び両凸の正レンズから成る第3レンズ成分(G3)と,像
側に凹の負メニスカスレンズ及び両凸の正レンズから成
る第4レンズ成分(G4)と,両凹の負レンズから成る第5
レンズ成分(G5)と,平板とから構成されている。尚、第
3レンズ成分(G3)中の正レンズの物体側の面及び第4レ
ンズ成分(G4)中の正レンズの像側の面は非球面である。
In Example 19, in order from the object side, a first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, Second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex to the object side, and an aperture (S)
And a third lens component (G3) consisting of a biconvex positive lens, a negative meniscus lens concave to the image side and a fourth lens component (G4) consisting of a biconvex positive lens, and a biconcave negative lens 5
It is composed of a lens component (G5) and a flat plate. The object-side surface of the positive lens in the third lens component (G3) and the image-side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0116】実施例20は、物体側より順に、像側に凹
の負メニスカスレンズ及び物体側に凸の正メニスカスレ
ンズから成る第1レンズ成分(G1)と,像側に凹の負メニ
スカスレンズ,両凹の負レンズ及び物体側に凸の正メニ
スカスレンズから成る第2レンズ成分(G2)と,絞り
(S),両凸の正レンズ,物体側に凸の正メニスカスレン
ズ及び両凹の負レンズから成る第3レンズ成分(G3)と,
両凸の正レンズから成る第4レンズ成分(G4)と,像側に
凹の負メニスカスレンズから成る第5レンズ成分(G5)
と,平板とから構成されている。尚、第4レンズ成分(G
4)中の正レンズの像側の面は非球面である。
The twentieth embodiment has, in order from the object side, a first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, a negative meniscus lens concave to the image side, A second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex on the object side, and a diaphragm
(S), a biconvex positive lens, a third lens component (G3) consisting of a positive meniscus lens convex on the object side and a biconcave negative lens,
The fourth lens component (G4) consisting of a biconvex positive lens and the fifth lens component (G5) consisting of a negative meniscus lens concave to the image side.
And a flat plate. The fourth lens component (G
The image-side surface of the positive lens in 4) is an aspherical surface.

【0117】実施例21は、物体側より順に、像側に凹
の負メニスカスレンズ及び物体側に凸の正メニスカスレ
ンズから成る第1レンズ成分(G1)と,両凹の負レンズ及
び像側に凸の正メニスカスレンズから成る第2レンズ成
分(G2)と,絞り(S)及び物体側に凸の正メニスカスレン
ズから成る第3レンズ成分(G3)と,像側に凹の負メニス
カスレンズ及び両凸の正レンズより成る接合レンズから
成る第4レンズ成分(G4)と,像側に凹の負メニスカスレ
ンズから成る第5レンズ成分(G5)と,平板とから構成さ
れている。尚、第1レンズ成分(G1)中の正メニスカスレ
ンズの像側の面,第2レンズ成分(G2)中の正メニスカス
レンズの像側の面,第3レンズ成分(G3)中の正メニスカ
スレンズの像側の面及び第4レンズ成分(G4)中の正レン
ズの像側の面は非球面である。
In Example 21, in order from the object side, the first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and a biconcave negative lens and an image side Second lens component (G2) consisting of a convex positive meniscus lens, diaphragm (S) and third lens component (G3) consisting of a positive meniscus lens convex to the object side, negative meniscus lens concave to the image side and both It is composed of a fourth lens component (G4) composed of a cemented lens composed of a convex positive lens, a fifth lens component (G5) composed of a negative meniscus lens concave to the image side, and a flat plate. The image side surface of the positive meniscus lens in the first lens component (G1), the image side surface of the positive meniscus lens in the second lens component (G2), and the positive meniscus lens in the third lens component (G3) The image side surface and the image side surface of the positive lens in the fourth lens component (G4) are aspherical surfaces.

【0118】実施例22は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズから成る第1
レンズ成分(G1)と,両凹の負レンズ及び物体側に凸の正
メニスカスレンズから成る第2レンズ成分(G2)と,絞り
(S)及び両凸の正レンズから成る第3レンズ成分(G3)
と,両凹の負レンズ及び両凸の正レンズから成る第4レ
ンズ成分(G4)と,像側に凹の負メニスカスレンズから成
る第5レンズ成分(G5)と,平板とから構成されている。
尚、第2レンズ成分(G2)中の負メニスカスレンズの像側
の面,第3レンズ成分(G3)中の正レンズの物体側の面及
び第4レンズ成分(G4)中の正レンズの物体側の面は非球
面である。
In the twenty-second embodiment, in order from the object side, a negative meniscus lens element concave to the image side and a biconvex positive lens element are provided.
A lens component (G1), a second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex on the object side, and an aperture
(S) and third lens component (G3) consisting of a biconvex positive lens
And a fourth lens component (G4) consisting of a biconcave negative lens and a biconvex positive lens, a fifth lens component (G5) consisting of a negative meniscus lens concave to the image side, and a flat plate. ..
The image-side surface of the negative meniscus lens in the second lens component (G2), the object-side surface of the positive lens in the third lens component (G3), and the object of the positive lens in the fourth lens component (G4) The side surface is an aspherical surface.

【0119】実施例23及び24は、物体側より順に、
像側に凹の負メニスカスレンズ及び両凸の正レンズから
成る第1レンズ成分(G1)と,両凹の負レンズ及び物体側
に凸の正メニスカスレンズから成る第2レンズ成分(G2)
と,絞り(S)及び両凸の正レンズから成る第3レンズ成
分(G3)と,像側に凹の負メニスカスレンズ及び両凸の正
レンズから成る第4レンズ成分(G4)と,両凹の負レンズ
から成る第5レンズ成分(G5)と,平板とから構成されて
いる。尚、第2レンズ成分(G2)中の負レンズの像側の
面,第3レンズ成分(G3)中の正レンズの物体側の面及び
第4レンズ成分(G4)中の正レンズの物体側の面は非球面
である。
In Examples 23 and 24, from the object side,
The first lens component (G1) consisting of a negative meniscus lens concave to the image side and a positive biconvex lens, and the second lens component (G2) consisting of a negative lens biconcave and a positive meniscus lens convex to the object side
And a third lens component (G3) consisting of a diaphragm (S) and a biconvex positive lens, a fourth lens component (G4) consisting of a negative meniscus lens concave to the image side and a biconvex positive lens, and a biconcave It is composed of a fifth lens component (G5), which is a negative lens, and a flat plate. The image side surface of the negative lens in the second lens component (G2), the object side surface of the positive lens in the third lens component (G3), and the object side of the positive lens in the fourth lens component (G4). The surface of is an aspherical surface.

【0120】実施例25は、物体側より順に、像側に凹
の負メニスカスレンズ及び両凸の正レンズから成る第1
レンズ成分(G1)と,両凹の負レンズ及び像側に凸の正メ
ニスカスレンズから成る第2レンズ成分(G2)と,絞り
(S)並びに両凸の正レンズ及び両凹の負レンズより成る
接合レンズから成る第3レンズ成分(G3)と,両凸の正レ
ンズから成る第4レンズ成分(G4)と,像側に凹の負メニ
スカスレンズから成る第5レンズ成分(G5)と,平板とか
ら構成されている。尚、第1レンズ成分(G1)中の正レン
ズの像側の面,第2レンズ成分(G2)中の正レンズの両
面,第3レンズ成分(G3)中の正レンズの物体側の面及び
第4レンズ成分(G4)中の正レンズの像側の面は非球面で
ある。
The twenty-fifth embodiment is arranged such that, in order from the object side, a negative meniscus lens element concave to the image side and a biconvex positive lens element are provided.
A lens component (G1), a second lens component (G2) consisting of a biconcave negative lens and a positive meniscus lens convex to the image side, and an aperture
(S) and a third lens component (G3) consisting of a cemented lens composed of a biconvex positive lens and a biconcave negative lens, a fourth lens component (G4) consisting of a biconvex positive lens, and a concave surface on the image side. It is composed of a fifth lens component (G5) consisting of a negative meniscus lens and a flat plate. Incidentally, the image side surface of the positive lens in the first lens component (G1), both surfaces of the positive lens in the second lens component (G2), the object side surface of the positive lens in the third lens component (G3), and The image-side surface of the positive lens in the fourth lens component (G4) is aspherical.

【0121】図26〜図50は、それぞれ前記実施例1
〜25に対応する収差図であり、望遠端(長焦点端)<L
>,中間焦点距離状態<M>及び広角端(短焦点端)<S>の各
々について示している。実線(d)はd線に対する収差、
一点鎖線(g)はg線に対する収差、二点鎖線(c)はc線に
対する収差を表わし、破線(SC)は正弦条件を表わす。更
に破線(DM)と実線(DS)はメリディオナル面とサジタル面
での非点収差をそれぞれ表わしている。
26 to 50 are each the same as the first embodiment.
It is an aberration diagram corresponding to ~ 25, telephoto end (long focal end) <L
>, Intermediate focal length state <M>, and wide-angle end (short focal end) <S>. Solid line (d) is the aberration for d line,
The alternate long and short dash line (g) represents aberration for the g line, the alternate long and two short dash line (c) represents aberration for the c line, and the dashed line (SC) represents the sine condition. Further, the broken line (DM) and the solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

【0122】また、表1及び表2は、それぞれ実施例1
〜11及び実施例12〜25における条件式(1)〜(7)中
のfS,φ1,φ2,φ3及びφ4を示しており、表3及び
表4は、それぞれ実施例1〜11及び実施例12〜25
における条件式(7)中のφ5の値、条件式(3)中の|φ2|
/φ1の値、条件式(6)中の(φ3+φ4)/|φ2|の値を示
している。
Tables 1 and 2 show Example 1 respectively.
11 and Examples 12 to 25 show fS, φ1, φ2, φ3 and φ4 in the conditional expressions (1) to (7), and Tables 3 and 4 show Examples 1 to 11 and Examples, respectively. 12-25
Of φ5 in conditional expression (7) and | φ2 | in conditional expression (3)
The value of / φ1 and the value of (φ3 + φ4) / | φ2 | in the conditional expression (6) are shown.

【0123】[0123]

【数1】 [Equation 1]

【0124】[0124]

【表1】 [Table 1]

【0125】[0125]

【表2】 [Table 2]

【0126】[0126]

【表3】 [Table 3]

【0127】[0127]

【表4】 [Table 4]

【0128】[0128]

【発明の効果】以上説明したように本発明では、物体側
より順に、正の屈折力を有する第1レンズ成分と,負の
屈折力を有する第2レンズ成分と,正の屈折力を有する
第3レンズ成分と,正の屈折力を有する第4レンズ成分
と,負の屈折力を有する第5レンズ成分との5つのレン
ズ成分で構成し、前記第1レンズ成分を変倍中固定とす
ることによって、高変倍比,大口径比であり、しかもコ
ンパクト化,低コスト化及び収差の高性能化が達成され
たズームレンズを実現することができる。特に、コンパ
クト化やレンズの構成枚数削減を行うのにより有利な非
球面を有効に用いることによって、変倍比が6倍程度で
Fナンバーが1.6〜1.8程度の明るいズームレンズを、高
い性能を保持しつつ実現することができる。
As described above, according to the present invention, in order from the object side, the first lens component having a positive refractive power, the second lens component having a negative refractive power, and the first lens component having a positive refractive power are arranged. It is composed of three lens components, a fourth lens component having a positive refractive power, and a fifth lens component having a negative refractive power, and the first lens component is fixed during zooming. Thus, it is possible to realize a zoom lens that has a high zoom ratio and a large aperture ratio, and that has achieved compactness, low cost, and high aberration performance. In particular, by effectively using an aspherical surface, which is more advantageous for downsizing and reducing the number of lens components, a bright zoom lens with a variable power ratio of about 6 and an F number of about 1.6 to 1.8 retains high performance. It can be realized while doing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment of the present invention.

【図2】本発明の実施例2のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment of the present invention.

【図3】本発明の実施例3のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment of the present invention.

【図4】本発明の実施例4のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment of the present invention.

【図5】本発明の実施例5のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment of the present invention.

【図6】本発明の実施例6のレンズ構成図。FIG. 6 is a lens configuration diagram of a sixth embodiment of the present invention.

【図7】本発明の実施例7のレンズ構成図。FIG. 7 is a lens configuration diagram of a seventh embodiment of the present invention.

【図8】本発明の実施例8のレンズ構成図。FIG. 8 is a lens configuration diagram of Example 8 of the present invention.

【図9】本発明の実施例9のレンズ構成図。FIG. 9 is a lens configuration diagram of Example 9 of the present invention.

【図10】本発明の実施例10のレンズ構成図。FIG. 10 is a lens configuration diagram of Example 10 of the present invention.

【図11】本発明の実施例11のレンズ構成図。FIG. 11 is a lens configuration diagram of Example 11 of the present invention.

【図12】本発明の実施例12のレンズ構成図。FIG. 12 is a lens configuration diagram of a twelfth embodiment of the present invention.

【図13】本発明の実施例13のレンズ構成図。FIG. 13 is a lens configuration diagram of Example 13 of the present invention.

【図14】本発明の実施例14のレンズ構成図。FIG. 14 is a lens configuration diagram of Example 14 of the present invention.

【図15】本発明の実施例15のレンズ構成図。FIG. 15 is a lens configuration diagram of Example 15 of the present invention.

【図16】本発明の実施例16のレンズ構成図。FIG. 16 is a lens configuration diagram of Example 16 of the present invention.

【図17】本発明の実施例17のレンズ構成図。FIG. 17 is a lens configuration diagram of an example 17 of the present invention.

【図18】本発明の実施例18のレンズ構成図。FIG. 18 is a lens configuration diagram of Example 18 of the present invention.

【図19】本発明の実施例19のレンズ構成図。FIG. 19 is a lens configuration diagram of Example 19 of the present invention.

【図20】本発明の実施例20のレンズ構成図。FIG. 20 is a lens configuration diagram of a twentieth embodiment of the present invention.

【図21】本発明の実施例21のレンズ構成図。FIG. 21 is a lens configuration diagram of Embodiment 21 of the present invention.

【図22】本発明の実施例22のレンズ構成図。FIG. 22 is a lens configuration diagram of Example 22 of the present invention.

【図23】本発明の実施例23のレンズ構成図。FIG. 23 is a lens configuration diagram of Example 23 of the present invention.

【図24】本発明の実施例24のレンズ構成図。FIG. 24 is a lens configuration diagram of Example 24 of the present invention.

【図25】本発明の実施例25のレンズ構成図。FIG. 25 is a lens configuration diagram of an example 25 of the present invention.

【図26】本発明の実施例1の収差図。FIG. 26 is an aberration diagram of Example 1 of the present invention.

【図27】本発明の実施例2の収差図。FIG. 27 is an aberration diagram of Example 2 of the present invention.

【図28】本発明の実施例3の収差図。FIG. 28 is an aberration diagram for Example 3 of the present invention.

【図29】本発明の実施例4の収差図。FIG. 29 is an aberration diagram of Example 4 of the present invention.

【図30】本発明の実施例5の収差図。FIG. 30 is an aberration diagram of Example 5 of the present invention.

【図31】本発明の実施例6の収差図。FIG. 31 is an aberration diagram of Example 6 of the present invention.

【図32】本発明の実施例7の収差図。FIG. 32 is an aberration diagram of Example 7 of the present invention.

【図33】本発明の実施例8の収差図。FIG. 33 is an aberration diagram of Example 8 of the present invention.

【図34】本発明の実施例9の収差図。FIG. 34 is an aberration diagram of Example 9 of the present invention.

【図35】本発明の実施例10の収差図。FIG. 35 is an aberration diagram of Example 10 of the present invention.

【図36】本発明の実施例11の収差図。FIG. 36 is an aberration diagram for Example 11 of the present invention.

【図37】本発明の実施例12の収差図。FIG. 37 is an aberration diagram of Example 12 of the present invention.

【図38】本発明の実施例13の収差図。FIG. 38 is an aberration diagram of Example 13 of the present invention.

【図39】本発明の実施例14の収差図。FIG. 39 is an aberration diagram of Example 14 of the present invention.

【図40】本発明の実施例15の収差図。FIG. 40 is an aberration diagram of Example 15 of the present invention.

【図41】本発明の実施例16の収差図。FIG. 41 is an aberration diagram of Example 16 of the present invention.

【図42】本発明の実施例17の収差図。FIG. 42 is an aberration diagram of Example 17 of the present invention.

【図43】本発明の実施例18の収差図。FIG. 43 is an aberration diagram of Example 18 of the present invention.

【図44】本発明の実施例19の収差図。FIG. 44 is an aberration diagram of Example 19 of the present invention.

【図45】本発明の実施例20の収差図。FIG. 45 is an aberration diagram of Example 20 of the present invention.

【図46】本発明の実施例21の収差図。FIG. 46 is an aberration diagram of Example 21 of the present invention.

【図47】本発明の実施例22の収差図。FIG. 47 is an aberration diagram of Example 22 of the present invention.

【図48】本発明の実施例23の収差図。FIG. 48 is an aberration diagram of Example 23 of the present invention.

【図49】本発明の実施例24の収差図。FIG. 49 is an aberration diagram of Example 24 of the present invention.

【図50】本発明の実施例25の収差図。50 is an aberration diagram of Example 25 of the present invention. FIG.

【符号の説明】[Explanation of symbols]

(G1) …第1レンズ成分 (G2) …第2レンズ成分 (G3) …第3レンズ成分 (G4) …第4レンズ成分 (G5) …第5レンズ成分 (S) …絞り (G1)… First lens component (G2)… Second lens component (G3)… Third lens component (G4)… Fourth lens component (G5)… Fifth lens component (S)… Aperture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正の屈折力を有する第1
レンズ成分と,負の屈折力を有する第2レンズ成分と,
正の屈折力を有する第3レンズ成分と,正の屈折力を有
する第4レンズ成分と,負の屈折力を有する第5レンズ
成分との5つのレンズ成分から成り、前記第1レンズ成
分は変倍中固定であることを特徴とするズームレンズ。
1. A first lens element having a positive refractive power in order from the object side.
A lens component and a second lens component having a negative refractive power,
The third lens component has a positive refracting power, the fourth lens component having a positive refracting power, and the fifth lens component having a negative refracting power, and the first lens component is a variable lens component. A zoom lens characterized by being fixed in the middle.
JP2642092A 1992-02-13 1992-02-13 Zoom lens device Expired - Lifetime JP3196283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2642092A JP3196283B2 (en) 1992-02-13 1992-02-13 Zoom lens device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2642092A JP3196283B2 (en) 1992-02-13 1992-02-13 Zoom lens device

Publications (2)

Publication Number Publication Date
JPH05224125A true JPH05224125A (en) 1993-09-03
JP3196283B2 JP3196283B2 (en) 2001-08-06

Family

ID=12193042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2642092A Expired - Lifetime JP3196283B2 (en) 1992-02-13 1992-02-13 Zoom lens device

Country Status (1)

Country Link
JP (1) JP3196283B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273466A (en) * 1992-03-26 1993-10-22 Canon Inc Zoom lens of rear focusing system
JPH07113955A (en) * 1993-10-18 1995-05-02 Minolta Co Ltd Zoom lens
JPH08327903A (en) * 1995-05-30 1996-12-13 Canon Inc Small-sized zoom lens
JPH0968653A (en) * 1995-08-30 1997-03-11 Olympus Optical Co Ltd Zoom lens
JPH09159917A (en) * 1995-12-12 1997-06-20 Copal Co Ltd Rear focus type zoom lens
JPH09269452A (en) * 1996-03-29 1997-10-14 Canon Inc Rear focus system zoom lens
US5719708A (en) * 1994-12-12 1998-02-17 Olympus Optical Co., Ltd. Zoom lens system
JP2002098893A (en) * 2000-09-26 2002-04-05 Minolta Co Ltd Imaging lens device
JP2004199098A (en) * 2004-04-05 2004-07-15 Olympus Corp Zoom lens
JP2005025229A (en) * 2004-10-06 2005-01-27 Olympus Corp Zoom lens
JP2005091465A (en) * 2003-09-12 2005-04-07 Sony Corp Zoom lens and imaging apparatus
JP2008145529A (en) * 2006-12-06 2008-06-26 Sony Corp Zoom lens and imaging apparatus
JP2008268833A (en) * 2007-03-28 2008-11-06 Fujinon Corp Variable-power optical system and imaging device
JP2011028144A (en) * 2009-07-29 2011-02-10 Fujifilm Corp Zoom lens
JP2012078788A (en) * 2010-09-10 2012-04-19 Tamron Co Ltd Zoom lens
JP2013218290A (en) * 2012-03-14 2013-10-24 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
WO2014013648A1 (en) * 2012-07-17 2014-01-23 パナソニック株式会社 Zoom lens system, imaging device and camera
JP2014056055A (en) * 2012-09-11 2014-03-27 Tamron Co Ltd Zoom lens
WO2014192750A1 (en) * 2013-05-31 2014-12-04 株式会社ニコン Variable magnification optical system, imaging device, and method for manufacturing variable magnification optical system
JP2014235280A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
JP2014235281A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
JP2016156859A (en) * 2015-02-23 2016-09-01 キヤノン株式会社 Zoom lens and image capturing device having the same
WO2018074413A1 (en) * 2016-10-18 2018-04-26 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
WO2019049370A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2020101736A (en) * 2018-12-25 2020-07-02 株式会社シグマ Zoom imaging optical system
JP2022024121A (en) * 2017-09-11 2022-02-08 株式会社ニコン Zoom optical system, optical device, and method of manufacturing zoom optical system
US11846759B2 (en) 2019-06-14 2023-12-19 Largan Precision Co., Ltd. Optical lens system, image capturing unit and electronic device comprising nine lenses of various refractive powers, or ten lenses of −+−−+−+−+−or ++−−+−+−+−refractive powers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630138B2 (en) 2007-03-28 2009-12-08 Fujinon Corporation Variable-power optical system and imaging device
WO2012077338A1 (en) * 2010-12-07 2012-06-14 富士フイルム株式会社 Zoom lens and imaging device

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273466A (en) * 1992-03-26 1993-10-22 Canon Inc Zoom lens of rear focusing system
JPH07113955A (en) * 1993-10-18 1995-05-02 Minolta Co Ltd Zoom lens
US5719708A (en) * 1994-12-12 1998-02-17 Olympus Optical Co., Ltd. Zoom lens system
JPH08327903A (en) * 1995-05-30 1996-12-13 Canon Inc Small-sized zoom lens
JPH0968653A (en) * 1995-08-30 1997-03-11 Olympus Optical Co Ltd Zoom lens
US5966245A (en) * 1995-08-30 1999-10-12 Olympus Optical Co., Ltd. Zoom lens system
JPH09159917A (en) * 1995-12-12 1997-06-20 Copal Co Ltd Rear focus type zoom lens
JPH09269452A (en) * 1996-03-29 1997-10-14 Canon Inc Rear focus system zoom lens
JP2002098893A (en) * 2000-09-26 2002-04-05 Minolta Co Ltd Imaging lens device
JP4496743B2 (en) * 2003-09-12 2010-07-07 ソニー株式会社 Zoom lens and imaging device
JP2005091465A (en) * 2003-09-12 2005-04-07 Sony Corp Zoom lens and imaging apparatus
JP2004199098A (en) * 2004-04-05 2004-07-15 Olympus Corp Zoom lens
JP2005025229A (en) * 2004-10-06 2005-01-27 Olympus Corp Zoom lens
JP2008145529A (en) * 2006-12-06 2008-06-26 Sony Corp Zoom lens and imaging apparatus
US7505212B2 (en) 2006-12-06 2009-03-17 Sony Corporation Zoom lens and image pick-up apparatus
JP2008268833A (en) * 2007-03-28 2008-11-06 Fujinon Corp Variable-power optical system and imaging device
JP2011028144A (en) * 2009-07-29 2011-02-10 Fujifilm Corp Zoom lens
CN101988985A (en) * 2009-07-29 2011-03-23 富士胶片株式会社 Zoom lens
JP2012078788A (en) * 2010-09-10 2012-04-19 Tamron Co Ltd Zoom lens
JP2013218290A (en) * 2012-03-14 2013-10-24 Panasonic Corp Zoom lens system, interchangeable lens apparatus and camera system
WO2014013648A1 (en) * 2012-07-17 2014-01-23 パナソニック株式会社 Zoom lens system, imaging device and camera
JPWO2014013648A1 (en) * 2012-07-17 2016-06-30 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device and camera
US9500840B2 (en) 2012-07-17 2016-11-22 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device and camera
JP2014056055A (en) * 2012-09-11 2014-03-27 Tamron Co Ltd Zoom lens
WO2014192750A1 (en) * 2013-05-31 2014-12-04 株式会社ニコン Variable magnification optical system, imaging device, and method for manufacturing variable magnification optical system
JP2014235280A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
JP2014235281A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
CN105393156A (en) * 2013-05-31 2016-03-09 株式会社尼康 Variable magnification optical system, imaging device, and method for manufacturing variable magnification optical system
US11307392B2 (en) 2013-05-31 2022-04-19 Nikon Corporation Variable magnification optical system, imaging apparatus, and method for manufacturing variable magnification optical system
US10698188B2 (en) 2013-05-31 2020-06-30 Nikon Corporation Variable magnification optical system, imaging apparatus, and method for manufacturing variable magnification optical system
JP2016156859A (en) * 2015-02-23 2016-09-01 キヤノン株式会社 Zoom lens and image capturing device having the same
CN109844603A (en) * 2016-10-18 2019-06-04 株式会社尼康 The manufacturing method of variable-power optical system, Optical devices and variable-power optical system
JPWO2018074413A1 (en) * 2016-10-18 2019-09-05 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
US11079575B2 (en) 2016-10-18 2021-08-03 Nikon Corporation Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2018074413A1 (en) * 2016-10-18 2018-04-26 株式会社ニコン Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
US11899189B2 (en) 2016-10-18 2024-02-13 Nikon Corporation Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2019049370A1 (en) * 2017-09-11 2019-03-14 株式会社ニコン Variable magnification optical system, optical device, and production method for variable magnification optical system
JPWO2019049370A1 (en) * 2017-09-11 2020-10-01 株式会社ニコン Magnification optics, optics, and methods of manufacturing variable magnification optics
US11106023B2 (en) 2017-09-11 2021-08-31 Nikon Corporation Variable magnification optical system, optical apparatus, and method for producing variable magnification optical system
JP2022024121A (en) * 2017-09-11 2022-02-08 株式会社ニコン Zoom optical system, optical device, and method of manufacturing zoom optical system
JP2020101736A (en) * 2018-12-25 2020-07-02 株式会社シグマ Zoom imaging optical system
US11846759B2 (en) 2019-06-14 2023-12-19 Largan Precision Co., Ltd. Optical lens system, image capturing unit and electronic device comprising nine lenses of various refractive powers, or ten lenses of −+−−+−+−+−or ++−−+−+−+−refractive powers

Also Published As

Publication number Publication date
JP3196283B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
JP3196283B2 (en) Zoom lens device
US7187504B2 (en) Zoom lens and image pick up apparatus including the same
US5253113A (en) Wide-angle zoom lens having five lens units
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
US7525737B2 (en) Zoom lens and image pickup apparatus having same
US20080198475A1 (en) Zoom lens and image capture apparatus
JPH05173071A (en) Wide angle zoom lens
EP3260900A1 (en) Zoom-lens using high refractive-index glasses
JP3849129B2 (en) Zoom lens
US6388818B1 (en) Zoom lens and optical apparatus having the same
US5225937A (en) Zoom lens
JP4774710B2 (en) Zoom lens
JP7227572B2 (en) Variable magnification optical system and optical equipment
JPH05203875A (en) Variable power lens
JPH11352400A (en) Zoom lens system
JP3260798B2 (en) Wide-angle zoom lens
JP3376143B2 (en) Zoom lens
US4618219A (en) Zoom lens
JPH0682698A (en) Large-diameter wide-angle zoom lens
JP3008711B2 (en) Small zoom lens
JP3097150B2 (en) Zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH0821954A (en) Zoom lens
JPH05341189A (en) Zoom lens
JPH07113955A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11