JP2005025229A - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP2005025229A
JP2005025229A JP2004293777A JP2004293777A JP2005025229A JP 2005025229 A JP2005025229 A JP 2005025229A JP 2004293777 A JP2004293777 A JP 2004293777A JP 2004293777 A JP2004293777 A JP 2004293777A JP 2005025229 A JP2005025229 A JP 2005025229A
Authority
JP
Japan
Prior art keywords
group
lens
zooming
refractive power
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004293777A
Other languages
Japanese (ja)
Other versions
JP4229893B2 (en
Inventor
Toshiyuki Nagaoka
利之 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004293777A priority Critical patent/JP4229893B2/en
Publication of JP2005025229A publication Critical patent/JP2005025229A/en
Application granted granted Critical
Publication of JP4229893B2 publication Critical patent/JP4229893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens which has an F-number of about 2.0 at a variable magnification ratio of about 8 times, is well corrected of various aberrations and is excellent in manufacturability. <P>SOLUTION: The zoom lens is a lens system consisting, successively from an object side, of a first group which has positive refractive power and is fixed at the time of variable magnification, a second group which has negative refractive power and moves back and forth on the optical axis for the purpose of variable magnification, a third group which has positive refractive power and is fixed at the time of variable magnification, a fourth group which has positive refractive power and moves back and forth on the optical axis for the purpose of correcting the movement of a focal position, and a fifth group which has negative refractive power and is fixed at the time of the variable magnification. In the above lens system, the third group or the fifth group which is fixed at the time of the variable magnification is provided with at least one aspherical surface and all the lenses of the fourth group consist of spherical surfaces. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ビデオカメラ等に用いるズームレンズに関するものである。     The present invention relates to a zoom lens used in a video camera or the like.

CCD等の固体撮像素子の微細化に伴い、ビデオカメラに用いられるズームレンズは、結像性能のより高性能化が要求されている。その一方、ビデオカメラ本体の小型化に対する要求からレンズ系においても、一層の小型軽量化が望まれている。一般に、ビデオカメラに用いるズームレンズにおいて、高性能化および小型化を達成する手段として非球面を用いることが知られている。このように非球面を用いて高性能、小型化を目的とした従来例として例えば特開平4−301612号公報に記載されたレンズ系が知られている。このレンズ系は、物体側より順に正の第1群、負の第2群、正の第3群、正の第4群、負の第5群からなり、変倍時に第2群と第4群が可動であるズームレンズである。しかし、この従来例は変倍時に可動である第4群中に非球面を用いているため、公差が厳しいことによる製作コスト高の原因となる。     With the miniaturization of solid-state imaging devices such as CCDs, zoom lenses used in video cameras are required to have higher imaging performance. On the other hand, a further reduction in size and weight is desired also in the lens system because of the demand for downsizing of the video camera body. In general, it is known that an aspherical surface is used as a means for achieving high performance and miniaturization in a zoom lens used in a video camera. As a conventional example aiming at high performance and downsizing using an aspherical surface as described above, for example, a lens system described in JP-A-4-301612 is known. The lens system includes a positive first group, a negative second group, a positive third group, a positive fourth group, and a negative fifth group in order from the object side. A zoom lens whose group is movable. However, this conventional example uses an aspherical surface in the fourth lens group that is movable at the time of zooming, which causes high manufacturing costs due to tight tolerances.

又、変倍時に可動である群に非球面を用いないズームレンズの従来例として例えば、特開平4−78809号公報、特開平4−13109号公報や特開平4−60509号公報等に記載されたレンズ系が知られている。これら従来例は、物体側より順に正の第1群、負の第2群、正の第3群、正の第4群、負の第5群からなり、変倍時に第2群と第4群が可動であり、変倍時に固定の第3群あるいは第5群に非球面を用いたズームレンズである。しかし、いずれの従来例もレンズ系の小型化を達成するために各群の屈折力を強めていることから各群で発生する諸収差が大きく、レンズ全系においてもこれらを良好なレベルに補正しきれず、CCD等の固体撮像素子の微細化に伴い求められる高性能な結像性能を達成してはいない。     Further, as conventional examples of zoom lenses that do not use an aspherical surface in the group that is movable at the time of zooming, they are described in, for example, Japanese Patent Laid-Open Nos. 4-78809, 4-13109, and 4-60509. Lens systems are known. These conventional examples are composed of a positive first group, a negative second group, a positive third group, a positive fourth group, and a negative fifth group in order from the object side. The zoom lens uses an aspherical surface for the third group or the fifth group which is movable during zooming and which is fixed during zooming. However, each conventional example increases the refractive power of each group in order to reduce the size of the lens system, so various aberrations occur in each group, and these are corrected to a good level in the entire lens system. The high-performance imaging performance required with the miniaturization of a solid-state imaging device such as a CCD is not achieved.

本発明は変倍比が8倍程度、Fナンバーが2.0程度で諸収差が良好に補正され、製作性に優れたズームレンズを達成することを目的としている。     An object of the present invention is to achieve a zoom lens that is excellent in manufacturability with various aberrations corrected satisfactorily when the zoom ratio is about 8 times and the F number is about 2.0.

本発明のズームレンズは、物体側より順に、正の屈折力を有し変倍時に固定の第1群と、負の屈折力を有し変倍のために光軸上を前後に移動する第2群と、正の屈折力を有し変倍時に固定の第3群と、正の屈折力を有し変倍に伴う焦点位置の移動を補正するために光軸上を前後に移動する第4群と、負の屈折力を有し変倍時に固定の第5群から成り、変倍時に固定の第3群あるいは第5群に少なくとも1面が非球面であるレンズを少なくとも1枚用い、変倍時に可動である第4群を構成するレンズが全て球面であり、以下の条件(1)を満足することを特徴としている。     The zoom lens of the present invention includes, in order from the object side, a first lens unit having a positive refractive power and fixed at the time of zooming, and a first lens unit having a negative refractive power and moving back and forth on the optical axis for zooming. A second group having a positive refracting power and fixed at the time of zooming, and a second group having a positive refracting power and moving back and forth on the optical axis in order to correct the movement of the focal position accompanying zooming. 4 groups and a fifth group having a negative refractive power and fixed at the time of zooming, and using at least one lens having an aspherical surface in the third group or the fifth group fixed at the time of zooming, All of the lenses constituting the fourth group that are movable at the time of zooming are spherical, and satisfy the following condition (1).

(1) −0.85<fW /f2 <−0.25
ただし、fW は広角端におけるレンズ全系の焦点距離、f2 は第2群の焦点距離である。
(1) −0.85 <f W / f 2 <−0.25
Here, f W is the focal length of the entire lens system at the wide angle end, and f 2 is the focal length of the second group.

ビデオカメラに用いるズームレンズにおいて、小型、高性能かつ製作性に優れたレンズ系を達成するには、物体側より順に正の屈折力を有し変倍時に固定の第1群と、負の屈折力を有し変倍のために光軸上を前後に移動する第2群と、正の屈折力を有し変倍時に固定の第3群と、正の屈折力を有し変倍に伴う焦点位置の移動を補正するために光軸上を前後に移動する第4群と、負の屈折力を有し変倍時に固定の第5群の構成とし、第2群が条件(1)を満足し、変倍時に固定の第3群あるいは第5群に少なくとも1面が非球面形状であるレンズを少なくとも1枚用いることが望ましい。     In order to achieve a compact, high-performance and highly manufacturable lens system for a zoom lens used in a video camera, in order from the object side, a first lens unit having positive refractive power and fixed at the time of zooming, and negative refraction A second group that has force and moves back and forth on the optical axis for zooming, a third group that has positive refractive power and is fixed at the time of zooming, and has positive refractive power and accompanies zooming In order to correct the movement of the focal position, the fourth group moves back and forth on the optical axis, and the fifth group has negative refractive power and is fixed at the time of zooming. The second group satisfies the condition (1). It is desirable to use at least one lens having at least one aspherical surface in the third group or the fifth group which is fixed at the time of zooming.

一般に、上記構成の5群ズームレンズを小型化するには、変倍に最も寄与する第2群の屈折力を強めて変倍時の第2群の移動距離を短くするか、あるいは第3群以降の各群の屈折力を強めてこれらの群のレンズ間隔を狭める方法が考えられる。しかし、前者の方法、つまり第2群の屈折力を強めた場合は、この負の群で発生する諸収差の発生量が大となり高性能なレンズ系の達成が困難となってしまう。     In general, in order to reduce the size of the 5-group zoom lens having the above configuration, the refractive power of the second group that contributes most to zooming is increased to shorten the moving distance of the second group during zooming, or the third group. A method of enlarging the refractive power of each group thereafter to narrow the lens interval between these groups can be considered. However, when the former method, that is, when the refractive power of the second group is increased, the amount of various aberrations generated in the negative group becomes large, and it becomes difficult to achieve a high-performance lens system.

本発明のレンズ系について更に詳細に説明する。まず本発明の第1の構成は、コンパクトで高性能なレンズ系を達成するため、諸収差を悪化させない程度に第2群の負の屈折力を強め、さらに第3群以降の各群の屈折力を強めてレンズ全長を短縮化することを考えた。条件(1)は本発明のレンズ系で諸収差を良好に補正し高性能なレンズ系を達成できる第2群の屈折力の範囲を定めたものである。もし、条件(1)の下限値の−0.85を超えてしまうと第2群で発生する諸収差が大となり、高性能なレンズ系を達成することが困難となる。また、上限値の−0.25を超えてしまうと、第2群の屈折力が弱くなり変倍時の移動量が大きくなりレンズ全系の小型化を達成することが困難となるため好ましくない。     The lens system of the present invention will be described in more detail. First, in order to achieve a compact and high-performance lens system, the first configuration of the present invention increases the negative refractive power of the second group to such an extent that various aberrations are not deteriorated, and further the refraction of each group after the third group. We thought about increasing the power and shortening the overall lens length. Condition (1) defines the range of the refractive power of the second group that can satisfactorily correct various aberrations and achieve a high-performance lens system in the lens system of the present invention. If the lower limit of −0.85 of the condition (1) is exceeded, various aberrations generated in the second group become large, and it becomes difficult to achieve a high-performance lens system. If the upper limit of −0.25 is exceeded, the refractive power of the second lens unit becomes weak and the amount of movement during zooming becomes large, making it difficult to reduce the size of the entire lens system. .

また、第3群以降の各群トータルでは第2群からの発散光束を結像する正レンズの作用を有するので、これらの群の屈折力を強くしていくと特に負の球面収差の発生量が大になり高性能なレンズ系を達成することが困難になる。そこで、負の球面収差を良好に補正するために第3群以降の群に非球面を用いることが考えられる。第3群以降のレンズの少なくとも1枚のレンズの少なくとも1面を非球面とすれば球面収差を良好に補正することが可能となる。しかし、本発明の如く高性能なレンズ系の達成に加えて製作性までをも考慮すると、第3群以降の群のうち変倍時に可動の第4群は非球面を用いず全て球面レンズで構成し、変倍時に固定の第3群および第5群の少なくとも一方の群の少なくとも1枚のレンズの少なくとも1面を非球面とすることが望ましい。通常、非球面は高い収差補正効果を持つ一方、偏心による性能劣化が大きくなる。このため、特にズームレンズの可動群に非球面を用いると、非球面形状作製の偏心および鏡枠へ組み込む際のレンズ単体の偏心に加えて可動機構による偏心が影響するため、この群の作製公差を非常に厳しくすることが必要となり、コスト高や作製時間の増加など、製作性を著しく悪化させることになる。したがって、本発明のレンズ系のように変倍時に固定の群に非球面を用いれば、可動機構による偏心の影響を除くことができるため、レンズ系作製公差を緩くでき、コスト削減、作製時間短縮等製作性を向上させることが可能である。     In addition, each group after the third group has a function of a positive lens that forms an image of a divergent light beam from the second group. Therefore, when the refractive power of these groups is increased, the amount of negative spherical aberration generated in particular. It becomes difficult to achieve a high-performance lens system. Therefore, in order to correct negative spherical aberration satisfactorily, it is conceivable to use aspheric surfaces for the third and subsequent groups. If at least one surface of at least one lens of the third and subsequent lenses is aspherical, spherical aberration can be corrected well. However, considering the achievement of high-performance lens systems as in the present invention, and considering the manufacturability, the fourth group that is movable at the time of zooming among the groups after the third group is all a spherical lens without using an aspherical surface. Preferably, at least one surface of at least one lens in at least one of the third group and the fifth group that is configured and fixed during zooming is an aspherical surface. Normally, an aspherical surface has a high aberration correction effect, but the performance deterioration due to decentration increases. For this reason, if an aspherical surface is used for the movable group of the zoom lens in particular, the manufacturing tolerance of this group is affected by the eccentricity of the aspherical shape and the eccentricity of the lens itself when it is incorporated into the lens frame. Therefore, it is necessary to make the process extremely strict, and the manufacturability is remarkably deteriorated due to high cost and increase in production time. Therefore, if an aspherical surface is used for the fixed group at the time of zooming as in the lens system of the present invention, the influence of eccentricity due to the movable mechanism can be eliminated, so that the lens system manufacturing tolerance can be loosened, and the cost and manufacturing time can be reduced. It is possible to improve the manufacturability.

また、本発明のレンズ系は5群構成とし第4群に変倍の際の像面位置のずれを補正させるいわゆるコンペンセータの作用を持たせているが、第4群だけではなく第4群と第5群を一体で可動させることも可能である。しかし、正の屈折力の第4群と負の屈折力の第5群を一体とすると、第4群のみの場合と比べてコンペンセータの持つ正の屈折力が弱くなり像面位置の補正のためこれら群の移動量が増し、レンズ全長が長くなる欠点が生ずる。さらに、第4群と第5群を一体化するとコンペンセータのレンズの重量が増すため、レンズの駆動機構への負担が増し、カメラ全体の重量増の原因となるなど小型軽量化には望ましくない。つまり、本発明のレンズ系の如く、4群構成とはせずに5群構成とすることは、前述したように、公差を緩くして製作性を向上させることに加えて、小型軽量化の点においても優れている。     Further, the lens system of the present invention has a five-group configuration, and the fourth group has a so-called compensator function for correcting a shift of the image plane position at the time of zooming. It is also possible to move the fifth group integrally. However, if the fourth group having a positive refractive power and the fifth group having a negative refractive power are integrated, the positive refractive power of the compensator becomes weaker than that in the case of only the fourth group, so that the image plane position is corrected. The amount of movement of these groups increases, resulting in a disadvantage that the total lens length becomes longer. Further, when the fourth group and the fifth group are integrated, the weight of the lens of the compensator increases, which increases the burden on the lens driving mechanism, which is not desirable for reducing the size and weight of the camera. In other words, like the lens system of the present invention, the five-group configuration instead of the four-group configuration, as described above, reduces the tolerance and improves the manufacturability, as well as reducing the size and weight. Also excellent in terms.

また、本発明の第2の構成は、物体側より順に、正の屈折力を有し変倍時に固定の第1レンズ群と、負の屈折力を有し変倍のために光軸上を前後に移動する第2群と、正の屈折力を有し変倍時に固定の第3群と、正の屈折力を有し変倍に伴う焦点位置の移動を補正するために光軸上を前後に移動する第4群と、負の屈折力を有し変倍時に固定の第5群とから成り、第3群が少なくとも1枚の正レンズと少なくとも1枚の負レンズで構成され、第4群が全て球面レンズで構成され、第5群が少なくとも1面が非球面形状である凹面を像側に向けた負のメニスカスレンズ1枚で構成されたことを特徴としている。     Further, according to the second configuration of the present invention, in order from the object side, a first lens unit having a positive refractive power and fixed at the time of zooming, and a negative refractive power on the optical axis for zooming. A second group that moves back and forth, a third group that has positive refracting power and is fixed at the time of zooming, and an optical axis for correcting movement of the focal position that accompanies zooming with positive refracting power. A fourth group that moves back and forth, and a fifth group that has negative refractive power and is fixed at the time of zooming, and the third group includes at least one positive lens and at least one negative lens. All of the four groups are constituted by spherical lenses, and the fifth group is constituted by one negative meniscus lens having a concave surface having at least one aspherical shape facing the image side.

小型で高性能かつ製作性に優れたズームレンズを達成するには、前述した様に、変倍時に可動である第4群は球面レンズのみで構成することが望ましい。もし、第4群に非球面を用いると、公差が厳しくなり製作性に優れた高性能なレンズ系を達成することが困難となるため好ましくない。     In order to achieve a compact zoom lens with high performance and excellent manufacturability, as described above, it is desirable that the fourth group that is movable at the time of zooming is composed of only a spherical lens. If an aspherical surface is used for the fourth group, it is not preferable because tolerance becomes severe and it becomes difficult to achieve a high-performance lens system with excellent manufacturability.

また、第3群以降の各群の屈折力を強めてレンズ全長の短縮化を図ると、球面収差に加えて特に第3群で発生する軸上色収差の値が大きくなる。そこで、これを良好に補正するには第3群を少なくとも1枚の正レンズと少なくとも1枚の負レンズで構成することが望ましい。正レンズと負レンズを用いることによりこの群で発生する軸上色収差を良好に補正することが可能である。もし、第3群が正レンズ1枚のみの構成では軸上色収差を良好に補正することが困難となる。     Further, when the refractive power of each group after the third group is increased to shorten the total lens length, in addition to the spherical aberration, the value of axial chromatic aberration generated particularly in the third group increases. Therefore, in order to correct this satisfactorily, it is desirable that the third group is composed of at least one positive lens and at least one negative lens. By using a positive lens and a negative lens, it is possible to satisfactorily correct axial chromatic aberration generated in this group. If the third unit is composed of only one positive lens, it is difficult to correct axial chromatic aberration well.

さらに、第3群を構成する少なくとも1枚の正レンズと少なくとも1枚の負レンズが以下の条件(2)を満足することが望ましい。     Furthermore, it is desirable that at least one positive lens and at least one negative lens constituting the third group satisfy the following condition (2).

(2) νP /νn >1.1
ただし、νP は第3群の少なくとも1枚の正レンズのアッベ数、νn は第3群の少なくとも1枚の負レンズのアッベ数である。
(2) ν P / ν n > 1.1
Where ν P is the Abbe number of at least one positive lens in the third group, and ν n is the Abbe number of at least one negative lens in the third group.

条件(2)を満足すれば、第3群で発生する軸上色収差を良好に補正することが可能となる。もし、条件(2)を満足しないと第3群で軸上色収差が補正不足となるため好ましくない。     If the condition (2) is satisfied, it is possible to satisfactorily correct the axial chromatic aberration generated in the third group. If the condition (2) is not satisfied, the axial chromatic aberration is insufficiently corrected in the third group, which is not preferable.

また、本発明の上記各構成(第1、第2の構成)のレンズ系においては、軸外光線高が比較的高くなる像面側に近い第4群あるいは第5群で発生するコマ収差の値が大きくなる傾向にある。そこで、これを良好に補正するために、本発明のレンズ系では第5群を凹面を像側に向けたメニスカス形状の負レンズ1枚にて構成することにより第5群で発生するコマ収差の値を小さくし、さらにこのレンズに非球面を用いて第4群で発生するコマ収差を補正するようにした。収差補正のみを考えれば第4群に非球面を用いることもできるが、前述したように、レンズ系の作製公差を緩くするためには変倍時に固定の第5群を非球面とすることが望ましい。     In the lens systems having the above-described configurations (first and second configurations) of the present invention, coma aberration generated in the fourth group or the fifth group close to the image plane side where the off-axis ray height is relatively high. The value tends to increase. In order to satisfactorily correct this, in the lens system of the present invention, coma aberration generated in the fifth group is formed by forming the fifth group with one meniscus negative lens with the concave surface facing the image side. The value was reduced, and coma aberration generated in the fourth group was corrected by using an aspherical surface for this lens. In consideration of only aberration correction, an aspherical surface can be used for the fourth group. However, as described above, in order to loosen the manufacturing tolerance of the lens system, the fixed fifth group should be aspherical at the time of zooming. desirable.

また、本発明のレンズ系の上記各構成においてレンズ全長をコンパクトに保ったまま良好な結像性能を有するレンズ系を達成するには、第1群の屈折力が条件(3)を満足することが望ましい。     In order to achieve a lens system having good imaging performance while keeping the entire lens length compact in each of the above-described configurations of the lens system of the present invention, the refractive power of the first group satisfies the condition (3). Is desirable.

(3) 0.05<fW /f1 <0.22
ただし、f1 は第1群の焦点距離である。
(3) 0.05 <f W / f 1 <0.22
Here, f 1 is the focal length of the first group.

本発明のレンズ系において、レンズ全長を短縮するために正の屈折力の第1群の屈折力を強くすると、広角端における軸外収差および望遠端における軸上色収差の値が大きくなる傾向にある。そこで、これを良好に補正するには第1群が条件(3)を満足することが望ましい。もし、条件(3)の上限値の0.22を超えてしまうと第1群の屈折力が大きくなり、この群で発生する軸上色収差等を良好に補正することが困難になるため好ましくない。又、下限値の0.05を超えてしまうと第1群の屈折力が弱くなり、レンズ全系をコンパクトな構成とすることが困難となるので好ましくない。     In the lens system of the present invention, when the refractive power of the first lens unit having a positive refractive power is increased in order to shorten the total lens length, the values of off-axis aberration at the wide-angle end and axial chromatic aberration at the telephoto end tend to increase. . Therefore, in order to correct this well, it is desirable that the first group satisfies the condition (3). If the upper limit of 0.22 of the condition (3) is exceeded, the refractive power of the first group becomes large, and it is difficult to satisfactorily correct axial chromatic aberration and the like generated in this group, which is not preferable. . Further, if the lower limit of 0.05 is exceeded, the refractive power of the first group becomes weak, and it becomes difficult to make the entire lens system compact.

また、本発明のレンズ系の上記各構成において、第3群あるいは第5群に非球面を用いる場合、少なくとも1面の非球面形状は光軸から周辺に行くに従い正の屈折力が弱くなる、又は負の屈折力が強くなるような形状であることが望ましい。第2群以降の各群では特に、正の屈折力が強いために発生する負の球面収差が大きくなる傾向にあり、これを非球面を用いて補正するには正の屈折力を弱くする様な形状とすることが必要である。もし、光軸から周辺に行くに従って正の屈折力を強くするような非球面形状であると、負の球面収差をさらに助長させてしまうため好ましくない。     In each of the above configurations of the lens system of the present invention, when an aspheric surface is used for the third group or the fifth group, the positive refractive power of the aspherical shape of at least one surface decreases from the optical axis to the periphery. Alternatively, it is desirable that the negative refractive power be strong. Particularly in each of the second and subsequent groups, negative spherical aberration that occurs due to strong positive refractive power tends to increase. To correct this by using an aspherical surface, the positive refractive power is reduced. It is necessary to make it a simple shape. An aspherical shape that increases the positive refractive power as it goes from the optical axis to the periphery is not preferable because it further promotes negative spherical aberration.

また、本発明のレンズ系では諸収差を良好に補正するためには条件(1)を満足することが望ましいが、特にペッツバール和およびディストーションをさらに良好に補正することを考えると条件(1)の代りに条件(1’)を満足することが望ましい。     Further, in the lens system of the present invention, it is desirable to satisfy the condition (1) in order to correct various aberrations satisfactorily. However, especially considering that the Petzval sum and distortion are corrected more satisfactorily, the condition (1) is satisfied. Instead, it is desirable to satisfy the condition (1 ′).

(1’) −0.65<fW /f2 <−0.35
もし、条件(1’)の上限値の−0.35を超えると、第2群の負の屈折力が弱くなり過ぎレンズ系をコンパクトにすることが困難となる。また、下限値の−0.65を越えると第2群で負のペッツバール和の発生量が大になり像面が物体から遠ざかる方向に倒れ、また樽型のディストーションが大きくなるため好ましくない。
(1 ′) −0.65 <f W / f 2 <−0.35
If the upper limit of −0.35 of the condition (1 ′) is exceeded, the negative refractive power of the second group becomes too weak, making it difficult to make the lens system compact. On the other hand, if the lower limit of −0.65 is exceeded, the amount of negative Petzval sum generated in the second group becomes large, the image plane falls in a direction away from the object, and barrel distortion becomes large, which is not preferable.

また、本発明のレンズ系において高い結像性能を達成するためには、第3群で発生する軸上色収差を良好に補正することが望まれる。そのためには条件(2)を満足することが望ましいが、特に、変倍比が3倍程度以上の高変倍比を達成する場合は、条件(2)の代りに条件(2’)を満足することが望ましい。     Further, in order to achieve high imaging performance in the lens system of the present invention, it is desirable to satisfactorily correct the longitudinal chromatic aberration generated in the third group. For that purpose, it is desirable to satisfy the condition (2). However, in particular, when a high zoom ratio of about 3 times or more is achieved, the condition (2 ′) is satisfied instead of the condition (2). It is desirable to do.

(2’) νP /νn >1.3
条件(2’)を満足すれば、第3群で発生する軸上色収差を良好に補正出来、高い結像性能を達成することが可能である。もし、条件(2’)を満足しないと第3群で軸上色収差が補正不足となるため好ましくない。
(2 ') ν P / ν n > 1.3
If the condition (2 ′) is satisfied, it is possible to satisfactorily correct the axial chromatic aberration generated in the third group and achieve high imaging performance. If the condition (2 ′) is not satisfied, the axial chromatic aberration is insufficiently corrected in the third group, which is not preferable.

また、本発明のレンズ系をコンパクトにするために第1群の屈折力を強くし過ぎると、特に、広角端で発生する倍率の色収差の補正が困難になる。条件(3)を満足することによりある程度は補正可能であるが、焦点距離を広角端側にのばす場合はさらに良好にこれを補正する必要が生じる。そこで、本発明のレンズ系において、広角側の画角が2ω=40°程度以上である場合は条件(3)の代りに条件(3’)を満足することが望ましい。     Further, if the refractive power of the first group is increased too much in order to make the lens system of the present invention compact, it is difficult to correct chromatic aberration of magnification that occurs particularly at the wide-angle end. It can be corrected to some extent by satisfying the condition (3). However, when the focal length is extended to the wide-angle end side, it is necessary to correct this more favorably. Therefore, in the lens system of the present invention, it is desirable that the condition (3 ′) is satisfied instead of the condition (3) when the angle of view on the wide angle side is about 2ω = 40 ° or more.

(3’) 0.07<fW /f1 <0.16
条件(3’)を満足すれば、第1群で発生する倍率の色収差を良好に補正することが可能である。もし、条件(3’)の上限値の0.16を超えてしまうと第1群の屈折力が強くなり過ぎこの群で発生する倍率の色収差を良好に補正することが困難となる。条件(3’)の下限値の0.07を超えると、第1群の屈折力が弱くなり過ぎレンズ全長をコンパクトにすることが困難となるため好ましくない。
(3 ′) 0.07 <f W / f 1 <0.16
If the condition (3 ′) is satisfied, it is possible to satisfactorily correct chromatic aberration of magnification occurring in the first group. If the upper limit of 0.16 of the condition (3 ′) is exceeded, the refractive power of the first group becomes too strong, and it becomes difficult to satisfactorily correct the chromatic aberration of magnification occurring in this group. Exceeding the lower limit of 0.07 to condition (3 ′) is not preferable because the refractive power of the first lens unit becomes too weak and it becomes difficult to make the entire lens length compact.

また、本発明のレンズ系の公差を緩くして製作性を向上させるには変倍時に可動の第4群を均質球面レンズで構成することに加え、変倍時に可動の第2群をも均質球面レンズで構成することが望ましい。     Further, in order to improve the manufacturability by loosening the tolerance of the lens system according to the present invention, the fourth group movable at the time of zooming is composed of a homogeneous spherical lens, and the second group movable at the time of zooming is also homogeneous. It is desirable to use a spherical lens.

また、第2群からの発散光束が入射する第3群では、特に負の球面収差の発生量が大になる傾向にある。そこで、これを良好に補正するには下記の条件(4)を満足することが望ましい。     Further, in the third group where the divergent light beam from the second group is incident, the amount of negative spherical aberration generated tends to be particularly large. Therefore, it is desirable to satisfy the following condition (4) in order to correct this well.

(4) 0.08<fW /f3 <0.2
ただしf3は第3群の焦点距離である。
(4) 0.08 <f W / f 3 <0.2
Here, f 3 is the focal length of the third group.

もし、条件(4)の上限値の0.2を超えてしまうと第3群の正の屈折力が大きくなりすぎ、負の球面収差を良好に補正することが困難となるため好ましくない。また、下限値の0.08を超えてしまうと第3群の屈折力が弱くなり過ぎレンズ全長をコンパクトにすることが困難となるため好ましくない。     If the upper limit of 0.2 of the condition (4) is exceeded, the positive refractive power of the third group becomes too large, and it is difficult to correct negative spherical aberration well, which is not preferable. If the lower limit of 0.08 is exceeded, the refractive power of the third group becomes too weak, making it difficult to make the entire lens length compact.

また、第4群は第3群からの光束を結像させる作用を持つために、比較的強い正の屈折力を持ち、さらに、軸外光線高が比較的高いのでコマ収差の発生量が大となる傾向にある。そこで、これを良好に補正するには下記の条件(5)を満足することが望ましい。     In addition, since the fourth group has an effect of imaging the light flux from the third group, it has a relatively strong positive refractive power, and furthermore, since the off-axis ray height is relatively high, the amount of coma aberration generated is large. It tends to be. Therefore, in order to correct this satisfactorily, it is desirable to satisfy the following condition (5).

(5) 3.2<ft /f4 <5.0
ただし、f4は第4群の焦点距離、ftは望遠端における全系の焦点距離である。
(5) 3.2 <f t / f 4 <5.0
However, f 4 is the focal length, f t of the fourth group is a focal length of the entire system at the telephoto end.

もし、条件(5)の上限値の5.0を超えてしまうと第4群の正の屈折力が大きくなりぎ、コマ収差を良好に補正することが困難となるため好ましくない。また、下限値の3.2を超えてしまうと第4群の屈折力が弱くなり過ぎレンズ全長をコンパクトにすることが困難となるため好ましくない。     If the upper limit of 5.0 of the condition (5) is exceeded, the positive refractive power of the fourth group becomes too large, and it is difficult to correct coma well. Further, if the lower limit of 3.2 is exceeded, the refractive power of the fourth group becomes too weak, making it difficult to make the entire lens length compact.

また、本発明の光学系は第3群以降の各群の正の屈折力を強めてレンズ全長の短縮化を達成していることに加え、第2群の負の屈折力がさほど大きくないことから、ペッツバール和が正の方向に発生し、像面が物体側に倒れてくる傾向にあるが、第5群を負レンズ1枚で構成し、下記の条件(6)を満足したことでこれを良好に補正している。     In addition to increasing the positive refractive power of each of the third and subsequent groups to achieve shortening of the overall lens length, the optical system of the present invention has a negative refractive power of the second group that is not so large. Therefore, the Petzval sum tends to occur in the positive direction and the image plane tends to tilt toward the object side, but this is because the fifth lens unit is composed of one negative lens and satisfies the following condition (6): Is corrected well.

(6) −5.0<ft /f5 <−1.0
ただし、f5は第5群の焦点距離である。
(6) -5.0 <f t / f 5 <-1.0
Here, f 5 is the focal length of the fifth group.

もし、条件(6)の上限値の−1.0を超えると第5群の屈折力が弱くなり、ペッツバール和を良好に補正することが困難となる。また、下限値の−5.0を超えると第5群の屈折力が大きくなり過ぎペッツバール和が補正過剰となるため好ましくない。     If the upper limit of −1.0 of the condition (6) is exceeded, the refractive power of the fifth group becomes weak, and it becomes difficult to correct the Petzval sum well. On the other hand, if the lower limit of −5.0 is exceeded, the refractive power of the fifth unit becomes too large, and the Petzval sum becomes overcorrected, which is not preferable.

本発明によれば、ビデオカメラやスチルビデオカメラ等に適した小型で高い光学性能を有する製作性に優れたズームレンズを実現することができる。     According to the present invention, it is possible to realize a zoom lens excellent in manufacturability having a small size and high optical performance suitable for a video camera or a still video camera.

次に本発明のズームレンズの実施の形態を実施例をもとに説明する。下記は、本発明ズームレンズの各実施例のデーターである。
実施例1
f=8.97〜25.03 〜72.00 ,F/2.0 〜2.0 〜2.0
2ω=50.6°〜17.8°〜6.2 °
1 =77.1073 d1 =1.8000 n1 =1.85504 ν1 =23.78
2 =48.6092 d2 =5.4000 n2 =1.62032 ν2 =63.39
3 =-550.6664 d3 =0.1000
4 =45.2570 d4 =3.8000 n3 =1.45720 ν3 =90.31
5 =131.6894 d5 =D1 (可変)
6 =529.1017 d6 =1.0000 n4 =1.62032 ν4 =63.39
7 =14.4314 d7 =5.3395
8 =-22.5219 d8 =1.0000 n5 =1.62032 ν5 =63.39
9 =62.6280 d9 =0.2000
10=33.9831 d10=2.0000 n6 =1.84281 ν6 =21.00
11=233.4402 d11=D2 (可変)
12=絞り d12=1.1000
13=23.0027 (非球面)d13=5.4399 n7 =1.49845 ν7 =81.61
14=-12.8087 d14=1.0000 n8 =1.65425 ν8 =58.52
15=-56.9198 d15=D3 (可変)
16=85.7734 d16=3.5883 n9 =1.59446 ν9 =68.30
17=-42.5755 d17=0.1000
18=21.1073 d18=1.3831 n10=1.81264 ν10=25.43
19=10.1527 d19=4.0868 n11=1.67340 ν11=47.25
20=-316.4787 d20=D4 (可変)
21=9.4073(非球面) d21=1.5087 n12=1.57366 ν12=50.80
22=6.5254 d22=3.3484
23=∞ d23=5.0000 n13=1.51825 ν13=64.15
24=∞
非球面係数
(第13面)P=1 ,A2 =0 ,A4 =-0.31280×10-4
6 =0.43217 ×10-7,A8 =0.23724 ×10-9
(第21面)P=1 ,A2 =0 ,A4 =0.26769 ×10-4
6 =0.37020 ×10-6,A8 =0.11006 ×10-7
f 8.97 25.03 72.00
1 1.500 24.957 42.069
2 42.566 19.116 2.000
3 4.703 2.891 4.795
4 0.306 2.132 0.229
W /f2 =-0.547,νP /νn =1.39,fW /f1 =0.125
W /f3 =0.188 ,ft /f4=3.412 ,ft /f5 =-1.569
実施例2
f=8.13〜25.0〜80.0,F/2.0 〜2.0 〜2.0
2ω=56.9°〜17.8°〜5.5 °
1 =88.2065 d1 =1.8000 n1 =1.85504 ν1 =23.78
2 =59.7838 d2 =5.8000 n2 =1.57098 ν2 =71.30
3 =-550.2590 d3 =0.1000
4 =56.1090 d4 =3.8000 n3 =1.45720 ν3 =90.31
5 =155.1498 d5 =D1 (可変)
6 =819.7789 d6 =1.0000 n4 =1.62032 ν4 =63.39
7 =22.0124 d7 =6.3499
8 =-29.6409 d8 =1.0000 n5 =1.69979 ν5 =55.53
9 =29.6976 d9 =0.2000
10=29.0354 d10=2.0000 n6 =1.84281 ν6 =21.00
11=146.0070 d11=D2 (可変)
12=絞り d12=1.1000
13=33.5424 (非球面)d13=6.9327 n7 =1.57098 ν7 =71.30
14=-14.2380 d14=1.0000 n8 =1.76651 ν8 =40.10
15=-43.0482 d15=D3 (可変)
16=31.0185 d16=5.1700 n9 =1.57098 ν9 =71.30
17=-45.9716 d17=0.1000
18=15.5957 d18=1.0000 n10=1.88814 ν10=40.78
19=10.1763 d19=4.5724 n11=1.60520 ν11=65.48
20=18506.0000 d20=D4 (可変)
21=10.7535 (非球面)d21=1.2335 n12=1.88814 ν12=40.78
22=6.3488 d22=7.3568
23=∞ d23=5.0000 n13=1.51825 ν13=64.15
24=∞
非球面係数
(第13面)P=1 ,A2 =0 ,A4 =-0.38676×10-4
6 =0.16576 ×10-7,A8 =-0.40075×10-10
(第21面)P=1 ,A2 =0 ,A4 =0.14712 ×10-4
6 =0.16441 ×10-6,A8 =-0.19954×10-9
f 8.13 25.0 80.0
1 1.500 33.071 54.549
2 55.052 23.480 2.000
3 2.707 1.397 1.977
4 0.100 1.416 0.844
W /f2 =-0.451,νP /νn =1.78,fW /f1 =0.091
W /f3 =0.169 ,ft /f4 =4.685 ,ft /f5 =-3.980
実施例3
f=7.52〜20.0〜60.0,F/2.0 〜2.0 〜2.0
2ω=59.1°〜22.0°〜7.3 °
1 =137.6711 d1 =1.8000 n1 =1.84281 ν1 =21.00
2 =66.4571 d2 =5.6000 n2 =1.57098 ν2 =71.30
3 =-271.6983 d3 =0.1000
4 =48.4907 d4 =4.0000 n3 =1.75844 ν3 =52.33
5 =131.0602 d5 =D1 (可変)
6 =126.7542 d6 =1.0000 n4 =1.62032 ν4 =63.39
7 =15.7517 d7 =6.9076
8 =-49.1898 d8 =1.0000 n5 =1.57098 ν5 =71.30
9 =49.7962 d9 =0.2000
10=25.1187 d10=2.0000 n6 =1.85504 ν6 =23.78
11=92.7708 d11=2.9512
12=-31.6994 d12=2.0000 n7 =1.62032 ν7 =63.39
13=85.3332 d13=D2 (可変)
14=絞り d14=1.1000
15=22.2995 (非球面)d15=4.1553 n8 =1.57098 ν8 =71.30
16=-20.1628(非球面)d16=1.0629
17=-15.8936 d17=1.0000 n9 =1.82017 ν9 =46.62
18=-79.7583 d18=D3 (可変)
19=62.6218 d19=3.7459 n10=1.82017 ν10=46.62
20=-31.3011 d20=0.1000
21=18.4299 d21=1.0000 n11=1.81264 ν11=25.43
22=10.3448 d22=4.9146 n12=1.62032 ν12=63.39
23=-169.8183 d23=D4 (可変)
24=9.5808(非球面) d24=1.4502 n13=1.69417 ν13=31.08
25=6.0393 d25=5.3543
26=∞ d26=5.0000 n14=1.51825 ν14=64.15
27=∞
非球面係数
(第15面)P=1 ,A2 =0 ,A4 =-0.45410×10-4
6 =0.10984 ×10-7,A8 =-0.15415×10-8
(第16面)P=0 ,A2 =0 ,A4 =-0.17051×10-4
6 =-0.33448×10-10 ,A8 =-0.21172×10-8
(第24面)P=1 ,A2 =0 ,A4 =-0.44752×10-7
6 =-0.14270×10-7,A8 =-0.39118×10-8
f 7.52 20.0 60.0
1 1.500 22.830 39.341
2 39.842 18.512 2.000
3 3.039 1.601 1.713
4 0.100 1.535 1.423
W /f2 =-0.523,νP /νn =1.53,fW /f1 =0.106
W /f3 =0.118 ,ft /f4 =4.009 ,ft /f5 =-2.122
実施例4
f=8.16〜20.07 〜56.0,F/2.8 〜2.8 〜2.8
2ω=55.5°〜22.2°〜7.9 °
1 =98.8042 d1 =1.6000 n1 =1.85504 ν1 =23.78
2 =54.8396 d2 =5.5000 n2 =1.57098 ν2 =71.30
3 =-213.9098 d3 =0.2000
4 =37.2379 d4 =4.0000 n3 =1.57098 ν3 =71.30
5 =95.3887 d5 =D1 (可変)
6 =148.7751 d6 =1.0000 n4 =1.62032 ν4 =63.39
7 =15.5841 d7 =5.6681
8 =-55.3588 d8 =1.0000 n5 =1.59446 ν5 =68.30
9 =49.9381 d9 =0.2000
10=23.8741 d10=2.0000 n6 =1.85504 ν6 =23.78
11=92.6110 d11=2.9929
12=-27.3377 d12=1.0000 n7 =1.62032 ν7 =63.39
13=73.8028 d13=D2 (可変)
14=絞り d14=1.0000
15=19.7703 d15=3.8956 n8 =1.59446 ν8 =68.30
16=-23.0023(非球面)d16=0.7798
17=-15.3244 d17=1.0000 n9 =1.83945 ν9 =42.72
18=-85.7764 d18=D3 (可変)
19=63.9107 d19=3.3787 n10=1.79196 ν10=47.38
20=-25.2681 d20=0.2000
21=20.3710 d21=3.8509 n11=1.62032 ν11=63.39
22=-12.0220 d22=1.0000 n12=1.70605 ν12=30.11
23=-93.5290 d23=D4 (可変)
24=9.8017(非球面) d24=1.8000 n13=1.67158 ν13=33.04
25=5.8851 d25=5.1300
26=∞ d26=5.0000 n14=1.51825 ν14=64.15
27=∞
非球面係数
(第16面)P=1 ,A2 =0 ,A4 =0.43220 ×10-4
6 =-0.15285×10-7,A8 =-0.35514×10-8
(第24面)P=1 ,A2 =0 ,A4 =0.13948 ×10-4
6 =-0.18048×10-6,A8 =0.11347 ×10-8
f 8.16 20.07 56.0
1 1.500 18.955 33.529
2 34.022 16.570 2.000
3 2.545 1.301 1.662
4 0.200 1.436 1.065
W /f2 =-0.592,νP /νn =1.60,fW /f1 =0.127
W /f3 =0.116 ,ft /f4 =4.061 ,ft /f5 =-2.082
ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズのe線の屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。
Next, embodiments of the zoom lens according to the present invention will be described based on examples. The following is data of each embodiment of the zoom lens of the present invention.
Example 1
f = 8.97-25.03-72.00, F / 2.0-2.0-2.0
2ω = 50.6 ° ~ 17.8 ° ~ 6.2 °
r 1 = 77.1073 d 1 = 1.8000 n 1 = 1.85504 ν 1 = 23.78
r 2 = 48.6092 d 2 = 5.4000 n 2 = 1.62032 ν 2 = 63.39
r 3 = -550.6664 d 3 = 0.1000
r 4 = 45.2570 d 4 = 3.8000 n 3 = 1.45720 ν 3 = 90.31
r 5 = 131.6894 d 5 = D 1 (variable)
r 6 = 529.1017 d 6 = 1.0000 n 4 = 1.62032 ν 4 = 63.39
r 7 = 14.4314 d 7 = 5.3395
r 8 = -22.5219 d 8 = 1.0000 n 5 = 1.62032 ν 5 = 63.39
r 9 = 62.6280 d 9 = 0.2000
r 10 = 33.9831 d 10 = 2.0000 n 6 = 1.84281 ν 6 = 21.00
r 11 = 233.4402 d 11 = D 2 (variable)
r 12 = aperture d 12 = 1.1000
r 13 = 23.0027 (aspherical surface) d 13 = 5.4399 n 7 = 1.49845 ν 7 = 81.61
r 14 = -12.8087 d 14 = 1.0000 n 8 = 1.65425 ν 8 = 58.52
r 15 = -56.9198 d 15 = D 3 (variable)
r 16 = 85.7734 d 16 = 3.5883 n 9 = 1.59446 ν 9 = 68.30
r 17 = -42.5755 d 17 = 0.1000
r 18 = 21.1073 d 18 = 1.3831 n 10 = 1.81264 ν 10 = 25.43
r 19 = 10.1527 d 19 = 4.0868 n 11 = 1.67340 ν 11 = 47.25
r 20 = -316.4787 d 20 = D 4 (variable)
r 21 = 9.4073 (aspherical surface) d 21 = 1.5087 n 12 = 1.57366 ν 12 = 50.80
r 22 = 6.5254 d 22 = 3.3484
r 23 = ∞ d 23 = 5.0000 n 13 = 1.51825 ν 13 = 64.15
r 24 = ∞
Aspheric coefficient (13th surface) P = 1, A 2 = 0, A 4 = −0.31280 × 10 −4
A 6 = 0.43217 × 10 -7 , A 8 = 0.23724 × 10 -9
(21 surface) P = 1, A 2 = 0, A 4 = 0.26769 × 10 -4
A 6 = 0.37020 × 10 -6 , A 8 = 0.11006 × 10 -7
f 8.97 25.03 72.00
D 1 1.500 24.957 42.069
D 2 42.566 19.116 2.000
D 3 4.703 2.891 4.795
D 4 0.306 2.132 0.229
f W / f 2 = −0.547, ν P / ν n = 1.39, f W / f 1 = 0.125
f W / f 3 = 0.188, f t / f 4 = 3.412, f t / f 5 = -1.569
Example 2
f = 8.13-25.0-80.0, F / 2.0-2.0-2.0
2ω = 56.9 ° ~ 17.8 ° ~ 5.5 °
r 1 = 88.2065 d 1 = 1.8000 n 1 = 1.85504 ν 1 = 23.78
r 2 = 59.7838 d 2 = 5.8000 n 2 = 1.57098 ν 2 = 71.30
r 3 = -550.2590 d 3 = 0.1000
r 4 = 56.1090 d 4 = 3.8000 n 3 = 1.45720 ν 3 = 90.31
r 5 = 155.1498 d 5 = D 1 (variable)
r 6 = 819.7789 d 6 = 1.0000 n 4 = 1.62032 ν 4 = 63.39
r 7 = 22.0124 d 7 = 6.3499
r 8 = -29.6409 d 8 = 1.0000 n 5 = 1.69979 ν 5 = 55.53
r 9 = 29.6976 d 9 = 0.2000
r 10 = 29.0354 d 10 = 2.0000 n 6 = 1.84281 ν 6 = 21.00
r 11 = 146.0070 d 11 = D 2 (variable)
r 12 = aperture d 12 = 1.1000
r 13 = 33.5424 (aspherical surface) d 13 = 6.9327 n 7 = 1.57098 ν 7 = 71.30
r 14 = -14.2380 d 14 = 1.0000 n 8 = 1.76651 ν 8 = 40.10
r 15 = -43.0482 d 15 = D 3 (variable)
r 16 = 31.0185 d 16 = 5.1700 n 9 = 1.57098 ν 9 = 71.30
r 17 = -45.9716 d 17 = 0.1000
r 18 = 15.5957 d 18 = 1.0000 n 10 = 1.88814 ν 10 = 40.78
r 19 = 10.1763 d 19 = 4.5724 n 11 = 1.60520 ν 11 = 65.48
r 20 = 18506.0000 d 20 = D 4 (variable)
r 21 = 10.7535 (aspherical surface) d 21 = 1.2335 n 12 = 1.88814 ν 12 = 40.78
r 22 = 6.3488 d 22 = 7.3568
r 23 = ∞ d 23 = 5.0000 n 13 = 1.51825 ν 13 = 64.15
r 24 = ∞
Aspheric coefficient (13th surface) P = 1, A 2 = 0, A 4 = −0.38676 × 10 −4
A 6 = 0.16576 × 10 −7 , A 8 = −0.40075 × 10 −10
(21st surface) P = 1, A 2 = 0, A 4 = 0.14712 × 10 −4
A 6 = 0.16441 × 10 -6 , A 8 = -0.19954 × 10 -9
f 8.13 25.0 80.0
D 1 1.500 33.071 54.549
D 2 55.052 23.480 2.000
D 3 2.707 1.397 1.977
D 4 0.100 1.416 0.844
f W / f 2 = −0.451, ν P / ν n = 1.78, f W / f 1 = 0.091
f W / f 3 = 0.169, f t / f 4 = 4.685, f t / f 5 = -3.980
Example 3
f = 7.52 to 20.0 to 60.0, F / 2.0 to 2.0 to 2.0
2ω = 59.1 ° ~ 22.0 ° ~ 7.3 °
r 1 = 137.6711 d 1 = 1.8000 n 1 = 1.84281 ν 1 = 21.00
r 2 = 66.4571 d 2 = 5.6000 n 2 = 1.57098 ν 2 = 71.30
r 3 = -271.6983 d 3 = 0.1000
r 4 = 48.4907 d 4 = 4.0000 n 3 = 1.75844 ν 3 = 52.33
r 5 = 131.0602 d 5 = D 1 (variable)
r 6 = 126.7542 d 6 = 1.0000 n 4 = 1.62032 ν 4 = 63.39
r 7 = 15.7517 d 7 = 6.9076
r 8 = -49.1898 d 8 = 1.0000 n 5 = 1.57098 ν 5 = 71.30
r 9 = 49.7962 d 9 = 0.2000
r 10 = 25.1187 d 10 = 2.0000 n 6 = 1.85504 ν 6 = 23.78
r 11 = 92.7708 d 11 = 2.9512
r 12 = -31.6994 d 12 = 2.0000 n 7 = 1.62032 ν 7 = 63.39
r 13 = 85.3332 d 13 = D 2 (variable)
r 14 = aperture d 14 = 1.1000
r 15 = 22.2995 (aspherical surface) d 15 = 4.1553 n 8 = 1.57098 ν 8 = 71.30
r 16 = −20.1628 (aspherical surface) d 16 = 1.0629
r 17 = -15.8936 d 17 = 1.0000 n 9 = 1.82017 ν 9 = 46.62
r 18 = -79.7583 d 18 = D 3 (variable)
r 19 = 62.6218 d 19 = 3.7459 n 10 = 1.82017 ν 10 = 46.62
r 20 = -31.3011 d 20 = 0.1000
r 21 = 18.4299 d 21 = 1.0000 n 11 = 1.81264 ν 11 = 25.43
r 22 = 10.3448 d 22 = 4.9146 n 12 = 1.62032 ν 12 = 63.39
r 23 = -169.8183 d 23 = D 4 (variable)
r 24 = 9.5808 (aspherical surface) d 24 = 1.4502 n 13 = 1.69417 ν 13 = 31.08
r 25 = 6.0393 d 25 = 5.3543
r 26 = ∞ d 26 = 5.0000 n 14 = 1.51825 ν 14 = 64.15
r 27 = ∞
Aspheric coefficient (fifteenth surface) P = 1, A 2 = 0, A 4 = −0.445410 × 10 −4
A 6 = 0.10984 × 10 −7 , A 8 = −0.15415 × 10 −8
(Sixteenth surface) P = 0, A 2 = 0, A 4 = −0.17051 × 10 −4
A 6 = -0.33448 × 10 -10 , A 8 = -0.21172 × 10 -8
(24th surface) P = 1, A 2 = 0, A 4 = −0.44752 × 10 −7
A 6 = -0.14270 × 10 -7 , A 8 = -0.39118 × 10 -8
f 7.52 20.0 60.0
D 1 1.500 22.830 39.341
D 2 39.842 18.512 2.000
D 3 3.039 1.601 1.713
D 4 0.100 1.535 1.423
f W / f 2 = −0.523, ν P / ν n = 1.53, f W / f 1 = 0.106
f W / f 3 = 0.118, f t / f 4 = 4.009, f t / f 5 = -2.122
Example 4
f = 8.16-20.07-56.0, F / 2.8-2.8-2.8
2ω = 55.5 ° to 22.2 ° to 7.9 °
r 1 = 98.8042 d 1 = 1.6000 n 1 = 1.85504 ν 1 = 23.78
r 2 = 54.8396 d 2 = 5.5000 n 2 = 1.57098 ν 2 = 71.30
r 3 = -213.9098 d 3 = 0.2000
r 4 = 37.2379 d 4 = 4.0000 n 3 = 1.57098 ν 3 = 71.30
r 5 = 95.3887 d 5 = D 1 (variable)
r 6 = 148.7751 d 6 = 1.0000 n 4 = 1.62032 ν 4 = 63.39
r 7 = 15.5841 d 7 = 5.6681
r 8 = -55.3588 d 8 = 1.0000 n 5 = 1.59446 ν 5 = 68.30
r 9 = 49.9381 d 9 = 0.2000
r 10 = 23.8741 d 10 = 2.0000 n 6 = 1.85504 ν 6 = 23.78
r 11 = 92.6110 d 11 = 2.9929
r 12 = -27.3377 d 12 = 1.0000 n 7 = 1.62032 ν 7 = 63.39
r 13 = 73.8028 d 13 = D 2 (variable)
r 14 = diaphragm d 14 = 1.000
r 15 = 19.7703 d 15 = 3.8956 n 8 = 1.59446 ν 8 = 68.30
r 16 = -23.0023 (aspherical surface) d 16 = 0.7798
r 17 = -15.3244 d 17 = 1.0000 n 9 = 1.83945 ν 9 = 42.72
r 18 = -85.7764 d 18 = D 3 (variable)
r 19 = 63.9107 d 19 = 3.3787 n 10 = 1.79196 ν 10 = 47.38
r 20 = -25.2681 d 20 = 0.2000
r 21 = 20.3710 d 21 = 3.8509 n 11 = 1.62032 ν 11 = 63.39
r 22 = -12.0220 d 22 = 1.0000 n 12 = 1.70605 ν 12 = 30.11
r 23 = -93.5290 d 23 = D 4 (variable)
r 24 = 9.8017 (aspherical surface) d 24 = 1.8000 n 13 = 1.67158 ν 13 = 33.04
r 25 = 5.8851 d 25 = 5.1300
r 26 = ∞ d 26 = 5.0000 n 14 = 1.51825 ν 14 = 64.15
r 27 = ∞
Aspheric coefficient (16th surface) P = 1, A 2 = 0, A 4 = 0.43220 × 10 −4
A 6 = -0.15285 × 10 -7 , A 8 = -0.35514 × 10 -8
(24th surface) P = 1, A 2 = 0, A 4 = 0.13948 × 10 −4
A 6 = -0.18048 × 10 -6 , A 8 = 0.11347 × 10 -8
f 8.16 20.07 56.0
D 1 1.500 18.955 33.529
D 2 34.022 16.570 2.000
D 3 2.545 1.301 1.662
D 4 0.200 1.436 1.065
f W / f 2 = −0.592, ν P / ν n = 1.60, f W / f 1 = 0.127
f W / f 3 = 0.116, f t / f 4 = 4.061, f t / f 5 = -2.082
However r 1, r 2, ··· the radius of curvature of each lens surface, d 1, d 2, ··· wall thickness and lens distance of each lens, n 1, n 2, ··· are of the lenses The refractive index of e-line, ν 1 , ν 2 ,... is the Abbe number of each lens.

上記実施例中、実施例1は図1に示す通りの構成のもので変倍時に固定で正の屈折力を持つ第1群G1と、負の屈折力を持ち変倍時に光軸上を前後に移動することで変倍作用を持つ第2群G2と、変倍時に固定で正の屈折力を持つ第3群G3と、正の屈折力を持ち変倍時に可動であり変倍にともなう像面位置のずれを補正する作用を持つ第4群G4、負の屈折力を持ち変倍時に固定の第5群G5とよりなる。     Among the above-described embodiments, the first embodiment is configured as shown in FIG. 1 and has a first group G1 having a positive refractive power which is fixed at the time of zooming, and has a negative refractive power on the optical axis at the time of zooming. The second group G2 having a zooming action by moving to the third group, the third group G3 having a positive refractive power that is fixed at the time of zooming, and an image that has a positive refractive power and is movable at the time of zooming and is accompanied by the zooming The fourth group G4 has an effect of correcting the displacement of the surface position, and the fifth group G5 has a negative refractive power and is fixed at the time of zooming.

第1群G1は物体側より順に負レンズ、正レンズ、正レンズから成り、軸上物点に対する光束を狭める作用と軸外物点から出た光束を第2群G2に導く作用を持つ。第2群G2は、物体側より順に負レンズ、負レンズ、正レンズから成り広角端から望遠端への変倍に際して物体側から像側に移動することにより変倍作用を有する。第3群G3は、物体側より順に正レンズ、負レンズから成り、変倍時に固定で第2群からの発散光束を略アフォーカルな光束にする作用を持つ。第4群G4は物体側より順に正レンズ、負レンズ、正レンズからなり変倍時に可動で変倍にともなう焦点位置のずれを補正する作用を有する。第5群G5は変倍時に固定で凹面を像側に向けた負のメニスカスレンズ1枚で構成されている。     The first group G1 includes, in order from the object side, a negative lens, a positive lens, and a positive lens. The first group G1 has an action of narrowing the light beam on the on-axis object point and an action of guiding the light beam emitted from the off-axis object point to the second group G2. The second group G2 includes a negative lens, a negative lens, and a positive lens in order from the object side, and has a zooming action by moving from the object side to the image side when zooming from the wide-angle end to the telephoto end. The third group G3 includes a positive lens and a negative lens in order from the object side, and has a function of fixing a divergent light beam from the second group to a substantially afocal light beam at the time of zooming. The fourth group G4 includes a positive lens, a negative lens, and a positive lens in order from the object side. The fourth group G4 is movable at the time of zooming and has an effect of correcting a focal position shift caused by zooming. The fifth group G5 is composed of one negative meniscus lens that is fixed at the time of zooming and has a concave surface directed toward the image side.

また、第1群G1に負レンズと正レンズの接合レンズを用いたことにより、広角端における倍率の色収差および望遠端における軸上色収差を良好に補正している。     Further, by using a cemented lens of a negative lens and a positive lens in the first group G1, the lateral chromatic aberration at the wide-angle end and the axial chromatic aberration at the telephoto end are corrected well.

また、第3群G3に条件(2)を満足するような正レンズと負レンズの接合レンズを用いたことによって、この群で発生する軸上色収差を良好に補正している。     Further, by using a cemented lens of a positive lens and a negative lens that satisfies the condition (2) in the third group G3, axial chromatic aberration generated in this group is corrected well.

また、変倍時に固定の第3群G3の最も物体側のレンズの物体側の面に、光軸から周辺に行くに従い正の屈折力が弱くなるような非球面を用いて、この群で発生する負の球面収差を良好に補正することを可能としている。さらに、第4群G4はすべて球面レンズで構成し、変倍時の群偏心による性能劣化を小さくする点で有利な構成となっている。また、変倍時に固定で、軸外光束の光線高が比較的高い第5群G5の物体側の面を非球面形状とし、特に、軸外収差を良好に補正することを可能としている。     Also generated in this group by using an aspherical surface whose positive refractive power becomes weaker from the optical axis toward the periphery on the object side surface of the lens closest to the object side of the third lens group G3 fixed at the time of zooming This makes it possible to satisfactorily correct negative spherical aberration. Further, the fourth group G4 is composed entirely of spherical lenses, which is advantageous in that performance degradation due to group eccentricity during zooming is reduced. Further, the object side surface of the fifth group G5 which is fixed at the time of zooming and whose ray height of the off-axis light beam is relatively high is made an aspherical shape, and in particular, off-axis aberrations can be favorably corrected.

なお、各実施例中で用いた非球面形状は以下の式で表わされるものである。

Figure 2005025229
The aspheric shape used in each example is represented by the following formula.
Figure 2005025229

ただし、上記式はx軸を光軸方向にとり、y軸を光軸と直角方向にとったもので、rは光軸上の曲率半径、A2iは非球面係数、pは円錐定数である。 In the above equation, the x axis is taken in the optical axis direction, the y axis is taken in the direction perpendicular to the optical axis, r is the radius of curvature on the optical axis, A 2i is the aspheric coefficient, and p is the conic constant.

また、この実施例1のズームレンズにおいて至近距離物点へフォーカシングする場合は第4群G4を移動させて行うことが望ましい。本発明のレンズ系で第4群G4は変倍時に可動であり、偏心による性能劣化を防ぐため非球面を用いていない。この群をフォーカシング群とすれば、フォーカシングの際の群偏心による性能劣化を小さくできる。さらに、新たな駆動機構を設ける必要もないので、小型軽量化の点でも有利な構成となる。     In the zoom lens of Example 1, it is desirable to move the fourth group G4 when focusing on an object point at a close distance. In the lens system of the present invention, the fourth group G4 is movable at the time of zooming and does not use an aspherical surface in order to prevent performance deterioration due to decentration. If this group is a focusing group, performance degradation due to group eccentricity during focusing can be reduced. Furthermore, since it is not necessary to provide a new drive mechanism, the configuration is advantageous in terms of reduction in size and weight.

実施例1の収差状況は図5、図6、図7に示す通りで本発明のレンズ系が非常に高い光学性能を達成していることがわかる。     The aberration status of Example 1 is as shown in FIGS. 5, 6, and 7. It can be seen that the lens system of the present invention achieves very high optical performance.

実施例2は図2に示す構成のレンズ系で、物体側より順に正の第1群G1と、負の第2群G2と、正の第3群G3と、正の第4群G4と、負の第5群G5からなり、変倍時に第2群G2と第4群G4が可動であり、各群の作用は実施例1とほぼ同様である。実施例2は変倍比が10倍と実施例1と比較してさらに変倍比を高くした例である。     Example 2 is a lens system configured as shown in FIG. 2, and in order from the object side is a positive first group G1, a negative second group G2, a positive third group G3, a positive fourth group G4, It consists of a negative fifth group G5, and the second group G2 and the fourth group G4 are movable at the time of zooming, and the operation of each group is almost the same as in the first embodiment. Example 2 is an example in which the zoom ratio is 10 times, which is higher than that of Example 1.

第1群G1は物体側より順に負レンズ、正レンズ、正レンズから成り、第2群G2は、物体側より順に負レンズ、負レンズ、正レンズから成り、第3群G3は、物体側より順に正レンズ、負レンズから成り、第4群G4は物体側より順に正レンズ、負レンズ、正レンズから成り、第5群G5は変倍時に固定で凹面を像側に向けた負のメニスカスレンズ1枚で構成されている。非球面は変倍時に固定の第3群G3と第5群G5に用いている。     The first group G1 is composed of a negative lens, a positive lens, and a positive lens in order from the object side, the second group G2 is composed of a negative lens, a negative lens, and a positive lens in order from the object side, and the third group G3 is from the object side. The fourth group G4 is composed of a positive lens and a negative lens in this order. The fourth group G4 is composed of a positive lens, a negative lens, and a positive lens in order from the object side. The fifth group G5 is a negative meniscus lens that is fixed and has a concave surface facing the image side during zooming. It consists of one sheet. The aspherical surface is used for the third group G3 and the fifth group G5 which are fixed at the time of zooming.

この実施例2は変倍比が10倍と高変倍比であるにも拘わらず、本発明の各条件を満足することにより諸収差を良好に補正することを可能としている。     In Example 2, although the zoom ratio is 10 times and the high zoom ratio, various aberrations can be favorably corrected by satisfying the respective conditions of the present invention.

実施例2の収差状況は図8、図9、図10に示す通りで、本発明のレンズ系が非常に高い光学性能を達成していることがわかる。     The aberration status of Example 2 is as shown in FIGS. 8, 9, and 10. It can be seen that the lens system of the present invention achieves very high optical performance.

第3図は、本発明によるズームレンズの第3実施例のレンズ断面図である。 実施例3は図3に示す通りの構成で、物体側より順に正の第1群G1と、負の第2群G2と、正の第3群G3と、正の第4群G4と、負の第5群G5からなり、変倍時に第2群G2と第4群G4が可動であり、各群の作用は実施例1とほぼ同様である。実施例3は実施例1、実施例2と比較して広角端の焦点距離をさらに短くして広画角化を達成した例である。     FIG. 3 is a lens sectional view of a third embodiment of the zoom lens according to the present invention. The third embodiment is configured as shown in FIG. 3, and in order from the object side is a positive first group G1, a negative second group G2, a positive third group G3, a positive fourth group G4, a negative The second group G2 and the fourth group G4 are movable at the time of zooming, and the operation of each group is substantially the same as in the first embodiment. The third embodiment is an example in which a wider angle of view is achieved by further shortening the focal length at the wide-angle end as compared with the first and second embodiments.

第1群G1は物体側より順に負レンズ、正レンズ、正レンズから成り、第2群G2は、物体側より順に負レンズ、負レンズ、正レンズ、負レンズから成り、第3群G3は、物体側より順に正レンズ、負レンズから成り、第4群G4は物体側より順に正レンズ、負レンズ、正レンズから成り、第5群G5は変倍時に固定で凹面を像側に向けた負のメニスカスレンズ1枚で構成されている。広角端の焦点距離を短くした場合は特に広角端で発生する負のディストーションが問題となる。この実施例3では、第2群G2に負レンズを3枚用いた構成としたことで、負の屈折力を各レンズに分散しこの群で発生する負のディストーションを良好に補正することを可能としている。また、非球面を変倍時に固定の第3群G3と第5群G5に用いているが、第3群G3は実施例1とは異なり、接合レンズにせずに正レンズと負レンズを分離し、両面を非球面にしてさらに良好に諸収差を補正することを可能としている。     The first group G1 is composed of a negative lens, a positive lens, and a positive lens in order from the object side, the second group G2 is composed of a negative lens, a negative lens, a positive lens, and a negative lens in order from the object side, and the third group G3 is The fourth group G4 consists of a positive lens, a negative lens, and a positive lens in order from the object side, and the fifth group G5 is fixed at the time of zooming and has a concave surface facing the image side. This is composed of one meniscus lens. When the focal length at the wide-angle end is shortened, negative distortion that occurs particularly at the wide-angle end becomes a problem. In the third embodiment, since the second group G2 includes three negative lenses, the negative refracting power can be distributed to each lens and the negative distortion generated in this group can be corrected well. It is said. In addition, the aspherical surface is used for the third group G3 and the fifth group G5 which are fixed at the time of zooming. Unlike the first embodiment, the third group G3 separates the positive lens and the negative lens without using a cemented lens. Further, it is possible to correct various aberrations more favorably by making both surfaces aspherical.

実施例3の収差状況は図11、図12、図13に示す通りで本発明のレンズ系が非常に高い光学性能を達成していることがわかる。     The aberration situation of Example 3 is as shown in FIGS. 11, 12, and 13. It can be seen that the lens system of the present invention achieves very high optical performance.

実施例4は図4に示すようなレンズ系で、物体側より順に正の第1群G1と、負の第2群G2と、正の第3群G3と、正の第4群G4と、負の第5群G5からなり、変倍時に第2群G2と第4群G4が可動であり、各群の作用は実施例1とほぼ同様である。実施例4は各群の屈折力を強めてレンズ全長の小型化を図った例である。     Example 4 is a lens system as shown in FIG. 4, and in order from the object side is a positive first group G1, a negative second group G2, a positive third group G3, a positive fourth group G4, It consists of a negative fifth group G5, and the second group G2 and the fourth group G4 are movable at the time of zooming, and the operation of each group is almost the same as in the first embodiment. Example 4 is an example in which the refractive power of each group is strengthened to reduce the total length of the lens.

第1群G1は物体側より順に負レンズ、正レンズ、正レンズから成り、第2群G2は、物体側より順に負レンズ、負レンズ、正レンズ、負レンズから成り、第3群G3は、物体側より順に正レンズ、負レンズから成り、第4群G4は物体側より順に正レンズ、正レンズ、負レンズから成り、第5群G5は変倍時に固定で凹面を像側に向けた負のメニスカスレンズ1枚で構成されている。また、非球面を変倍時固定の第3群G3と第5群G5に用いている。     The first group G1 is composed of a negative lens, a positive lens, and a positive lens in order from the object side, the second group G2 is composed of a negative lens, a negative lens, a positive lens, and a negative lens in order from the object side, and the third group G3 is The fourth group G4 consists of a positive lens, a positive lens and a negative lens in order from the object side, and the fifth group G5 is fixed at the time of zooming and has a concave surface facing the image side. This is composed of one meniscus lens. Further, aspheric surfaces are used for the third group G3 and the fifth group G5 which are fixed during zooming.

各群の屈折力を強めてレンズ全長の短縮化を図ったために、各群の収差の発生量は大きくなるが、本発明の各条件を満足することで諸収差を良好に補正することを可能としている。     The amount of aberration in each group increases because the refractive power of each group is increased to shorten the overall lens length, but various aberrations can be corrected satisfactorily by satisfying the conditions of the present invention. It is said.

実施例4の収差状況は図14、図15、図16に示す通りで、本発明のレンズ系が非常に高い光学性能を達成していることがわかる。     The aberration status of Example 4 is as shown in FIGS. 14, 15, and 16, and it can be seen that the lens system of the present invention achieves very high optical performance.

本発明において、特許請求の範囲に記載するズームレズのほか次の各項に記載するズームレンズも本発明の目的を達成するものである。     In the present invention, the zoom lens described in each of the following items in addition to the zoom lens described in the claims achieves the object of the present invention.

(1)特許請求の範囲の請求項2に記載されているレンズ系で下記の条件(1)を満足するズームレンズ。   (1) A zoom lens satisfying the following condition (1) in the lens system according to claim 2 of the claims.

(1)−0.85<fW /f2 <−0.25
(2)特許請求の範囲の請求項1又は2あるいは前記(1)の項に記載されているレンズ系で、下記条件(2)を満足するズームレンズ。
(1) -0.85 <f W / f 2 <-0.25
(2) A zoom lens system that satisfies the following condition (2) in the lens system described in claim 1 or 2 of the claims or the item (1).

(2) νp /νn >1.1
(3)特許請求の範囲の第1項又は第2項あるいは前記(1)又は(2)に記載されているレンズ系で、下記条件(3)を満足するズームレンズ。
(2) ν p / ν n > 1.1
(3) A zoom lens satisfying the following condition (3) in the lens system described in the first or second aspect of the claims or the (1) or (2).

(3) 0.05<fW /f1 <0.22
(4)特許請求の範囲の第1項又は第2項あるいは前記(1)、(2)又は(2)の項に記載されているレンズ系で、条件(1)の代りに下記条件(1’)を満足するズームレンズ。
(3) 0.05 <f W / f 1 <0.22
(4) In the lens system described in the first or second item of the claims or the item (1), (2) or (2), the following condition (1) is used instead of the condition (1): Zoom lens that satisfies').

(1’) −0.65<fW /f2 <−0.35
(5)前記(2)の項に記載されているレンズ系で、条件(2)の代りに下記条件(2’)を満足するズームレンズ。
(1 ′) −0.65 <f W / f 2 <−0.35
(5) A zoom lens that satisfies the following condition (2 ′) in place of condition (2) in the lens system described in (2) above.

(2’) νp /νn >1.3
(6)前記(3)の項に記載されているレンズ系で、条件(3)の代りに条件(3’)を満足するズームレンズ。
(2 ′) ν p / ν n > 1.3
(6) A zoom lens that satisfies the condition (3 ′) in place of the condition (3) in the lens system described in the item (3).

(3’) 0.07<fW /f1 <0.16
(7)前記(3)の項に記載されているレンズ系で、下記条件(4)を満足するズームレンズ。
(3 ′) 0.07 <f W / f 1 <0.16
(7) A zoom lens system that satisfies the following condition (4) in the lens system described in (3) above.

(4) 0.08<fW /f3 <0.2
(8)前記(7)の項に記載されているレンズ系で、下記条件(5)を満足するズームレンズ。
(4) 0.08 <f W / f 3 <0.2
(8) A zoom lens system that satisfies the following condition (5) in the lens system described in (7) above.

(5) 3.2<ft /f4 <5.0
(9)前記(8)の項に記載されているレンズ系で、下記条件(6)を満足するズームレンズ。
(5) 3.2 <f t / f 4 <5.0
(9) A zoom lens satisfying the following condition (6) in the lens system described in the item (8).

(6) −5.0<ft /f5 <−1.0 (6) -5.0 <f t / f 5 <-1.0

本発明の実施例1のレンズ構成を示す図The figure which shows the lens structure of Example 1 of this invention. 本発明の実施例2のレンズ構成を示す図The figure which shows the lens structure of Example 2 of this invention. 本発明の実施例3のレンズ構成を示す図The figure which shows the lens structure of Example 3 of this invention. 本発明の実施例4のレンズ構成を示す図The figure which shows the lens structure of Example 4 of this invention. 本発明の実施例1の広角端における収差図Aberration diagram at the wide-angle end of Example 1 of the present invention 本発明の実施例1の中間焦点距離における収差図Aberration diagram at intermediate focal length in Example 1 of the present invention 本発明の実施例1の望遠端における収差図Aberration diagram at the telephoto end according to the first embodiment of the present invention. 本発明の実施例2の広角端における収差図Aberration diagram at the wide-angle end of Example 2 of the present invention 本発明の実施例2の中間焦点距離における収差図Aberration diagram at intermediate focal length in Example 2 of the present invention 本発明の実施例2の望遠端における収差図Aberration diagram at the telephoto end according to the second embodiment of the present invention. 本発明の実施例3の広角端における収差図Aberration diagram at the wide-angle end of Example 3 of the present invention 本発明の実施例3の中間焦点距離における収差図Aberration diagram at intermediate focal length in Example 3 of the present invention 本発明の実施例3の望遠端における収差図Aberration diagram at telephoto end of Embodiment 3 of the present invention 本発明の実施例4の広角端における収差図Aberration diagram at the wide-angle end of Example 4 of the present invention 本発明の実施例4の中間焦点距離における収差図Aberration diagram at intermediate focal length in Example 4 of the present invention 本発明の実施例4の望遠端における収差図Aberration diagram at the telephoto end according to the fourth embodiment of the present invention.

Claims (2)

物体側より順に、正の屈折力を有し変倍時に固定の第1群と、負の屈折力を有し変倍のために光軸上を前後に移動する第2群と、正の屈折力を有し変倍時に固定の第3群と、正の屈折力を有し変倍に伴う焦点位置の移動を補正するために光軸上を前後に移動する第4群と、負の屈折力を有し変倍時に固定の第5群から成り、変倍時に固定の第3群あるいは第5群に少なくとも1面が非球面であるレンズを少なくとも1枚用い、変倍時に可動である第4群を構成するレンズが全て球面であり、以下の条件(1)を満足することを特徴とするズームレンズ。
(1) −0.85<fW /f2 <−0.25
ただし、fW は広角端におけるレンズ全系の焦点距離、f2 は第2群の焦点距離である。
In order from the object side, a first group having positive refractive power and fixed at the time of zooming, a second group having negative refractive power and moving back and forth on the optical axis for zooming, and positive refraction A third group that has power and is fixed at the time of zooming, a fourth group that has positive refractive power and moves back and forth on the optical axis in order to correct the movement of the focal position accompanying zooming, and negative refraction A fifth lens group having a force and fixed at the time of zooming is used, and at least one lens having at least one aspherical surface is used in the third group or the fifth lens group fixed at the time of zooming. A zoom lens characterized in that the lenses constituting the four groups are all spherical and satisfy the following condition (1).
(1) −0.85 <f W / f 2 <−0.25
Here, f W is the focal length of the entire lens system at the wide angle end, and f 2 is the focal length of the second group.
物体側より順に、正の屈折力を有し変倍時に固定の第1群と、負の屈折力を有し変倍のために光軸上を前後に移動する第2群と、正の屈折力を有し変倍時に固定の第3群と、正の屈折力を有し変倍に伴う焦点位置の移動を補正するために光軸上を前後に移動する第4群と、負の屈折力を有し変倍時に固定の第5群から成り、第3群が少なくとも1枚の正レンズと少なくとも1枚の負レンズで構成され、第4群が全て球面で構成され、第5群が少なくとも1面が非球面形状である凹面を像側に向けた負のメニスカスレンズ1枚で構成されたことを特徴とするズームレンズ。 In order from the object side, a first group having positive refractive power and fixed at the time of zooming, a second group having negative refractive power and moving back and forth on the optical axis for zooming, and positive refraction A third group that has power and is fixed at the time of zooming, a fourth group that has positive refractive power and moves back and forth on the optical axis in order to correct the movement of the focal position accompanying zooming, and negative refraction The third group is composed of at least one positive lens and at least one negative lens, the fourth group is composed entirely of a spherical surface, A zoom lens comprising at least one negative meniscus lens having an aspheric concave surface facing the image side.
JP2004293777A 2004-10-06 2004-10-06 Zoom lens Expired - Fee Related JP4229893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293777A JP4229893B2 (en) 2004-10-06 2004-10-06 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293777A JP4229893B2 (en) 2004-10-06 2004-10-06 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7243976A Division JPH0968653A (en) 1995-08-30 1995-08-30 Zoom lens

Publications (2)

Publication Number Publication Date
JP2005025229A true JP2005025229A (en) 2005-01-27
JP4229893B2 JP4229893B2 (en) 2009-02-25

Family

ID=34191868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293777A Expired - Fee Related JP4229893B2 (en) 2004-10-06 2004-10-06 Zoom lens

Country Status (1)

Country Link
JP (1) JP4229893B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300969A (en) * 2005-03-23 2006-11-02 Nagano Kogaku Kenkyusho:Kk Zoom lens constituted of five groups
JP2009222891A (en) * 2008-03-14 2009-10-01 Sony Corp Zoom lens and image pickup apparatus
JP2009237400A (en) * 2008-03-28 2009-10-15 Fujinon Corp Variable power optical system and imaging apparatus
JP2013178409A (en) * 2012-02-28 2013-09-09 Tamron Co Ltd Zoom lens
JP2021105633A (en) * 2019-12-26 2021-07-26 株式会社タムロン Zoom lens and imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224125A (en) * 1992-02-13 1993-09-03 Minolta Camera Co Ltd Zoom lens
JPH06175024A (en) * 1992-12-02 1994-06-24 Canon Inc Rear-focusing type zoom lens
JPH06250084A (en) * 1993-02-25 1994-09-09 Copal Co Ltd Inner focus zoom lens
JPH07181383A (en) * 1993-12-22 1995-07-21 Copal Co Ltd Internal focusing zoom lens having tele-macro function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224125A (en) * 1992-02-13 1993-09-03 Minolta Camera Co Ltd Zoom lens
JPH06175024A (en) * 1992-12-02 1994-06-24 Canon Inc Rear-focusing type zoom lens
JPH06250084A (en) * 1993-02-25 1994-09-09 Copal Co Ltd Inner focus zoom lens
JPH07181383A (en) * 1993-12-22 1995-07-21 Copal Co Ltd Internal focusing zoom lens having tele-macro function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300969A (en) * 2005-03-23 2006-11-02 Nagano Kogaku Kenkyusho:Kk Zoom lens constituted of five groups
JP4542933B2 (en) * 2005-03-23 2010-09-15 マクセルファインテック株式会社 5-group zoom lens
JP2009222891A (en) * 2008-03-14 2009-10-01 Sony Corp Zoom lens and image pickup apparatus
JP2009237400A (en) * 2008-03-28 2009-10-15 Fujinon Corp Variable power optical system and imaging apparatus
JP2013178409A (en) * 2012-02-28 2013-09-09 Tamron Co Ltd Zoom lens
JP2021105633A (en) * 2019-12-26 2021-07-26 株式会社タムロン Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP4229893B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP2816436B2 (en) High-magnification large-aperture zoom optical system
JP3261716B2 (en) Reverse telephoto large aperture wide angle lens
JP3230523B2 (en) Internal focusing zoom lens
JP3506691B2 (en) High magnification zoom lens
CN111474692B (en) Zoom lens, imaging device, and lens device
JP5006514B2 (en) Zoom lens and imaging apparatus having the same
JP2001033703A (en) Rear focus type zoom lens
JP2001194586A (en) Zoom lens and photographing device using the same
JP3167082B2 (en) Zoom lens
JP3668365B2 (en) Zoom lens
JP4823680B2 (en) High magnification zoom lens
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JPH0968653A (en) Zoom lens
JP2000121942A (en) Zoom lens
JP2006139187A (en) Zoom lens
JP2005037935A (en) Compact lightweight zoom lens
JP6212279B2 (en) Zoom lens
JP4380158B2 (en) Zoom lens
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JP4229893B2 (en) Zoom lens
JP4817551B2 (en) Zoom lens
JPH1123970A (en) Zoom optical system
JPH0915500A (en) Zoom lens
JP2016014802A (en) Zoom lens
JP4065248B2 (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees