JPH05223972A - Loading method for fuel of nuclear reactor - Google Patents

Loading method for fuel of nuclear reactor

Info

Publication number
JPH05223972A
JPH05223972A JP4030379A JP3037992A JPH05223972A JP H05223972 A JPH05223972 A JP H05223972A JP 4030379 A JP4030379 A JP 4030379A JP 3037992 A JP3037992 A JP 3037992A JP H05223972 A JPH05223972 A JP H05223972A
Authority
JP
Japan
Prior art keywords
fuel
reactor
new
control rod
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4030379A
Other languages
Japanese (ja)
Inventor
Toshiro Yoshioka
敏朗 吉岡
Satoshi Fujita
聡志 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP4030379A priority Critical patent/JPH05223972A/en
Publication of JPH05223972A publication Critical patent/JPH05223972A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a fuel loading method, which secures the thermal margin of the fuel so that the operation of a single-control pattern for a long period is sufficiently possible, in an unclear reactor, wherein a large amount of MOX fuel is loaded. CONSTITUTION:A boiling water reactor is operated for a long period of a half or more of one cycle under the state wherein a control rod is inserted into the same fuel cell. In the fuel loading method of the nuclear reactor such as this boiling water reactor, the entire regions comprising the fuel cells on the control rods, which are inserted for a long period, and fuel assemblies 11 neighboring the fuel cells directly or in the diagonal pattern are made to be first regions 1. Regions, which are located at the inner side of a line 2 connecting the inserted control rods for a long period located at the outermost side among the inserted control rods for a long period and are not included in the first regions, are made to be the second region. As the new fuel assembly, which is loaded into the second region, the MOX new fuel is made more, and uranium new fuel is made less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉、特に、沸騰水
型原子炉の燃料装荷法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel loading method for a nuclear reactor, in particular, a boiling water reactor.

【0002】[0002]

【従来の技術】原子炉は、運転中に燃料の燃焼により余
剰反応度や出力分布の変化が生じる。このような出力運
転中の反応度変化を制御するには、制御棒の操作や原子
炉冷却材流量の調整が必要である。特に、制御棒操作を
実施する場合は、燃料の健全性の見地から制御棒隣接燃
料の出力を下げる手順を取ることが望ましいため、運転
操作が煩雑になり、かつ、プラント利用率の低下をきた
すという難点がある。
2. Description of the Related Art In a nuclear reactor, excess reactivity and power distribution change due to combustion of fuel during operation. To control the reactivity change during such output operation, it is necessary to operate the control rod and adjust the reactor coolant flow rate. In particular, when performing control rod operation, it is desirable to take a procedure to reduce the output of the fuel adjacent to the control rod from the viewpoint of fuel integrity, which complicates the operation and lowers the plant utilization rate. There is a drawback.

【0003】そのため、例えば、特公昭62−44632 号公
報に示されるように、新燃料に含まれる可燃性毒物の調
整により出力運転中の燃焼に伴う余剰反応度変化を比較
的小さくし、出力運転中の制御に用いる制御棒を少数に
することで制御棒操作も少なくする方法が採られてい
る。図2は、あるサイクルにおける原子炉の余剰反応度
の燃焼変化と運転制御棒パターンの例を示している。制
御棒パターンの図は、原子炉の横断面図を表しており、
一つの正方形1は一つの制御棒を囲む4燃料集合体のセ
ルを示している。白三角印で示したセル2は定格運転中
の制御棒挿入セルである。これより、サイクルの大半で
余剰反応度がほぼ一定であるため、制御棒パターンの変
更が不要であることがわかる。制御棒パターンの変更
は、サイクル末期に反応度が減少するのに伴い1〜2回
実施するのみである。したがって、サイクルの大部分を
一つの制御棒パターンで運転することができる。しか
し、この長期の単一制御棒パターン期間中に出力分布の
変化は制御できないため、この期間中の熱的余裕を十分
確保しておかないと出力ピーキングを抑えるための制御
棒パターンの変更が必要になる場合があり、プラント利
用率の低下につながる。
Therefore, for example, as shown in Japanese Examined Patent Publication No. 62-44632, by adjusting the burnable poison contained in the new fuel, the excess reactivity change due to combustion during the output operation is made relatively small, and the output operation is performed. A method of reducing the number of control rod operations by reducing the number of control rods used for internal control is adopted. FIG. 2 shows an example of combustion change of the excess reactivity of the reactor and an operation control rod pattern in a certain cycle. The control rod pattern diagram shows a cross-sectional view of the reactor,
One square 1 represents a cell of four fuel assemblies surrounding one control rod. Cell 2 indicated by a white triangle is a control rod insertion cell during rated operation. From this, it is understood that the control rod pattern does not need to be changed because the excess reactivity is almost constant in most of the cycles. The control rod pattern is changed only once or twice as the reactivity decreases at the end of the cycle. Therefore, most of the cycle can be operated with one control rod pattern. However, the change in the output distribution cannot be controlled during this long single control rod pattern period, so it is necessary to change the control rod pattern to suppress output peaking unless a sufficient thermal margin is secured during this period. May result in reduced plant utilization.

【0004】一方、近年では、燃料経済性を高めるた
め、燃料の局所ピーキング係数や原子炉の径方向ピーキ
ングを高める傾向があり、燃料の熱的余裕は小さくなる
傾向がある。例えば、特開昭61−240193号公報では、燃
料集合体横断面で外周部に配置された燃料棒の平均濃縮
度を高くすることで中性子利用率を高め反応度利得を得
た燃料を採用している。また、原子炉の最外周に燃焼の
進んだ燃料を配置することにより、新燃料や燃焼の若い
燃料を原子炉中央部に装荷し、原子炉側面からの中性子
の漏れを減少させ反応度利得を得ている。しかし、この
ような方法によれば、燃料の局所ピーキング係数や原子
炉半径方向の出力ピーキングが増大するという傾向を生
じることになり、特開昭61−240193号公報では、原子炉
軸方向の出力ピーキングを改善することにより原子炉全
体からみた出力ピーキングを悪化させないことで、燃料
の熱的余裕を確保する方法をとる。
On the other hand, in recent years, in order to improve fuel economy, the local peaking coefficient of the fuel and the radial peaking of the reactor tend to be increased, and the thermal margin of the fuel tends to be small. For example, in Japanese Patent Laid-Open No. 61-240193, a fuel is used that has a higher reactivity gain and a higher neutron utilization rate by increasing the average enrichment of the fuel rods arranged on the outer periphery of the cross section of the fuel assembly. ing. In addition, by arranging the burned fuel at the outermost periphery of the reactor, new fuel or young fuel that has burned is loaded in the central part of the reactor, reducing the leakage of neutrons from the side of the reactor and increasing the reactivity gain. It has gained. However, according to such a method, there is a tendency that the local peaking coefficient of the fuel and the power peaking in the radial direction of the reactor increase, and in JP-A-61-240193, the output in the axial direction of the reactor is increased. By improving the peaking so as not to deteriorate the output peaking seen from the whole reactor, a method to secure a thermal margin of fuel will be taken.

【0005】[0005]

【発明が解決しようとする課題】しかし、軸方向出力ピ
ーキングの改善には限度があり、上記従来技術は、今後
の燃料の高燃焼度化や運転サイクルの長期化さらにはプ
ルトニウム混合酸化物燃料(以下MOX燃料という)の
多数装荷等の新しい運転に対応するためには不十分であ
るという問題点があった。
However, there is a limit to the improvement of the axial output peaking, and the above-mentioned prior art will increase the burnup of the fuel in the future, prolong the operation cycle, and further the plutonium mixed oxide fuel ( There is a problem that it is insufficient to cope with new operation such as multiple loading of MOX fuel).

【0006】本発明の目的は、MOX燃料を多数装荷し
た原子炉において長期の単一制御棒パターン運転が十分
可能な燃料の熱的余裕を確保する燃料装荷方法を提供す
ることにある。
An object of the present invention is to provide a fuel loading method for ensuring a thermal margin of fuel capable of sufficiently performing a long-term single control rod pattern operation in a reactor loaded with a large number of MOX fuels.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、長期単一制御棒パターンの制御棒挿入セルで囲まれ
た領域に装荷する新燃料を主にMOX燃料とした。
In order to achieve the above object, the MOX fuel is mainly used as the new fuel loaded in the region surrounded by the control rod insertion cells of the long-term single control rod pattern.

【0008】[0008]

【作用】MOX燃料は、プルトニウムにより熱中性子が
吸収されるため可燃性毒物であるガドリニアの中性子吸
収が減り、結果として、ガドリニアの燃え尽きる時点が
遅れ無限増倍率の最大値が小さくなる。図3に、MOX
燃料の無限増倍率の燃焼変化をバッチ装荷ウラン燃料と
比較して示す。そのため、MOX燃料の径方向出力ピー
キングはウラン燃料より小さくなる傾向がある。また、
長期単一制御棒パターン運転を行う場合には、燃料の熱
的余裕の厳しい領域は比較的限られている。そこで、そ
の領域にMOX燃料を装荷すれば、ウラン燃料を装荷す
る場合よりも原子炉最大の径方向出力ピーキングを下げ
られ、燃料の熱的余裕を確保することができる。
In MOX fuel, thermal neutrons are absorbed by plutonium, so neutron absorption of gadolinia, which is a combustible poison, is reduced, and as a result, the time at which gadolinia burns out is delayed and the maximum infinite multiplication factor becomes small. In Figure 3, MOX
The infinite multiplication factor combustion change of the fuel is shown in comparison with the batch-loaded uranium fuel. Therefore, the radial output peaking of MOX fuel tends to be smaller than that of uranium fuel. Also,
When performing long-term single control rod pattern operation, the region where the fuel thermal margin is severe is relatively limited. Therefore, if the MOX fuel is loaded in that region, the maximum radial power peaking of the reactor can be lowered as compared with the case where the uranium fuel is loaded, and the thermal margin of the fuel can be secured.

【0009】長期単一制御棒パターン運転を行う場合
に、燃料の熱的余裕の厳しい領域は比較的限られている
理由を以下に示す。
The reason why the region where the thermal margin of the fuel is severe is relatively limited when the long-term single control rod pattern operation is performed is shown below.

【0010】図4に、長期単一制御棒パターン運転を行
う場合の最大線出力密度(以下MLHGRと記す)の燃
焼変化例を示す。同図は、制御棒パターン変更を2回実
施した例である。通常、MLHGR発生燃料は、サイク
ル前半では装荷2サイクル目の燃料であり、サイクル中
期以降、前記サイクル装荷の新燃料である。サイクル初
期で新燃料にMLHGRが発生しないのは、新燃料の無
限増倍率が可燃性毒物であるガドリニアにより低く抑え
られているからである。したがって、新燃料は燃焼が進
むにつれて、無限増倍率も高くなり出力ピーキングが増
大する傾向になる。この傾向は、ガドリニアが燃焼によ
り燃え尽きるまで続く。長期単一制御棒パターン期間の
終わりでは、原子炉全体の余剰反応度が減少し始める時
期であるため新燃料のガドリニアが燃え尽きる時期に対
応している。したがって、この時期に新燃料の出力ピー
キングが最大となり、MLHGRも最大となる。サイク
ル初期や制御棒パターン変更後は、その時々に適切な制
御棒パターンを設定することである程度MLHGRを低
減することが可能であるが、長期単一制御棒パターン期
間の末期におけるMLHGRに対しては制御棒パターン
を変更することを前提としていないため低減化が難し
く、結果としてこの時期のMLHGRがサイクルを通じ
て最大となることが多い。
FIG. 4 shows an example of the combustion change of the maximum linear power density (hereinafter referred to as MLHGR) when the long-term single control rod pattern operation is performed. The figure shows an example in which the control rod pattern is changed twice. Normally, the MLHGR generated fuel is the fuel of the second cycle of loading in the first half of the cycle, and is the new fuel of the cycle loading after the middle of the cycle. MLHGR does not occur in the new fuel at the beginning of the cycle because the infinite multiplication factor of the new fuel is kept low by the gadolinia which is a burnable poison. Therefore, as the combustion of the new fuel progresses, the infinite multiplication factor increases and the output peaking tends to increase. This trend continues until gadolinia burns out. At the end of the long-term single control rod pattern period, the excess reactivity of the entire reactor begins to decrease, which corresponds to the time when the new fuel, gadolinia, is burned out. Therefore, the output peaking of the new fuel becomes maximum and the MLHGR also becomes maximum at this time. It is possible to reduce MLHGR to some extent by setting an appropriate control rod pattern at the beginning of the cycle or after changing the control rod pattern, but for MLHGR at the end of the long-term single control rod pattern period. Since it is not assumed that the control rod pattern is changed, it is difficult to reduce the control rod pattern, and as a result, the MLHGR at this time is often the maximum throughout the cycle.

【0011】次に、長期単一制御棒パターン期間末期の
MLHGR発生領域について述べる。図5に、この期間
の原子炉径方向出力分布の例を示す。同図は、横軸に原
子炉中心からの径方向位置をとり、縦軸に径方向出力ピ
ーキングをとったものである。
Next, the MLHGR generation region at the end of the long term single control rod pattern period will be described. FIG. 5 shows an example of the radial radial power distribution during this period. In this figure, the horizontal axis indicates the radial position from the center of the reactor, and the vertical axis indicates the radial output peaking.

【0012】これより、制御棒挿入位置の出力ピーキン
グは平均値1.0 に対して20〜30%小さくなってお
り、そのため、原子炉中央部分における制御棒挿入位置
の中間領域では逆に20〜30%出力ピーキングが大き
くなっているのがわかる。また、制御棒挿入位置の外側
領域の出力ピーキングは、原子炉中央部分の出力ピーキ
ングより小さい。したがって、長期単一制御棒パターン
期間における径方向出力ピーキングの最大は原子炉中央
部分における制御棒挿入位置の中間領域に限定できる。
原子炉の軸方向出力ピーキングは原子炉位置による差は
小さいため、長期単一制御棒パターン期間末期のMLH
GRは径方向出力ピーキングの大きいこの領域の新燃料
に発生すると考えられる。
As a result, the output peaking at the control rod insertion position is 20 to 30% smaller than the average value of 1.0. Therefore, conversely, the output peaking at the control rod insertion position in the central portion of the reactor is 20 to 30%. It can be seen that the 30% output peaking is increasing. Further, the power peaking in the area outside the control rod insertion position is smaller than the power peaking in the central portion of the reactor. Therefore, the maximum radial power peaking in the long-term single control rod pattern period can be limited to the intermediate region of the control rod insertion position in the central portion of the reactor.
Since the axial power peaking of the reactor varies little depending on the reactor position, the MLH at the end of the long single control rod pattern period
GR is considered to occur in fresh fuel in this region where radial output peaking is large.

【0013】以上より、本発明による燃料装荷法は、M
OX燃料を最も効果的な位置に配置することにより、長
期の単一制御棒パターン運転が十分可能な燃料の熱的余
裕を確保することができる。
From the above, the fuel loading method according to the present invention is
By placing the OX fuel at the most effective position, it is possible to secure a thermal margin of the fuel that enables long-term single control rod pattern operation.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1により説明す
る。同図は、1100MWe級沸騰水型原子炉の横断面
図を表しており、一つの正方形11は一つの燃料集合体
を示している。太線の菱型12は定格運転中に長期間挿
入する制御棒の位置を示しており、本例では13個であ
る。斜線の部分1が請求項に記載の第1領域である。太
線2が外側の長期間挿入制御棒を結ぶ線を示しており、
この内側の斜線以外の領域が特許請求範囲に記載の第2
領域である。黒丸印21にMOX新燃料装荷位置を、黒
三角印にウラン新燃料装荷位置を示す。本例では、第2
領域に含まれる新燃料体数は新燃料全体の約1/4であ
り、MOX燃料のバッチ装荷は通常1/3程度までが考
えられているので、第2領域の新燃料を全てMOX燃料
にしたものである。図3に示したように、MOX燃料は
ウラン燃料よりガドリニアの燃え尽きる時点が遅れ無限
増倍率の最大値が小さくなるので、第2領域で発生する
長期単一制御棒パターン期間末期における径方向出力ピ
ーキングの最大値を下げることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The figure shows a cross-sectional view of a 1100 MWe class boiling water reactor, and one square 11 represents one fuel assembly. The bold diamonds 12 indicate the positions of the control rods to be inserted for a long time during the rated operation, and there are 13 control rods in this example. The shaded portion 1 is the first region described in the claims. The thick line 2 shows the line connecting the outer long-term insertion control rods,
The area other than the diagonal line on the inside is the second area described in the claims.
Area. The black circle 21 indicates the MOX new fuel loading position, and the black triangle indicates the uranium new fuel loading position. In this example, the second
The number of new fuels included in the area is about 1/4 of the total amount of new fuels, and batch loading of MOX fuel is usually considered to be up to about 1/3. It was done. As shown in FIG. 3, the MOX fuel delays the time when the gadolinia burns out more than the uranium fuel, and the maximum value of the infinite multiplication factor becomes small. Therefore, the radial output peaking at the end of the long term single control rod pattern period occurring in the second region You can lower the maximum value of.

【0015】つぎに、第2の実施例を図6に示す。同図
は、820MWe級沸騰水型原子炉の横断面図を表して
おり、本例では、定格運転時の長期間制御棒を挿入する
燃料セルは9個である。本例では、第2領域に含まれる
新燃料体数は新燃料全体の約1/6と少ないため、第2
領域以外にもMOX新燃料を配置している。しかし、第
2領域以外に配置されたMOX燃料はウラン燃料より少
ないため、第2領域以外に装荷された新燃料の平均では
無限増倍率特性はウラン燃料に近い。したがって、第2
領域のMOX新燃料の方がガドリニアの燃え尽きる時点
が遅れる傾向は第1の実施例と同様であり、第2領域に
MOX新燃料を配置する効果は有効である。
Next, a second embodiment is shown in FIG. The figure shows a cross-sectional view of an 820 MWe class boiling water reactor, and in this example, there are nine fuel cells into which long-term control rods are inserted during rated operation. In this example, the number of new fuel bodies included in the second region is about 1/6 of the whole new fuel, which is small.
MOX new fuel is also placed outside the area. However, since the amount of MOX fuel arranged outside the second region is smaller than that of uranium fuel, the infinite multiplication factor characteristic of the new fuel loaded outside the second region is close to that of uranium fuel. Therefore, the second
The MOX new fuel in the region tends to delay the time when the gadolinia burns out, as in the first embodiment, and the effect of arranging the MOX new fuel in the second region is effective.

【0016】[0016]

【発明の効果】本発明によれば、MOX燃料を多数装荷
した原子炉において長期の単一制御棒パターン運転が十
分可能な燃料の熱的余裕を確保することができる。
According to the present invention, it is possible to secure a thermal margin of fuel capable of sufficiently performing a long-term single control rod pattern operation in a reactor loaded with a large number of MOX fuels.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す原子炉の横断面
図。
FIG. 1 is a cross-sectional view of a nuclear reactor showing a first embodiment of the present invention.

【図2】余剰反応度の燃焼変化と制御棒パターンの説明
図。
FIG. 2 is an explanatory diagram of a combustion change in excess reactivity and a control rod pattern.

【図3】MOX燃料の無限増倍率の説明図。FIG. 3 is an explanatory diagram of an infinite multiplication factor of MOX fuel.

【図4】最大線出力密度(MLHGR)の燃焼変化の説
明図。
FIG. 4 is an explanatory diagram of a change in combustion of maximum linear power density (MLHGR).

【図5】原子炉径方向出力分布図。FIG. 5 is a radial power distribution map of the reactor.

【図6】本発明の第2の実施例を示す原子炉の横断面
図。
FIG. 6 is a cross-sectional view of a nuclear reactor showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1領域、2…長期間挿入制御棒の外側同士を結ん
だ線、11…燃料集合体、12…長期間制御棒挿入位
置、21…MOX新燃料装荷位置、22…ウラン新燃料
装荷位置。
DESCRIPTION OF SYMBOLS 1 ... 1st area | region, 2 ... The line which connected the outer side of the long-term insertion control rod, 11 ... Fuel assembly, 12 ... Long-term control rod insertion position, 21 ... MOX new fuel loading position, 22 ... Uranium new fuel loading position.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】各々隣接配置された4体の燃料集合体とこ
れらの燃料集合体に取り囲まれる位置に挿入可能な制御
棒とを含む多数の燃料セルを有し、1サイクルの半分以
上の長期間で前記燃料セルに制御棒を挿入したまま運転
する原子炉において、前記長期間挿入制御棒の前記燃料
セルとこれに隣接または対角隣接した燃料集合体とでな
る全ての領域を第1領域とし、前記長期間挿入制御棒の
うち最も外側にある長期間挿入制御棒同士を結ぶ線より
原子炉の内側にあり、前記第1領域に含まれない領域を
第2領域としたとき、前記第2領域に装荷する新燃料集
合体はプルトニウムを含んだ新燃料集合体が多くウラン
燃料の新燃料集合体が少ないことを特徴とする原子炉の
燃料装荷法。
1. A plurality of fuel cells each including four fuel assemblies arranged adjacent to each other and a control rod insertable in a position surrounded by these fuel assemblies and having a length of more than half of one cycle. In a nuclear reactor that operates with control rods inserted in the fuel cells for a certain period, all regions including the fuel cells of the long-term insertion control rods and fuel assemblies adjacent to or diagonally adjacent to the fuel cells are first regions. When a region that is inside the reactor with respect to a line connecting the outermost long-term insertion control rods among the long-term insertion control rods and is not included in the first region is a second region, The fuel loading method for a nuclear reactor is characterized in that the new fuel assemblies loaded in the two regions are mostly new fuel assemblies containing plutonium and few new fuel assemblies for uranium fuel.
【請求項2】請求項1において、前記第2領域以外に装
荷する新燃料集合体はプルトニウムを含んだ新燃料集合
体を少なくウラン燃料の新燃料集合体を多くした原子炉
の燃料装荷法。
2. The fuel loading method for a nuclear reactor according to claim 1, wherein the new fuel assemblies to be loaded in areas other than the second region contain less plutonium-containing new fuel assemblies and more uranium fuel new fuel assemblies.
JP4030379A 1992-02-18 1992-02-18 Loading method for fuel of nuclear reactor Pending JPH05223972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030379A JPH05223972A (en) 1992-02-18 1992-02-18 Loading method for fuel of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030379A JPH05223972A (en) 1992-02-18 1992-02-18 Loading method for fuel of nuclear reactor

Publications (1)

Publication Number Publication Date
JPH05223972A true JPH05223972A (en) 1993-09-03

Family

ID=12302251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030379A Pending JPH05223972A (en) 1992-02-18 1992-02-18 Loading method for fuel of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH05223972A (en)

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
US5337337A (en) Fuel assembly
JPH03108690A (en) Fuel assembly
JPS6296889A (en) Light water type reactor core and fuel charging method thereof
JPH04301792A (en) Core of atomic reactor
JPH1090460A (en) Fuel assembly
JPH05223972A (en) Loading method for fuel of nuclear reactor
JP2563287B2 (en) Fuel assembly for nuclear reactor
JPH1082879A (en) Nuclear reactor core
JP2002286887A (en) Fuel operation method for pressurized water reactor, and pressurized water reactor core
JP3075749B2 (en) Boiling water reactor
JP4138190B2 (en) Fuel assemblies and reactor cores
JPS59147295A (en) Fuel assembly
JPH102982A (en) Core for nuclear reactor and its operating method
JP3080663B2 (en) Operation method of the first loading core
JP3828690B2 (en) Initial loading core of boiling water reactor and its fuel change method
JP4653342B2 (en) Boiling water reactor core
JP2852101B2 (en) Reactor core and fuel loading method
JP4308940B2 (en) Fuel assembly
JP3115392B2 (en) Fuel assembly for boiling water reactor
JP3441149B2 (en) Reactor core
JP2625404B2 (en) Fuel assembly
JP3596831B2 (en) Boiling water reactor core
JP3943624B2 (en) Fuel assembly
JP4044993B2 (en) Reactor fuel loading method