JPH0522362B2 - - Google Patents

Info

Publication number
JPH0522362B2
JPH0522362B2 JP58113163A JP11316383A JPH0522362B2 JP H0522362 B2 JPH0522362 B2 JP H0522362B2 JP 58113163 A JP58113163 A JP 58113163A JP 11316383 A JP11316383 A JP 11316383A JP H0522362 B2 JPH0522362 B2 JP H0522362B2
Authority
JP
Japan
Prior art keywords
leakage current
reheating
bismuth oxide
shows
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113163A
Other languages
Japanese (ja)
Other versions
JPS604202A (en
Inventor
Masahiro Kobayashi
Hideo Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58113163A priority Critical patent/JPS604202A/en
Publication of JPS604202A publication Critical patent/JPS604202A/en
Publication of JPH0522362B2 publication Critical patent/JPH0522362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 この発明は改良された酸化亜鉛形避雷器素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an improved zinc oxide type arrester element.

従来の酸化亜鉛形避雷器素子の電圧電流特性は
概念的に第1図のように示される。この素子の特
徴は優れた電圧電流非直線性にある。従来、常規
対地電圧印加時のもれ電流Iaを小さく、且つ雷電
流Ic通電時の素子電極間電圧(以下、制限電圧と
よぶ)を小さくするように、主に素子の組成を工
夫することによつて改良がなされてきた。
The voltage-current characteristics of a conventional zinc oxide type lightning arrester element are conceptually shown in FIG. This device is characterized by excellent voltage-current nonlinearity. Conventionally, the composition of the element was mainly devised to reduce the leakage current Ia when the normal ground voltage was applied and the voltage between the element electrodes (hereinafter referred to as limiting voltage) when the lightning current Ic was applied. Improvements have been made over time.

また上記素子を用いたアレタス(避雷器)で
は、雷電流に対する優れた保護特性をもつため、
従来型の避雷器で使用されていたギヤツプを取り
除いて使用されることがある。この場合には、第
1図における電流Iaが常時素子を流れることにな
る。電圧が常時印加された場合の素子を流れるも
れ電流の経時変化を概念的に第2図に示す。もれ
電流が増加してついては素子が破壊するパターン
をCに、一方、課電に対してもれ電流の増えない
安定なパターンをDに示す。従来主に再加熱処理
によつて安定なパターンDが得られるような工夫
を行つてきた。再加熱処理によつて素子の内部構
造、特に酸化ビスマス結晶相に変化が生じると考
えられている(例えば特開昭50−131094号公報、
特開昭52−53295号公報、特開昭52−87695号公
報、ただし直接それを示すデータは記載されてい
ない)。酸化ビスマスは素子の微細構造上酸化亜
鉛グレイン間を埋める粒界層を形成し、素子の電
圧電流非直線性特性に重要な役割を演じている構
成相と見なすことができる。これ故酸化ビスマス
をどのように製作・制御するかは素子の諸特性に
極めて重要な意味をもつ。
In addition, aretas (surge arresters) using the above elements have excellent protection characteristics against lightning current, so
It is sometimes used in conventional lightning arresters by removing the gap. In this case, the current Ia in FIG. 1 will always flow through the element. FIG. 2 conceptually shows the change in leakage current flowing through the element over time when a voltage is constantly applied. C shows a pattern in which the element breaks down as the leakage current increases, while D shows a stable pattern in which the leakage current does not increase with respect to energization. Conventionally, efforts have been made to obtain a stable pattern D mainly through reheating treatment. It is believed that the internal structure of the device, especially the bismuth oxide crystal phase, changes due to the reheating treatment (for example, Japanese Patent Application Laid-open No. 131094/1983,
JP-A No. 52-53295 and JP-A No. 52-87695; however, no data directly indicating this is described). Bismuth oxide forms a grain boundary layer between the zinc oxide grains in the device's microstructure, and can be considered as a constituent phase that plays an important role in the voltage-current nonlinearity characteristics of the device. Therefore, how bismuth oxide is manufactured and controlled has extremely important implications for the various characteristics of the device.

この酸化ビスマスの結晶相がガンマ(r)相で
あるときは、他の結晶相であるときよりも上記課
電特性や雷電流通電後の素子特性は安定してい
る。しかし、第1図に示すもれ電流Iaは、γ相の
成長とともに大きくなり、また制限電圧に対する
始動電圧の比(以下、制限電圧比とよぶ)が大き
くなり、保護特性が悪化するという欠点があつ
た。
When the crystal phase of bismuth oxide is a gamma (r) phase, the above-mentioned charging characteristics and device characteristics after lightning current are more stable than when other crystal phases are used. However, the leakage current Ia shown in Fig. 1 increases with the growth of the γ phase, and the ratio of the starting voltage to the limiting voltage (hereinafter referred to as limiting voltage ratio) increases, resulting in poor protection characteristics. It was hot.

この発明は上記のような従来のものの欠点を解
消するためになされたもので、酸化亜鉛形避雷器
素子中の酸化ビスマスの結晶相がγ相を含み、か
つその量が酸化ビスマスが全部γ相になつたとき
の20〜80%であるように制御し、さらにほう酸の
添加量を0.001〜0.01モル%の範囲とすることに
よつて、制限電圧比、もれ電流が小さく、重責務
な条件の下での課電特性の安定した酸化亜鉛形避
雷器素子を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the crystal phase of bismuth oxide in the zinc oxide type lightning arrester element contains a γ phase, and the amount of bismuth oxide is entirely in the γ phase. By controlling the amount of boric acid to be 20 to 80% of the temperature at the time of aging, and by controlling the amount of boric acid added in the range of 0.001 to 0.01 mol%, the limiting voltage ratio and leakage current are small, and it can be used under heavy duty conditions. The purpose of this invention is to provide a zinc oxide type lightning arrester element with stable charging characteristics under the following conditions.

この発明は、添加物として少なくとも酸化ビス
マスおよびほう酸を含む酸化亜鉛形避雷器素子に
おいて、上記酸化ビスマスの結晶相の20〜80%が
ガンマ酸化ビスマスであ、上記のほう酸の添加量
は0.001〜0.01モル%である酸化亜鉛形避雷器素
子である。
This invention provides a zinc oxide type lightning arrester element containing at least bismuth oxide and boric acid as additives, in which 20 to 80% of the crystal phase of the bismuth oxide is gamma bismuth oxide, and the amount of the boric acid added is 0.001 to 0.01 mol. % zinc oxide type lightning arrester element.

γ−Bi2O3を得るには添加物、焼成およびその
雰囲気条件、再加熱などが因子となり得るが、本
発明の実施例では再加熱を因子に運んで説明す
る。
In order to obtain γ-Bi 2 O 3 , additives, firing and atmospheric conditions, reheating, etc. may be factors, but in the embodiments of the present invention, reheating will be explained as a factor.

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

実施例 1 酸化亜鉛(ZnO)を主成分とし、添加物として
それぞれ0.1〜2モル%の酸化ビスマス(Bi2O3)、
酸化アンチモン(Sb2O3)、酸化コバルト
(CoO)、酸化マンガン(MnO)、酸化クロム
(C2O3)、酸化珪素(SiO2)、およびそれぞれ
0.001〜0.01モル%のほう酸(H3BO3)、硝酸アル
ミニウム(Al(NO33)・9H2O)を選び、これら
を粉砕、混合、造粒、成形した後1200℃で焼成し
た。
Example 1 Zinc oxide (ZnO) is the main component, and additives include bismuth oxide (Bi 2 O 3 ) in an amount of 0.1 to 2 mol%, respectively.
Antimony oxide (Sb 2 O 3 ), cobalt oxide (CoO), manganese oxide (MnO), chromium oxide (C 2 O 3 ), silicon oxide (SiO 2 ), and each
0.001 to 0.01 mol% of boric acid (H 3 BO 3 ) and aluminum nitrate (Al(NO 3 ) 3 ).9H 2 O) were selected, crushed, mixed, granulated, molded, and then fired at 1200°C.

これらの試料(大きさ508φ×25)を450〜700
℃保持時間2時間で再加熱して電極を付け、制限
電圧比、もれ電流、課電特性を調べた。
450 to 700 of these samples (size 508φ x 25)
After being reheated for 2 hours at °C, electrodes were attached, and the limiting voltage ratio, leakage current, and charging characteristics were examined.

第3図は再加熱による制限電圧比の変化を示
す。450〜500℃の再加熱処理のとき制限電圧比は
最小となり、700℃では非常に大きな値となる。
FIG. 3 shows the change in limiting voltage ratio due to reheating. The limiting voltage ratio becomes the minimum during reheating treatment at 450-500°C, and becomes a very large value at 700°C.

第4図は再加熱によるもれ電流の変化を示す。
測定条件は素子周囲温度40℃、印加電圧として素
子に/mAを通電したときの素子電極間に発生す
る電圧(以下、始動電圧という)の70%を選ん
だ。再加熱温度が450〜500℃のとき、もれ電流は
最小で、700℃では非常に大きな値となる。
FIG. 4 shows the change in leakage current due to reheating.
The measurement conditions were an element ambient temperature of 40° C. and an applied voltage of 70% of the voltage generated between the element electrodes (hereinafter referred to as starting voltage) when /mA was applied to the element. When the reheating temperature is 450-500°C, the leakage current is minimum, and at 700°C it becomes very large.

第5図は再加熱による課電特性の変化を示す。
ここで課電特性とは、素子周囲温度を130℃に保
ち、始動電圧の35%(曲線E)、55%(曲線F)、
およびい80%(曲線G)の印加電圧を課電したと
きの素子のもれ電流特性をいう。第5図の縦軸に
はもれ電流の増減の傾向を示す目安として課電後
1時間のもれ電流Iと課電後40時間のもれ電流
I40の比I40/I1(以下、もれ電流比という)の値を
示している。この値が1.0より小さいか1.0に近い
値ならばもれ電流が増えないことを意味し、課電
特性は安定しているといえる。
FIG. 5 shows changes in charging characteristics due to reheating.
Here, the charging characteristics are 35% (curve E), 55% (curve F), and
This refers to the leakage current characteristics of an element when an applied voltage of 80% (curve G) is applied. The vertical axis of Figure 5 shows the leakage current I for 1 hour after energization and the leakage current for 40 hours after energization as a guide to show the tendency of increase/decrease in leakage current.
It shows the value of the ratio I 40 / I 1 (hereinafter referred to as leakage current ratio). If this value is smaller than 1.0 or close to 1.0, it means that the leakage current does not increase, and it can be said that the charging characteristics are stable.

課電電圧の小さいときは第5図中曲線Eにみら
れるように、再加熱処理に関係なく安定してい
る。しかし、課電電圧を大きくすると(曲線F,
G)、再加熱処理をしなければ、もれ電流比を1.0
に近い値に保つことができない。課電電圧が始動
電圧の80%という素子にとつて重責務な条件のも
とでは、曲線Gにみられるように、再加熱処理が
500〜600℃の範囲にあるときのみもれ電流比は
1.0に近く、このとき素子課電特性は安定である
といえる。
When the applied voltage is small, as shown by curve E in FIG. 5, it is stable regardless of the reheating process. However, when the applied voltage is increased (curve F,
G), without reheating, the leakage current ratio is 1.0.
It is not possible to maintain a value close to . Under conditions where the applied voltage is 80% of the starting voltage, which is a critical condition for the device, reheating is necessary as shown in curve G.
The leakage current ratio in the range of 500 to 600℃ is
It is close to 1.0, and in this case it can be said that the element charging characteristics are stable.

上記電気試験を終えた試料について、素子中央
部を切り出し、300メツシユのふるいを通過する
まで粉砕して得た粉末についてX線回折測定を行
なつた。
After completing the electrical test, the central part of the element was cut out, and the resulting powder was subjected to X-ray diffraction measurements.

第6図は、再加熱前の素子の粉末X線回折パタ
ーンを、第7図は700℃で再加熱処理を行なつた
素子の粉末X線回折パターンをそれぞれ示す。第
6図および第7図に出現した回折ピークは、
ZnO,Zn7Sb2O12,Zn2SiO4およびBi2O3の物質に
よるものと同定できる。また注目すべきは、第6
図と第7図とを比較するとBi2O3のみが再加熱に
よつて相変態を生じていることである。即ち、再
加熱前のBi2O3の結晶相はβ相であつたものが、
700℃の再加熱後はγ相に相変態したことが認め
られる。
FIG. 6 shows the powder X-ray diffraction pattern of the element before reheating, and FIG. 7 shows the powder X-ray diffraction pattern of the element after reheating at 700°C. The diffraction peaks appearing in Figures 6 and 7 are
It can be identified that the substances are ZnO, Zn 7 Sb 2 O 12 , Zn 2 SiO 4 and Bi 2 O 3 . Also noteworthy is the 6th
A comparison between the figure and FIG. 7 shows that only Bi 2 O 3 undergoes phase transformation upon reheating. That is, the crystal phase of Bi 2 O 3 before reheating was β phase, but
After reheating at 700°C, it was observed that the phase transformed to the γ phase.

第6図および第7図にみられるようにβ−
Bi2O3とγ−Bi2O3の最強ピークが2θ≒28゜で重な
るので、2θ=32〜34゜に現われるピークによつて
再加熱処理による酸化ビスマスの変態を量的に調
査した。即ち、β−Bi2O3は(400)によるピー
クに、γ−Bi2O3は(321)によるピークに注目
して、それらのピークを測定した記録紙上でバツ
クグランドより上に出現した全体を切り抜いて、
これを天秤にて計り、その重量をピーク積分強度
相当として第8図に示した。図中曲線Hはβ−
Bi2O3(400)のピーク積分強度相当を、曲線Iは
γ−Bi2O3(321)のピーク積分強度相当をそれぞ
れ示す。
As seen in Figures 6 and 7, β-
Since the strongest peaks of Bi 2 O 3 and γ-Bi 2 O 3 overlap at 2θ≈28°, the transformation of bismuth oxide due to reheating treatment was quantitatively investigated using the peak appearing at 2θ = 32 to 34°. In other words, we focused on the peak due to (400) for β-Bi 2 O 3 and the peak due to (321) for γ-Bi 2 O 3 , and calculated the overall value that appeared above the background on the recording paper on which these peaks were measured. Cut out the
This was weighed on a balance, and the weight is shown in FIG. 8 as equivalent to the peak integrated intensity. Curve H in the figure is β-
Curve I shows the peak integrated intensity equivalent of Bi 2 O 3 (400), and curve I shows the peak integrated intensity equivalent of γ-Bi 2 O 3 (321).

第8図より、約450℃よりβ−Bi2O3のγ−
Bi2O3への変態が始まり、約650℃でほぼ完全に
γ−Bi2O3へ転化し終ることがわかる。酸化ビス
マスが完全にγ−Bi2O3となつた700℃における
γ−Bi2O3のピーク積分強度相当値に対する、各
加熱温度におけるγ−Bi2O3のピーク積分強度相
当値の割合を第9図に示す。即ち第9図は再加熱
処理による酸化ビスマスγ相への転化率を示す。
From Figure 8, from about 450℃, the γ- of β-Bi 2 O 3
It can be seen that the transformation to Bi 2 O 3 begins and almost completely completes the conversion to γ-Bi 2 O 3 at about 650°C. The ratio of the peak integrated intensity equivalent value of γ-Bi 2 O 3 at each heating temperature to the equivalent value of the peak integrated intensity of γ-Bi 2 O 3 at 700°C, when bismuth oxide has completely converted to γ-Bi 2 O 3 , is calculated. It is shown in FIG. That is, FIG. 9 shows the conversion rate to bismuth oxide γ phase by reheating treatment.

制限電圧比(第3図)、もれ電流(第4図)、課
電特性(第5図)、および酸化ビスマスのγ相へ
の転化率(第9図)、を比較検討すると、酸化ビ
スマスのうち20〜80%がγ−Bi2O3相であると
き、制限電圧比、もれ電流を悪化させずに重責務
な条件のもとで素子の課電特性を安定に保つこと
が可能である。
Comparing and examining the limiting voltage ratio (Figure 3), leakage current (Figure 4), charging characteristics (Figure 5), and conversion rate of bismuth oxide to γ phase (Figure 9), it was found that bismuth oxide When 20 to 80% of these are γ-Bi 2 O three- phase, it is possible to keep the charging characteristics of the device stable under heavy duty conditions without worsening the limiting voltage ratio or leakage current. It is.

実施例 2 酸化亜鉛(ZnO)を主成分とし、添加物として
それぞれ0.5モル%の酸化ビスマス(Bi2O3)、酸
化コバルト(CoO)、酸化マンガン(MnO)、酸
化クロム(Cr2O3)、それぞれ1.0モル%の酸化ア
ンチモン(Sb2O3)、酸化珪素(SiO2)、0.005モ
ル%の硝酸アルミニウム(Al(NO3)・9H2O)並
びに、0モル%0.005モル%または1モル%のほ
う酸(H3BO3)を選び、これらを粉砕、混合、
造粒、成形した後、1200℃で焼成した。
Example 2 Zinc oxide (ZnO) is the main component, and additives include 0.5 mol% each of bismuth oxide (Bi 2 O 3 ), cobalt oxide (CoO), manganese oxide (MnO), and chromium oxide (Cr 2 O 3 ). , respectively 1.0 mol% antimony oxide (Sb 2 O 3 ), silicon oxide (SiO 2 ), 0.005 mol% aluminum nitrate (Al(NO 3 ).9H 2 O) and 0 mol% 0.005 mol% or 1 mol %. % of boric acid (H 3 BO 3 ), grind them, mix them,
After granulation and molding, it was fired at 1200°C.

次に、これらの試料から、550℃の温度で熱処
理を施した素子と、熱処理を施さなかつた素子と
を準備した。
Next, from these samples, elements that were heat-treated at a temperature of 550°C and elements that were not heat-treated were prepared.

Bi2O3の結晶相をX線回折法で調べた結果、熱
処理を施していない素子はβ−Bi2O3であつた。
これに対して、熱処理を施した素子はγ−Bi2O3
への転化が約50%であつた。
As a result of examining the crystal phase of Bi 2 O 3 by X-ray diffraction, it was found that the element without heat treatment was β-Bi 2 O 3 .
On the other hand, the heat-treated device has γ−Bi 2 O 3
The conversion rate was approximately 50%.

次に、熱処理を施した素子について、制限電圧
比、もれ電流、課電特性を調べた。課電特性を表
わす指標として、ほう酸の添加量に対するもれ電
流比の関係を第10図に示す。H2BO3が0モル
%の場合には、制限電圧比およびもれ電流は最も
小さく良好な特性が得られたが、第10図に示す
ように、課電特性は劣化が最も大きく、特性は悪
かつた。H2BO3が0.005モル%の場合は、制限電
圧比ともれ電流はH2BO3が0モル%の場合とほ
とんど変わらず良い特性であり、課電特性も劣化
は認められず結果は良好であつた。すなわち、も
れ電流比の値はほぼ1であつた。H2BO3が1モ
ル%の場合は、制限電圧比ともれ電流は非常に大
きく(すなわち、特性は非常に悪く)、そのため
課電特性も不安定なものであつた。
Next, the limiting voltage ratio, leakage current, and charging characteristics of the heat-treated elements were investigated. As an index representing the charging characteristics, FIG. 10 shows the relationship between the amount of boric acid added and the leakage current ratio. When H 2 BO 3 was 0 mol %, the limiting voltage ratio and leakage current were the smallest and good characteristics were obtained, but as shown in Figure 10, the charging characteristics deteriorated the most and the characteristics was bad. When H 2 BO 3 is 0.005 mol %, the limiting voltage ratio and leakage current are almost the same as when H 2 BO 3 is 0 mol %, and the characteristics are good, and there is no deterioration in the charging characteristics and the results are good. It was hot. That is, the value of the leakage current ratio was approximately 1. When H 2 BO 3 was 1 mol %, the limiting voltage ratio and leakage current were very large (that is, the characteristics were very poor), and therefore the charging characteristics were also unstable.

一方、熱処理を施していない素子はすべて課電
するともれ電流が大きくなり、劣化が大きかつ
た。
On the other hand, all the elements that were not heat-treated had a large leakage current when energized, and the deterioration was large.

なお上記実施例では最適なγ−Bi2O3の生成量
を再加熱処理によつて制御したが、γ−Bi2O3
生成量を制御できる方法ならいずれでもよく、例
えば焼成雰囲気や素子の組成を工夫する方法であ
つてもよい。
In the above example, the optimal amount of γ-Bi 2 O 3 produced was controlled by reheating, but any method that can control the amount of γ-Bi 2 O 3 produced may be used, for example, by changing the firing atmosphere or the element. It may be a method of devising the composition of.

以上述べたように、この発明によれば、酸化亜
鉛形避雷器素子の酸化ビスマスを、その結晶相が
γ相でかつその量が全酸化ビスマスの20〜80%で
あるように制御し、さらにほう酸の添加量を
0.001〜0.01モル%の範囲とすることによつて、
制限電圧比、もれ電流を悪化させずに、重責務な
条件のもとで素子課電特性を安定に保つことがで
きる効果がある。
As described above, according to the present invention, bismuth oxide in a zinc oxide type lightning arrester element is controlled so that its crystal phase is γ phase and its amount is 20 to 80% of the total bismuth oxide, and boric acid Add amount of
By setting it in the range of 0.001 to 0.01 mol%,
This has the effect of keeping the element charging characteristics stable under severe conditions without worsening the limiting voltage ratio or leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸化亜鉛形避雷器素子の電圧電
流特性を示す図、第2図は第1図の素子の課電特
性を概念的に示した図、第3図は実施例による素
子を再加熱によよる制限電圧比の変化を示す図、
第4図は実施例による素子の再加熱によるもれ電
流の変化を示す図、第5図は実施例による素子の
再加熱による課電特性を示す図、第6図は再加熱
処理前の実施例による素子のX線回折パターンを
示す図、第7図は700℃で再加熱処理した実施例
による素子のX線回折パターンを示す図、第8図
は再加熱によるBi2O3ピーク強度の変化を示す
図、第9図は再加熱処理による酸化ビスマスのγ
相への転化率を示す図、第10図はほう酸の添加
によるもれ電流比の変化を示す図である。
Fig. 1 is a diagram showing the voltage-current characteristics of a conventional zinc oxide type arrester element, Fig. 2 is a diagram conceptually showing the charging characteristics of the element in Fig. 1, and Fig. 3 is a diagram showing a reproduction of the element according to the embodiment. Diagram showing changes in limiting voltage ratio due to heating,
Figure 4 is a diagram showing the change in leakage current due to reheating of the element according to the example, Figure 5 is a diagram showing the charging characteristics due to reheating of the element according to the example, and Figure 6 is a diagram showing the change in leakage current due to reheating of the element according to the example. Figure 7 shows the X-ray diffraction pattern of the element according to the example. Figure 7 shows the X-ray diffraction pattern of the element according to the example which was reheated at 700°C. Figure 8 shows the Bi 2 O 3 peak intensity due to reheating. Figure 9 shows the change in γ of bismuth oxide due to reheating treatment.
FIG. 10 is a diagram showing the conversion rate to the phase, and FIG. 10 is a diagram showing the change in leakage current ratio due to the addition of boric acid.

Claims (1)

【特許請求の範囲】[Claims] 1 添加物として少くとも酸化ビスマスおよびほ
う酸を含む酸化亜鉛形避雷器素子において、上記
酸化ビスマスの結晶相の20〜80%がガンマ酸化ビ
スマスであり、上記ほう酸の添加量は0.001〜
0.01モル%であることを特徴とする酸化亜鉛形避
雷器素子。
1. In a zinc oxide type lightning arrester element containing at least bismuth oxide and boric acid as additives, 20 to 80% of the crystal phase of the bismuth oxide is gamma bismuth oxide, and the amount of the boric acid added is 0.001 to 80%.
A zinc oxide type lightning arrester element characterized by containing 0.01 mol%.
JP58113163A 1983-06-22 1983-06-22 Zinc oxide type arrester element Granted JPS604202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113163A JPS604202A (en) 1983-06-22 1983-06-22 Zinc oxide type arrester element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113163A JPS604202A (en) 1983-06-22 1983-06-22 Zinc oxide type arrester element

Publications (2)

Publication Number Publication Date
JPS604202A JPS604202A (en) 1985-01-10
JPH0522362B2 true JPH0522362B2 (en) 1993-03-29

Family

ID=14605141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113163A Granted JPS604202A (en) 1983-06-22 1983-06-22 Zinc oxide type arrester element

Country Status (1)

Country Link
JP (1) JPS604202A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533597B2 (en) * 1988-01-28 1996-09-11 日本碍子株式会社 Method of manufacturing voltage non-linear resistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321509A (en) * 1976-08-11 1978-02-28 Nippon Telegr & Teleph Corp <Ntt> Digital signal two-way repeater unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321509A (en) * 1976-08-11 1978-02-28 Nippon Telegr & Teleph Corp <Ntt> Digital signal two-way repeater unit

Also Published As

Publication number Publication date
JPS604202A (en) 1985-01-10

Similar Documents

Publication Publication Date Title
JPH0522362B2 (en)
JPH0136684B2 (en)
JPS60176201A (en) Zinc oxide type lightning element
US4060661A (en) Voltage-dependent resistor
US5039971A (en) Voltage non-linear type resistors
JPH0584641B2 (en)
US5296169A (en) Method of producing varistor
JPH0142613B2 (en)
JPS6113603A (en) Voltage nonlinear resistor
JPS5965406A (en) Voltage nonlinear resistor
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPS61245503A (en) Zinc oxide type arrestor element and manufacture thereof
JP3317023B2 (en) Zinc oxide varistor
JP3317015B2 (en) Zinc oxide varistor
JPS6293904A (en) Manufacture of zinc oxide type arrestor device
DE3123599A1 (en) Stable composition for a zinc oxide varistor
JPH0795482B2 (en) Varistor manufacturing method
JPH0216003B2 (en)
JPS605201B2 (en) semiconductor composition
JP2548298B2 (en) Varistor manufacturing method
JPS5939884B2 (en) Voltage nonlinear resistor ceramic composition and its manufacturing method
JPH0113202B2 (en)
JPS63281404A (en) Voltage nonlinear resistance material
JPS6390804A (en) Voltage nonlinear resistor
JPS62268102A (en) Voltage nonlinear resistance element